Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.220
Filtrar
1.
Virulence ; 15(1): 2367647, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38884466

RESUMO

The global surge in multidrug-resistant bacteria owing to antibiotic misuse and overuse poses considerable risks to human and animal health. With existing antibiotics losing their effectiveness and the protracted process of developing new antibiotics, urgent alternatives are imperative to curb disease spread. Notably, improving the bactericidal effect of antibiotics by using non-antibiotic substances has emerged as a viable strategy. Although reduced nicotinamide adenine dinucleotide (NADH) may play a crucial role in regulating bacterial resistance, studies examining how the change of metabolic profile and bacterial resistance following by exogenous administration are scarce. Therefore, this study aimed to elucidate the metabolic changes that occur in Edwardsiella tarda (E. tarda), which exhibits resistance to various antibiotics, following the exogenous addition of NADH using metabolomics. The effects of these alterations on the bactericidal activity of neomycin were investigated. NADH enhanced the effectiveness of aminoglycoside antibiotics against E. tarda ATCC15947, achieving bacterial eradication at low doses. Metabolomic analysis revealed that NADH reprogrammed the ATCC15947 metabolic profile by promoting purine metabolism and energy metabolism, yielding increased adenosine triphosphate (ATP) levels. Increased ATP levels played a crucial role in enhancing the bactericidal effects of neomycin. Moreover, exogenous NADH promoted the bactericidal efficacy of tetracyclines and chloramphenicols. NADH in combination with neomycin was effective against other clinically resistant bacteria, including Aeromonas hydrophila, Vibrio parahaemolyticus, methicillin-resistant Staphylococcus aureus, and Listeria monocytogenes. These results may facilitate the development of effective approaches for preventing and managing E. tarda-induced infections and multidrug resistance in aquaculture and clinical settings.


Assuntos
Aminoglicosídeos , Antibacterianos , Edwardsiella tarda , NAD , Edwardsiella tarda/efeitos dos fármacos , Antibacterianos/farmacologia , NAD/metabolismo , Aminoglicosídeos/farmacologia , Animais , Doenças dos Peixes/microbiologia , Doenças dos Peixes/tratamento farmacológico , Testes de Sensibilidade Microbiana , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/tratamento farmacológico , Trifosfato de Adenosina/metabolismo , Neomicina/farmacologia , Sinergismo Farmacológico , Metabolômica , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos
2.
PeerJ ; 12: e17349, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38784394

RESUMO

Background: Antibiotics are commonly used for controlling microbial growth in diseased organisms. However, antibiotic treatments during early developmental stages can have negative impacts on development and physiology that could offset the positive effects of reducing or eliminating pathogens. Similarly, antibiotics can shift the microbial community due to differential effectiveness on resistant and susceptible bacteria. Though antibiotic application does not typically result in mortality of marine invertebrates, little is known about the developmental and transcriptional effects. These sublethal effects could reduce the fitness of the host organism and lead to negative changes after removal of the antibiotics. Here, we quantify the impact of antibiotic treatment on development, gene expression, and the culturable bacterial community of a model cnidarian, Nematostella vectensis. Methods: Ampicillin, streptomycin, rifampicin, and neomycin were compared individually at two concentrations, 50 and 200 µg mL-1, and in combination at 50 µg mL-1 each, to assess their impact on N. vectensis. First, we determined the impact antibiotics have on larval development. Next Amplicon 16S rDNA gene sequencing was used to compare the culturable bacteria that persist after antibiotic treatment to determine how these treatments may differentially select against the native microbiome. Lastly, we determined how acute (3-day) and chronic (8-day) antibiotic treatments impact gene expression of adult anemones. Results: Under most exposures, the time of larval settlement extended as the concentration of antibiotics increased and had the longest delay of 3 days in the combination treatment. Culturable bacteria persisted through a majority of exposures where we identified 359 amplicon sequence variants (ASVs). The largest proportion of bacteria belonged to Gammaproteobacteria, and the most common ASVs were identified as Microbacterium and Vibrio. The acute antibiotic exposure resulted in differential expression of genes related to epigenetic mechanisms and neural processes, while constant application resulted in upregulation of chaperones and downregulation of mitochondrial genes when compared to controls. Gene Ontology analyses identified overall depletion of terms related to development and metabolism in both antibiotic treatments. Discussion: Antibiotics resulted in a significant increase to settlement time of N. vectensis larvae. Culturable bacterial species after antibiotic treatments were taxonomically diverse. Additionally, the transcriptional effects of antibiotics, and after their removal result in significant differences in gene expression that may impact the physiology of the anemone, which may include removal of bacterial signaling on anemone gene expression. Our research suggests that impacts of antibiotics beyond the reduction of bacteria may be important to consider when they are applied to aquatic invertebrates including reef building corals.


Assuntos
Antibacterianos , Larva , Anêmonas-do-Mar , Animais , Antibacterianos/farmacologia , Anêmonas-do-Mar/genética , Anêmonas-do-Mar/efeitos dos fármacos , Larva/microbiologia , Larva/efeitos dos fármacos , Larva/genética , Ampicilina/farmacologia , Neomicina/farmacologia , Estreptomicina/farmacologia , Rifampina/farmacologia , Expressão Gênica/efeitos dos fármacos
3.
Int J Biol Macromol ; 270(Pt 1): 132297, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38744365

RESUMO

3D multifunctional scaffold has been designed based on Cs/SA/NS/NPHA. Nanoparticles hydroxyapatite (NPHA) was prepared via precipitation method of sodium dihydrogen phosphate in presence calcium chloride. Different ratios of Chitosan (CS)/Sodium Alginate (SA) were used to prepare Cs/SA scaffolds in presence of CaCl2 as a cross linker. NPHA was incorporated in CS/SA scaffold and neomycin sulfate (NS) was added as an antimicrobial agent. The structure and surface morphology of the scaffolds were investigated via infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscope (SEM) and thermal gravimetric analysis (TGA) techniques. Additionally, Antimicrobial activity of the scaffold has evaluated against Gram- negative and Gram- positive bacteria. The result showed promising antimicrobial activity against Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Candida albicans. Furthermore, cytotoxicity against MG63 osteosarcoma cell and fibroblast normal cell line has investigated. The result showed anti-proliferative against MG63. DFT calculations and molecular docking were used to study the reactivity of the compounds. The results exhibited that Cs/SA/NS/NPHA is potent expected to be used in bone tissue regeneration.


Assuntos
Alginatos , Anti-Infecciosos , Proliferação de Células , Quitosana , Durapatita , Simulação de Acoplamento Molecular , Neomicina , Alicerces Teciduais , Quitosana/química , Quitosana/farmacologia , Durapatita/química , Alginatos/química , Alginatos/farmacologia , Neomicina/farmacologia , Neomicina/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Humanos , Proliferação de Células/efeitos dos fármacos , Alicerces Teciduais/química , Teoria da Densidade Funcional , Testes de Sensibilidade Microbiana
4.
Int J Biol Macromol ; 271(Pt 1): 132577, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38795887

RESUMO

Staphylococcus aureus is a pathogen widely involved in wound infection due to its ability to release several virulence factors that impair the skin healing process, as well as its mechanism of drug resistance. Herein, sodium alginate and chitosan were combined to produce a hydrogel for topical delivery of neomycin to combat S. aureus associated with skin complications. The hydrogel was formulated by combining sodium alginate (50 mg/mL) and chitosan (50 mg/mL) solutions in a ratio of 9:1 (HBase). Neomycin was added to HBase to achieve a concentration of 0.4 mg/mL (HNeo). The incorporation of neomycin into the product was confirmed by scanning electron microscopy, FTIR and TGA analysis. The hydrogels produced are homogeneous, have a high swelling capacity, and show biocompatibility using erythrocytes and fibroblasts as models. The formulations showed physicochemical and pharmacological stability for 60 days at 4 ± 2 °C. HNeo totally inhibited the growth of S. aureus after 4 h. The antimicrobial effects were confirmed using ex vivo (porcine skin) and in vivo (murine) wound infection models. Furthermore, the HNeo-treated mice showed lower severity scores than those treated with HBase. Taken together, the obtained results present a new low-cost bioproduct with promising applications in treating infected wounds.


Assuntos
Alginatos , Antibacterianos , Quitosana , Hidrogéis , Neomicina , Staphylococcus aureus , Quitosana/química , Quitosana/farmacologia , Alginatos/química , Alginatos/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Animais , Camundongos , Neomicina/farmacologia , Neomicina/química , Neomicina/administração & dosagem , Antibacterianos/farmacologia , Antibacterianos/química , Infecções Estafilocócicas/tratamento farmacológico , Infecções Cutâneas Estafilocócicas/tratamento farmacológico , Infecções Cutâneas Estafilocócicas/microbiologia , Infecções Cutâneas Estafilocócicas/patologia , Portadores de Fármacos/química , Pele/efeitos dos fármacos , Pele/microbiologia
5.
Proc Natl Acad Sci U S A ; 121(15): e2317197121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38579011

RESUMO

Riboswitches are messenger RNA (mRNA) fragments binding specific small molecules to regulate gene expression. A synthetic N1 riboswitch, inserted into yeast mRNA controls the translation of a reporter gene in response to neomycin. However, its regulatory activity is sensitive to single-point RNA mutations, even those distant from the neomycin binding site. While the association paths of neomycin to N1 and its variants remain unknown, recent fluorescence kinetic experiments indicate a two-step process driven by conformational selection. This raises the question of which step is affected by mutations. To address this, we performed all-atom two-dimensional replica-exchange molecular dynamics simulations for N1 and U14C, U14C[Formula: see text], U15A, and A17G mutants, ensuring extensive conformational sampling of both RNA and neomycin. The obtained neomycin association and binding paths, along with multidimensional free-energy profiles, revealed a two-step binding mechanism, consisting of conformational selection and induced fit. Neomycin binds to a preformed N1 conformation upon identifying a stable upper stem and U-turn motif in the riboswitch hairpin. However, the positioning of neomycin in the binding site occurs at different RNA-neomycin distances for each mutant, which may explain their different regulatory activities. The subsequent induced fit arises from the interactions of the neomycin's N3 amino group with RNA, causing the G9 backbone to rearrange. In the A17G mutant, the critical C6-A17/G17 stacking forms at a closer RNA-neomycin distance compared to N1. These findings together with estimated binding free energies coincide with experiments and elucidate why the A17G mutation decreases and U15A enhances N1 activity in response to neomycin.


Assuntos
Neomicina , Riboswitch , Neomicina/metabolismo , Neomicina/farmacologia , Simulação de Dinâmica Molecular , Riboswitch/genética , Mutação , Conformação Molecular , Conformação de Ácido Nucleico , Ligantes
6.
Proc Natl Acad Sci U S A ; 121(18): e2319566121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38648490

RESUMO

Respiratory virus infections in humans cause a broad-spectrum of diseases that result in substantial morbidity and mortality annually worldwide. To reduce the global burden of respiratory viral diseases, preventative and therapeutic interventions that are accessible and effective are urgently needed, especially in countries that are disproportionately affected. Repurposing generic medicine has the potential to bring new treatments for infectious diseases to patients efficiently and equitably. In this study, we found that intranasal delivery of neomycin, a generic aminoglycoside antibiotic, induces the expression of interferon-stimulated genes (ISGs) in the nasal mucosa that is independent of the commensal microbiota. Prophylactic or therapeutic administration of neomycin provided significant protection against upper respiratory infection and lethal disease in a mouse model of COVID-19. Furthermore, neomycin treatment protected Mx1 congenic mice from upper and lower respiratory infections with a highly virulent strain of influenza A virus. In Syrian hamsters, neomycin treatment potently mitigated contact transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In healthy humans, intranasal application of neomycin-containing Neosporin ointment was well tolerated and effective at inducing ISG expression in the nose in a subset of participants. These findings suggest that neomycin has the potential to be harnessed as a host-directed antiviral strategy for the prevention and treatment of respiratory viral infections.


Assuntos
Administração Intranasal , Antivirais , Neomicina , SARS-CoV-2 , Animais , Neomicina/farmacologia , Neomicina/administração & dosagem , Camundongos , Humanos , Antivirais/farmacologia , Antivirais/administração & dosagem , SARS-CoV-2/imunologia , SARS-CoV-2/efeitos dos fármacos , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Infecções Respiratórias/imunologia , Infecções Respiratórias/tratamento farmacológico , Infecções Respiratórias/virologia , Infecções Respiratórias/prevenção & controle , Mucosa Nasal/imunologia , Mucosa Nasal/virologia , Mucosa Nasal/efeitos dos fármacos , Modelos Animais de Doenças , Tratamento Farmacológico da COVID-19 , Mesocricetus , Feminino , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/imunologia
7.
Arch Toxicol ; 98(6): 1827-1842, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38563869

RESUMO

Aminoglycosides are commonly used antibiotics for treatment of gram-negative bacterial infections, however, they might act on inner ear, leading to hair-cell death and hearing loss. Currently, there is no targeted therapy for aminoglycoside ototoxicity, since the underlying mechanisms of aminoglycoside-induced hearing impairments are not fully defined. This study aimed to investigate whether the calcium channel blocker verapamil and changes in intracellular & extracellular calcium could ameliorate aminoglycoside-induced ototoxicity in zebrafish. The present findings showed that a significant decreased number of neuromasts in the lateral lines of zebrafish larvae at 5 days' post fertilization after neomycin (20 µM) and gentamicin (20 mg/mL) exposure, which was prevented by verapamil. Moreover, verapamil (10-100 µM) attenuated aminoglycoside-induced toxic response in different external calcium concentrations (33-3300 µM). The increasing extracellular calcium reduced hair cell loss from aminoglycoside exposure, while lower calcium facilitated hair cell death. In contrast, calcium channel activator Bay K8644 (20 µM) enhanced aminoglycoside-induced ototoxicity and reversed the protective action of higher external calcium on hair cell loss. However, neomycin-elicited hair cell death was not altered by caffeine, ryanodine receptor (RyR) agonist, and RyR antagonists, including thapsigargin, ryanodine, and ruthenium red. The uptake of neomycin into hair cells was attenuated by verapamil and under high external calcium concentration. Consistently, the production of reactive oxygen species (ROS) in neuromasts exposed to neomycin was also reduced by verapamil and high external calcium. Significantly, zebrafish larvae when exposed to neomycin exhibited decreased swimming distances in reaction to droplet stimulus when compared to the control group. Verapamil and elevated external calcium effectively protected the impaired swimming ability of zebrafish larvae induced by neomycin. These data imply that prevention of hair cell damage correlated with swimming behavior against aminoglycoside ototoxicity by verapamil and higher external calcium might be associated with inhibition of excessive ROS production and aminoglycoside uptake through cation channels. These findings indicate that calcium channel blocker and higher external calcium could be applied to protect aminoglycoside-induced listening impairments.


Assuntos
Antibacterianos , Bloqueadores dos Canais de Cálcio , Cálcio , Gentamicinas , Células Ciliadas Auditivas , Neomicina , Verapamil , Peixe-Zebra , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Cálcio/metabolismo , Verapamil/farmacologia , Neomicina/toxicidade , Células Ciliadas Auditivas/efeitos dos fármacos , Células Ciliadas Auditivas/metabolismo , Gentamicinas/toxicidade , Antibacterianos/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Ototoxicidade/prevenção & controle , Aminoglicosídeos/toxicidade , Sistema da Linha Lateral/efeitos dos fármacos , Larva/efeitos dos fármacos , Perda Auditiva/induzido quimicamente , Perda Auditiva/prevenção & controle
8.
Int Immunol ; 36(7): 365-371, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38442194

RESUMO

The intestinal barrier consists of mucosal, epithelial, and immunological barriers and serves as a dynamic interface between the host and its environment. Disruption of the intestinal barrier integrity is a leading cause of various gastrointestinal diseases, such as inflammatory bowel disease. The homeostasis of the intestinal barrier is tightly regulated by crosstalk between gut microbes and the immune system; however, the implication of the immune system on the imbalance of gut microbes that disrupts barrier integrity remains to be fully elucidated. An inhibitory immunoglobulin-like receptor, Allergin-1, is expressed on mast cells and dendritic cells and inhibits Toll-like receptor (TLR)-2 and TLR-4 signaling in these cells. Since TLRs are major sensors of microbiota and are involved in local epithelial homeostasis, we investigated the role of Allergin-1 in maintaining intestinal homeostasis. Allergin-1-deficient (Milr1-/-) mice exhibited more severe dextran sulfate sodium (DSS)-induced colitis than did wild-type (WT) mice. Milr1-/- mice showed an enhanced intestinal permeability compared with WT mice even before DSS administration. Treatment of Milr1-/- mice with neomycin, but not ampicillin, restored intestinal barrier integrity. The 16S rRNA gene sequencing analysis demonstrated that Bifidobacterium pseudolongum was the dominant bacterium in Milr1-/- mice after treatment with ampicillin. Although the transfer of B. pseudolongum to germ-free WT mice had no effect on intestinal permeability, its transfer into ampicillin-treated WT mice enhanced intestinal permeability. These results demonstrated that Allergin-1 deficiency enhanced intestinal dysbiosis with expanded B. pseudolongum, which contributes to intestinal barrier dysfunction in collaboration with neomycin-sensitive and ampicillin-resistant microbiota.


Assuntos
Disbiose , Mucosa Intestinal , Camundongos Endogâmicos C57BL , Camundongos Knockout , Animais , Disbiose/imunologia , Camundongos , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/metabolismo , Sulfato de Dextrana , Microbioma Gastrointestinal/imunologia , Colite/imunologia , Colite/microbiologia , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/imunologia , Neomicina/farmacologia , Permeabilidade
9.
JAMA Surg ; 159(6): 606-614, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38506889

RESUMO

Importance: Surgical site infections (SSIs)-especially anastomotic dehiscence-are major contributors to morbidity and mortality after rectal resection. The role of mechanical and oral antibiotics bowel preparation (MOABP) in preventing complications of rectal resection is currently disputed. Objective: To assess whether MOABP reduces overall complications and SSIs after elective rectal resection compared with mechanical bowel preparation (MBP) plus placebo. Design, Setting, and Participants: This multicenter, double-blind, placebo-controlled randomized clinical trial was conducted at 3 university hospitals in Finland between March 18, 2020, and October 10, 2022. Patients aged 18 years and older undergoing elective resection with primary anastomosis of a rectal tumor 15 cm or less from the anal verge on magnetic resonance imaging were eligible for inclusion. Outcomes were analyzed using a modified intention-to-treat principle, which included all patients who were randomly allocated to and underwent elective rectal resection with an anastomosis. Interventions: Patients were stratified according to tumor distance from the anal verge and neoadjuvant treatment given and randomized in a 1:1 ratio to receive MOABP with an oral regimen of neomycin and metronidazole (n = 277) or MBP plus matching placebo tablets (n = 288). All study medications were taken the day before surgery, and all patients received intravenous antibiotics approximately 30 minutes before surgery. Main Outcomes and Measures: The primary outcome was overall cumulative postoperative complications measured using the Comprehensive Complication Index. Key secondary outcomes were SSI and anastomotic dehiscence within 30 days after surgery. Results: In all, 565 patients were included in the analysis, with 288 in the MBP plus placebo group (median [IQR] age, 69 [62-74] years; 190 males [66.0%]) and 277 in the MOABP group (median [IQR] age, 70 [62-75] years; 158 males [57.0%]). Patients in the MOABP group experienced fewer overall postoperative complications (median [IQR] Comprehensive Complication Index, 0 [0-8.66] vs 8.66 [0-20.92]; Wilcoxon effect size, 0.146; P < .001), fewer SSIs (23 patients [8.3%] vs 48 patients [16.7%]; odds ratio, 0.45 [95% CI, 0.27-0.77]), and fewer anastomotic dehiscences (16 patients [5.8%] vs 39 patients [13.5%]; odds ratio, 0.39 [95% CI, 0.21-0.72]) compared with patients in the MBP plus placebo group. Conclusions and Relevance: Findings of this randomized clinical trial indicate that MOABP reduced overall postoperative complications as well as rates of SSIs and anastomotic dehiscences in patients undergoing elective rectal resection compared with MBP plus placebo. Based on these findings, MOABP should be considered as standard treatment in patients undergoing elective rectal resection. Trial Registration: ClinicalTrials.gov Identifier: NCT04281667.


Assuntos
Antibacterianos , Neoplasias Retais , Infecção da Ferida Cirúrgica , Humanos , Masculino , Feminino , Método Duplo-Cego , Pessoa de Meia-Idade , Infecção da Ferida Cirúrgica/prevenção & controle , Infecção da Ferida Cirúrgica/epidemiologia , Idoso , Antibacterianos/administração & dosagem , Antibacterianos/uso terapêutico , Neoplasias Retais/cirurgia , Administração Oral , Antibioticoprofilaxia , Cuidados Pré-Operatórios/métodos , Neomicina/administração & dosagem , Neomicina/uso terapêutico , Catárticos/administração & dosagem , Metronidazol/administração & dosagem , Metronidazol/uso terapêutico , Protectomia/efeitos adversos , Reto/cirurgia , Deiscência da Ferida Operatória/prevenção & controle , Deiscência da Ferida Operatória/etiologia , Procedimentos Cirúrgicos Eletivos/efeitos adversos
10.
Sci Rep ; 14(1): 4163, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378700

RESUMO

Resistance against aminoglycosides is widespread in bacteria. This study aimed to identify genes that are important for growth of E. coli during aminoglycoside exposure, since such genes may be targeted to re-sensitize resistant E. coli to treatment. We constructed three transposon mutant libraries each containing > 230.000 mutants in E. coli MG1655 strains harboring streptomycin (aph(3″)-Ib/aph(6)-Id), gentamicin (aac(3)-IV), or neomycin (aph(3″)-Ia) resistance gene(s). Transposon Directed Insertion-site Sequencing (TraDIS), a combination of transposon mutagenesis and high-throughput sequencing, identified 56 genes which were deemed important for growth during streptomycin, 39 during gentamicin and 32 during neomycin exposure. Most of these fitness-genes were membrane-located (n = 55) and involved in either cell division, ATP-synthesis or stress response in the streptomycin and gentamicin exposed libraries, and enterobacterial common antigen biosynthesis or magnesium sensing/transport in the neomycin exposed library. For validation, eight selected fitness-genes/gene-clusters were deleted (minCDE, hflCK, clsA and cpxR associated with streptomycin and gentamicin resistance, and phoPQ, wecA, lpp and pal associated with neomycin resistance), and all mutants were shown to be growth attenuated upon exposure to the corresponding antibiotics. In summary, we identified genes that are advantageous in aminoglycoside-resistant E. coli during antibiotic stress. In addition, we increased the understanding of how aminoglycoside-resistant E. coli respond to antibiotic exposure.


Assuntos
Aminoglicosídeos , Antibacterianos , Antibacterianos/farmacologia , Aminoglicosídeos/farmacologia , Escherichia coli/genética , Farmacorresistência Bacteriana/genética , Testes de Sensibilidade Microbiana , Estreptomicina/farmacologia , Gentamicinas/farmacologia , Neomicina/farmacologia
11.
J Laryngol Otol ; 138(4): 431-435, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38224038

RESUMO

OBJECTIVE: This review assessed the effectiveness of the nurse-led children's epistaxis clinic in streamlining patient care and avoiding unnecessary general anaesthesia. METHODS: A retrospective case note review was conducted of children attending the nurse-led epistaxis clinic between 2019 and 2021. RESULTS: A total of 718 children were seen over three years. Twelve (1.7 per cent) had a known coagulopathy. Of the children, 590 (82 per cent) had visible vessels and 29 (4 per cent) had mucosal crusting. Silver nitrate cautery was attempted under topical anaesthesia in 481 children, with 463 (96 per cent) successful cauterisations. Fifteen (3 per cent) were cauterised under general anaesthesia. Of the children, 706 (99 per cent) were prescribed nasal antiseptic preparations; this was the sole treatment for 58 (8 per cent). Blood investigations were requested for eight children (1 per cent) and haematology referral for three (0.4 per cent). CONCLUSION: This is the largest published series of children's nosebleeds. Given the short-lived benefit from cautery, it is suggested that general anaesthesia should not be offered routinely. However, improved haematology referral criteria are required to increase underlying diagnosis.


Assuntos
Clorexidina , Epistaxe , Criança , Humanos , Epistaxe/cirurgia , Epistaxe/diagnóstico , Estudos Retrospectivos , Neomicina , Papel do Profissional de Enfermagem , Cauterização
12.
ACS Infect Dis ; 10(2): 527-540, 2024 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-38294409

RESUMO

Gram-negative bacterial infections are difficult to manage as many antibiotics are ineffective owing to the presence of impermeable bacterial membranes. Polymicrobial infections pose a serious threat due to the inadequate efficacy of available antibiotics, thereby necessitating the administration of antibiotics at higher doses. Antibiotic adjuvants have emerged as a boon as they can augment the therapeutic potential of available antibiotics. However, the toxicity profile of antibiotic adjuvants is a major hurdle in clinical translation. Here, we report the design, synthesis, and biological activities of xanthone-derived molecules as potential antibiotic adjuvants. Our SAR studies witnessed that the p-dimethylamino pyridine-derivative of xanthone (X8) enhances the efficacy of neomycin (NEO) against Escherichia coli and Pseudomonas aeruginosa and causes a synergistic antimicrobial effect without any toxicity against mammalian cells. Biochemical studies suggest that the combination of X8 and NEO, apart from inhibiting protein synthesis, enhances the membrane permeability by binding to lipopolysaccharide. Notably, the combination of X8 and NEO can disrupt the monomicrobial and polymicrobial biofilms and show promising therapeutic potential against a murine wound infection model. Collectively, our results unveil the combination of X8 and NEO as a suitable adjuvant therapy for the inhibition of the Gram-negative bacterial infections.


Assuntos
Infecções por Bactérias Gram-Negativas , Xantonas , Animais , Camundongos , Antibacterianos/farmacologia , Biofilmes , Escherichia coli , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Mamíferos , Neomicina/farmacologia , Xantonas/farmacologia
13.
Biol Res ; 57(1): 3, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38217055

RESUMO

BACKGROUND: Sensorineural hearing loss (SNHL) poses a major threat to both physical and mental health; however, there is still a lack of effective drugs to treat the disease. Recently, novel biological therapies, such as mesenchymal stem cells (MSCs) and their products, namely, exosomes, are showing promising therapeutic potential due to their low immunogenicity, few ethical concerns, and easy accessibility. Nevertheless, the precise mechanisms underlying the therapeutic effects of MSC-derived exosomes remain unclear. RESULTS: Exosomes derived from MSCs reduced hearing and hair cell loss caused by neomycin-induced damage in models in vivo and in vitro. In addition, MSC-derived exosomes modulated autophagy in hair cells to exert a protective effect. Mechanistically, exogenously administered exosomes were internalized by hair cells and subsequently upregulated endocytic gene expression and endosome formation, ultimately leading to autophagy activation. This increased autophagic activity promoted cell survival, decreased the mitochondrial oxidative stress level and the apoptosis rate in hair cells, and ameliorated neomycin-induced ototoxicity. CONCLUSIONS: In summary, our findings reveal the otoprotective capacity of exogenous exosome-mediated autophagy activation in hair cells in an endocytosis-dependent manner, suggesting possibilities for deafness treatment.


Assuntos
Exossomos , Neomicina , Neomicina/toxicidade , Neomicina/metabolismo , Exossomos/metabolismo , Células Ciliadas Auditivas , Autofagia/fisiologia
14.
Biopreserv Biobank ; 22(1): 21-28, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36656160

RESUMO

Aims: Bacterial contamination may occur in feces during collection and processing of semen. Bacteria not only compete for nutrients with spermatozoa but also produce toxic metabolites and endotoxins and affect sperm quality. The aim of the present study was to investigate the effect of antibiotic supplementation on the sperm quality of Indian red jungle fowl, estimation and isolation of bacterial species and their antibiotic sensitivity. Materials and Methods: Semen was collected and initially evaluated, diluted, and divided into six experimental extenders containing gentamicin (2.5 µg/mL), kanamycin (31.2 µg/mL), neomycin (62.5 mg/mL), penicillin (200 U/mL), and streptomycin (250 µg/mL), and a control having no antibiotics were cryopreserved and semen quality was evaluated at post-dilution, post-cooling, post-equilibration, and post-thawing stages (Experiment 1). A total aerobic bacterial count was carried out after culturing bacteria (Experiment 2) and subcultured for antibiotic sensitivity (Experiment 3). Results: It was shown that penicillin-containing extender improved semen quality (sperm motility, plasma membrane integrity, viability, and acrosomal integrity) compared with the control and other extenders having antibiotics. The bacteria isolated from semen were Escherichia coli, Staphylococcus spp., and Bacillus spp. Antibiotic sensitivity results revealed that E. coli shows high sensitivity toward neomycin, kanamycin, and penicillin. Staphylococcus spp. shows high sensitivity toward streptomycin, neomycin, and penicillin. Bacillus spp. shows high sensitivity toward kanamycin and penicillin. Conclusions: It was concluded that antibiotics added to semen extender did not cause any toxicity and maintained semen quality as that of untreated control samples, and penicillin was identified as most effective antibiotic. It is recommended that penicillin can be added to the semen extender for control of bacterial contamination without affecting the semen quality of Indian red jungle fowl.


Assuntos
Antibacterianos , Preservação do Sêmen , Masculino , Humanos , Antibacterianos/farmacologia , Sêmen/microbiologia , Análise do Sêmen , Escherichia coli , Motilidade dos Espermatozoides , Preservação do Sêmen/métodos , Espermatozoides , Penicilinas/farmacologia , Estreptomicina/farmacologia , Neomicina/farmacologia , Bactérias , Canamicina/farmacologia
15.
Int J Biol Macromol ; 256(Pt 1): 127779, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37981280

RESUMO

Ligand-RNA interaction assay provides the basis for developing new RNA-binding small molecules. In this study, fluorescent copper nanoclusters (CuNCs) were first prepared using two kinds of HIV-1 RNA targets, rev-responsive element (RRE) and transactivator response element (TAR) RNA, as new templates, and it was found that the fluorescence of the single RNA-templated CuNCs was negligible. Using neomycin as a model drug, the fluorescence could be augmented (approximately 6 times) for the neomycin/RNA-templated CuNCs. Thus, a novel method was developed for ligand-RNA interactions by observing the fluorescence changes in CuNCs prepared using RNA before and after the addition of ligands. The preparation parameters of neomycin/RNA-CuNCs were optimized. The as-prepared CuNCs were characterized using UV-vis spectroscopy, fluorescence spectroscopy, and high-resolution transmission electron microscope. Circular dichroism spectral analysis showed that RRE and TAR were inclined to form a double-stranded structure after interaction with neomycin, which was more conducive to the formation of CuNCs. The interactions of neomycin and three test drugs (amikacin, gentamicin, and tobramycin) with RNA were investigated using the proposed method, and the binding constants and number of binding sites were obtained through theoretical calculations. This study provides a novel approach for ligand-RNA interaction assays.


Assuntos
HIV-1 , Nanopartículas Metálicas , RNA , Fluorescência , HIV-1/genética , Cobre/química , Ligantes , Neomicina , Espectrometria de Fluorescência/métodos , Nanopartículas Metálicas/química , Corantes Fluorescentes/química
16.
Hear Res ; 441: 108916, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38103445

RESUMO

Flat epithelium (FE) is a condition characterized by the loss of both hair cells (HCs) and supporting cells and the transformation of the organ of Corti into a simple flat or cuboidal epithelium, which can occur after severe cochlear insults. The transcription factors Gfi1, Atoh1, Pou4f3, and Six1 (GAPS) play key roles in HC differentiation and survival in normal ears. Previous work using a single transcription factor, Atoh1, to induce HC regeneration in mature ears in vivo usually produced very few cells and failed to produce HCs in severely damaged organs of Corti, especially those with FE. Studies in vitro suggested combinations of transcription factors may be more effective than any single factor, thus the current study aims to examine the effect of co-overexpressing GAPS genes in deafened mature guinea pig cochleae with FE. Deafening was achieved through the infusion of neomycin into the perilymph, leading to the formation of FE and substantial degeneration of nerve fibers. Seven days post neomycin treatment, adenovirus vectors carrying GAPS were injected into the scala media and successfully expressed in the FE. One or two months following GAPS inoculation, cells expressing Myosin VIIa were observed in regions under the FE (located at the scala tympani side of the basilar membrane), rather than within the FE. The number of cells, which we define as induced HCs (iHCs), was not significantly different between one and two months, but the larger N at two months made it more apparent that there were significantly more iHCs in GAPS treated animals than in controls. Additionally, qualitative observations indicated that ears with GAPS gene expression in the FE had more nerve fibers than FE without the treatment. In summary, our results showed that co-overexpression of GAPS enhances the potential for HC regeneration in a severe lesion model of FE.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Fatores de Transcrição , Animais , Cobaias , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Células Ciliadas Auditivas/patologia , Epitélio/metabolismo , Cóclea/metabolismo , Neomicina
17.
Biol. Res ; 57: 3-3, 2024. ilus, graf, tab
Artigo em Inglês | LILACS | ID: biblio-1550058

RESUMO

BACKGROUND: Sensorineural hearing loss (SNHL) poses a major threat to both physical and mental health; however, there is still a lack of effective drugs to treat the disease. Recently, novel biological therapies, such as mesenchymal stem cells (MSCs) and their products, namely, exosomes, are showing promising therapeutic potential due to their low immunogenicity, few ethical concerns, and easy accessibility. Nevertheless, the precise mechanisms underlying the therapeutic effects of MSC-derived exosomes remain unclear. RESULTS: Exosomes derived from MSCs reduced hearing and hair cell loss caused by neomycin-induced damage in models in vivo and in vitro. In addition, MSC-derived exosomes modulated autophagy in hair cells to exert a protective effect. Mechanistically, exogenously administered exosomes were internalized by hair cells and subsequently upregulated endocytic gene expression and endosome formation, ultimately leading to autophagy activation. This increased autophagic activity promoted cell survival, decreased the mitochondrial oxidative stress level and the apoptosis rate in hair cells, and ameliorated neomycin-induced ototoxicity. CONCLUSIONS: In summary, our findings reveal the otoprotective capacity of exogenous exosome-mediated autophagy activation in hair cells in an endocytosis-dependent manner, suggesting possibilities for deafness treatment.


Assuntos
Neomicina/metabolismo , Neomicina/toxicidade , Exossomos/metabolismo , Autofagia/fisiologia , Células Ciliadas Auditivas
18.
Front Immunol ; 14: 1264060, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38130726

RESUMO

Sialic acids are terminal sugars of the cellular glycocalyx and are highly abundant in the nervous tissue. Sialylation is sensed by the innate immune system and acts as an inhibitory immune checkpoint. Aminoglycoside antibiotics such as neomycin have been shown to activate tissue macrophages and induce ototoxicity. In this study, we investigated the systemic subcutaneous application of the human milk oligosaccharide 6'-sialyllactose (6SL) as a potential therapy for neomycin-induced ototoxicity in postnatal mice. Repeated systemic treatment of mice with 6SL ameliorated neomycin-induced hearing loss and attenuated neomycin-triggered macrophage activation in the cochlear spiral ganglion. In addition, 6SL reversed the neomycin-mediated increase in gene transcription of the pro-inflammatory cytokine interleukin-1ß (Il-1b) and the apoptotic/inflammatory kinase Pik3cd in the inner ear. Interestingly, neomycin application also increased the transcription of desialylating enzyme neuraminidase 3 (Neu3) in the inner ear. In vitro, we confirmed that treatment with 6SL had anti-inflammatory, anti-phagocytic, and neuroprotective effects on cultured lipopolysaccharide-challenged human THP1-macrophages. Thus, our data demonstrated that treatment with 6SL has anti-inflammatory and protective effects against neomycin-mediated macrophage activation and ototoxicity.


Assuntos
Neomicina , Ototoxicidade , Camundongos , Animais , Humanos , Neomicina/toxicidade , Antibacterianos/efeitos adversos , Aminoglicosídeos , Anti-Inflamatórios/farmacologia
19.
Mikrochim Acta ; 191(1): 34, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38108923

RESUMO

Magnetic solid phase extraction with the functionalization of protein onto micro- or nano-particles as a probe is favorable for the discovery of new drugs from complicated natural products. Herein, we aimed to develop a rapid method by immobilizing halogenated alkane dehalogenase (Halo)-tagged calcium-sensing receptor (CaSR) directly out of crude cell lysates onto the surface of magnetic microspheres (MM) with no need to purify protein. Thereby we achieved CaSR-functionalized MM for revealing adsorption characteristics of agonist neomycin and screening ligands from herbal medicine Radix Astragali (RA). About 43.87 mg CaSR could be immobilized per 1 g MM within 30 min, and the acquired CaSR-functionalized MM showed good stability and activity for 4 weeks. The maximum adsorption capacity of neomycin on CaSR-functionalized MM was determined as 4.70 × 10-4 ~ 3.96 × 10-4 mol/g within 277 ~ 310 K, and its adsorption isotherm characteristics described best by the Temkin model were further validated using isothermal titration calorimetry. It was inferred that CaSR's affinity for neomycin was driven by electrostatic forces in a spontaneous process when the system reached an equilibrium state. Moreover, the ligands from the RA extract were screened, three of which were assigned as astragaloside IV, ononin, and calycosin based on HPLC-MS. Our findings demonstrated that the functionalization of a receptor onto magnetic materials designed as an affinity probe has the capability to recognize its agonist and capture the ligands selectively from complex matrices like herbs.


Assuntos
Neomicina , Receptores de Detecção de Cálcio , Microesferas , Adsorção , Ligantes , Fenômenos Magnéticos
20.
Appl Environ Microbiol ; 89(10): e0055923, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37787538

RESUMO

Neomycin is the first-choice antibiotic for the treatment of porcine enteritis caused by enterotoxigenic Escherichia coli. Resistance to this aminoglycoside is on the rise after the increased use of neomycin due to the ban on zinc oxide. We identified the neomycin resistance determinants and plasmid contents in a historical collection of 128 neomycin-resistant clinical E. coli isolates from Danish pig farms. All isolates were characterized by whole-genome sequencing and antimicrobial susceptibility testing, followed by conjugation experiments and long-read sequencing of eight selected representative strains. We detected 35 sequence types (STs) with ST100 being the most prevalent lineage (38.3%). Neomycin resistance was associated with two resistance genes, namely aph(3')-Ia and aph(3')-Ib, which were identified in 93% and 7% of the isolates, respectively. The aph(3')-Ia was found on different large conjugative plasmids belonging to IncI1α, which was present in 67.2% of the strains, on IncHI1, IncHI2, and IncN, as well as on a multicopy ColRNAI plasmid. All these plasmids except ColRNAI carried genes encoding resistance to other antimicrobials or heavy metals, highlighting the risk of co-selection. The aph(3')-Ib gene occurred on a 19 kb chimeric, mobilizable plasmid that contained elements tracing back its origin to distantly related genera. While aph(3')-Ia was flanked by either Tn903 or Tn4352 derivatives, no clear association was observed between aph(3')-Ib and mobile genetic elements. In conclusion, the spread of neomycin resistance in porcine clinical E. coli is driven by two resistance determinants located on distinct plasmid scaffolds circulating within a highly diverse population dominated by ST100. IMPORTANCE Neomycin is the first-choice antibiotic for the management of Escherichia coli enteritis in pigs. This work shows that aph(3')-Ia and to a lesser extent aph(3')-Ib are responsible for the spread of neomycin resistance that has been recently observed among pig clinical isolates and elucidates the mechanisms of dissemination of these two resistance determinants. The aph(3')-Ia gene is located on different conjugative plasmid scaffolds and is associated with two distinct transposable elements (Tn903 and Tn4352) that contributed to its spread. The diffusion of aph(3')-Ib is mediated by a small non-conjugative, mobilizable chimeric plasmid that likely derived from distantly related members of the Pseudomonadota phylum and was not associated with any detectable mobile genetic element. Although the spread of neomycin resistance is largely attributable to horizontal transfer, both resistance determinants have been acquired by a predominant lineage (ST100) associated with enterotoxigenic E. coli, which accounted for approximately one-third of the strains.


Assuntos
Enterite , Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Animais , Suínos , Neomicina/farmacologia , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/epidemiologia , Fazendas , Antibacterianos/farmacologia , Plasmídeos/genética , Escherichia coli Enterotoxigênica/genética , Patrimônio Genético , Dinamarca , Farmacorresistência Bacteriana/genética , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA