Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65.571
Filtrar
1.
J Physiol Pharmacol ; 75(2): 117-122, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38736259

RESUMO

The process of acetylation and deacetylation of histones within the nucleus operates within a dynamic equilibrium. Histone acetyltransferases (HATs) and histone deacetylases (HDACs) collaboratively and precisely regulate normal gene transcription and expression. Any disorder in the activity of HATs/HDACs can lead to uncontrolled gene expression, consequently resulting in tumorigenesis. Histone deacetylase inhibitors (HDACIs) have the capacity to block the cell cycle, thereby restraining tumor cell proliferation and tumor growth. Also, HDACIs exhibit a significant capability to diminish the expression of apoptosis protein inhibitors such as Bcl-2 and B-cell lymphoma-extra-large (Bcl-xL), while concurrently up-regulating pro-apoptotic proteins such as Bax, Bad, and Bim. Also, HDACIs demonstrate the ability to inhibit tumor cell angiogenesis. Representing a new category of targeted anti-cancer therapeutics, HDACIs possess the capability to restore the expression of tumor suppressor genes, induce apoptosis, and stimulate cell differentiation. Additionally, they exert anti-cancer effects through diverse pathways both in vivo and in vitro, thereby presenting promising prospects in tumor therapy. This review delves into the involvement of HDACs in cancer pathology and the therapeutic potential of HDACIs as emerging drugs in cancer treatment.


Assuntos
Inibidores de Histona Desacetilases , Neoplasias , Humanos , Inibidores de Histona Desacetilases/uso terapêutico , Inibidores de Histona Desacetilases/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Animais , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Histona Desacetilases/metabolismo , Apoptose/efeitos dos fármacos
2.
Cancer J ; 30(3): 170-175, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38753751

RESUMO

ABSTRACT: Positron emission tomography (PET) is an established tool for molecular imaging of cancers, and its role in diagnosis, staging, and phenotyping continues to evolve and expand rapidly. PET imaging of increased glucose utilization with 18F-fluorodeoxyglucose is now entrenched in clinical oncology practice for improving prognostication and treatment response assessment. Additional critical processes for cancer cell survival can also be imaged by PET, helping to inform individualized treatment selections for patients by improving our understanding of cell survival mechanisms and identifying relevant active mechanisms in each patient. The critical importance of quantifying cell proliferation and DNA repair pathways for prognosis and treatment selection is highlighted by the nearly ubiquitous use of the Ki-67 index, an established histological quantitative measure of cell proliferation, and BRCA mutation testing for treatment selection. This review focuses on PET advances in imaging and quantifying cell proliferation and poly(ADP-ribose)polymerase expression that can be used to complement cancer phenotyping approaches that will identify the most effective treatments for each individual patient.


Assuntos
Proliferação de Células , Reparo do DNA , Neoplasias , Tomografia por Emissão de Pósitrons , Humanos , Tomografia por Emissão de Pósitrons/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/patologia , Neoplasias/genética , Neoplasias/diagnóstico , Neoplasias/metabolismo , Fluordesoxiglucose F18 , Compostos Radiofarmacêuticos , Imagem Molecular/métodos
3.
Nat Commun ; 15(1): 4211, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760334

RESUMO

The cumulative number of stem cell divisions in a tissue, known as mitotic age, is thought to be a major determinant of cancer-risk. Somatic mutational and DNA methylation (DNAm) clocks are promising tools to molecularly track mitotic age, yet their relationship is underexplored and their potential for cancer risk prediction in normal tissues remains to be demonstrated. Here we build and validate an improved pan-tissue DNAm counter of total mitotic age called stemTOC. We demonstrate that stemTOC's mitotic age proxy increases with the tumor cell-of-origin fraction in each of 15 cancer-types, in precancerous lesions, and in normal tissues exposed to major cancer risk factors. Extensive benchmarking against 6 other mitotic counters shows that stemTOC compares favorably, specially in the preinvasive and normal-tissue contexts. By cross-correlating stemTOC to two clock-like somatic mutational signatures, we confirm the mitotic-like nature of only one of these. Our data points towards DNAm as a promising molecular substrate for detecting mitotic-age increases in normal tissues and precancerous lesions, and hence for developing cancer-risk prediction strategies.


Assuntos
Metilação de DNA , Epigênese Genética , Mitose , Mutação , Neoplasias , Lesões Pré-Cancerosas , Humanos , Mitose/genética , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/patologia , Neoplasias/genética , Neoplasias/patologia , Células-Tronco/metabolismo
4.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167226, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38734320

RESUMO

Cells of multicellular organisms generate heterogeneity in a controlled and transient fashion during embryogenesis, which can be reactivated in pathologies such as cancer. Although genomic heterogeneity is an important part of tumorigenesis, continuous generation of phenotypic heterogeneity is central for the adaptation of cancer cells to the challenges of tumorigenesis and response to therapy. Here I discuss the capacity of generating heterogeneity, hereafter called cell hetness, in cancer cells both as the activation of hetness oncogenes and inactivation of hetness tumor suppressor genes, which increase the generation of heterogeneity, ultimately producing an increase in adaptability and cell fitness. Transcriptomic high hetness states in therapy-tolerant cell states denote its importance in cancer resistance to therapy. The definition of the concept of hetness will allow the understanding of its origins, its control during embryogenesis, its loss of control in tumorigenesis and cancer therapeutics and its active targeting.


Assuntos
Carcinogênese , Neoplasias , Humanos , Neoplasias/genética , Neoplasias/patologia , Neoplasias/terapia , Neoplasias/metabolismo , Carcinogênese/genética , Carcinogênese/patologia , Heterogeneidade Genética , Oncogenes/genética , Animais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Genes Supressores de Tumor , Regulação Neoplásica da Expressão Gênica
5.
Med Oncol ; 41(6): 139, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709365

RESUMO

To evaluate the association of standardized phase angle (SPA) with nutritional status, functional parameters, and postoperative outcomes in surgical cancer patients. This prospective study includes 59 cancer patients from Pelotas (Brazil) admitted for elective cancer surgery. We obtained the phase angle through Bioelectrical Impedance Analysis (BIA) and standardized it according to the population's reference values. We estimated the muscle mass using BIA for later calculation of the Skeletal Muscle Index (SMI) and performed handgrip strength (HGS) and gait speed (GS) tests. We used the Patient-Generated Subjective Global Assessment (PG-SGA) to assess the nutritional status. Postoperative complications and duration of hospital stay were evaluated as the outcomes. The prevalence of malnutrition in the sample was 28.8%, according to ASG-PPP. SPA was statistically lower in patients with malnutrition, with lower HGS and reduced GS. For postoperative outcomes, patients with severe complications and those with prolonged hospitalization also had lower SPA values. The greater the number of functional alterations in patients, the lower the SPA value, mainly when associated with reduced muscle mass assessed by BIA, suggesting that muscle mass reduction plays an important role in the association between functional alterations and phase angle in patients with cancer. According to the parameters used in this study, low SPA value was associated with impaired nutritional and functional status and negative outcomes in the analyzed sample.


Assuntos
Músculo Esquelético , Neoplasias , Estado Nutricional , Complicações Pós-Operatórias , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Prospectivos , Neoplasias/cirurgia , Neoplasias/patologia , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Idoso , Desnutrição , Força da Mão/fisiologia , Impedância Elétrica , Adulto , Brasil/epidemiologia , Tempo de Internação , Avaliação Nutricional
6.
Methods Mol Biol ; 2800: 11-25, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38709474

RESUMO

Fibroblasts are the major producers of the extracellular matrix and regulate its organization. Aberrant signaling in diseases such as fibrosis and cancer can impact the deposition of the matrix proteins, which can in turn act as an adhesion scaffold and signaling reservoir promoting disease progression. To study the composition and organization of the extracellular matrix as well as its interactions with (tumor) cells, this protocol describes the generation and analysis of 3D fibroblast-derived matrices and the investigation of (tumor) cells seeded onto the 3D scaffolds by immunofluorescent imaging and cell adhesion, colony formation, migration, and invasion/transmigration assays.


Assuntos
Adesão Celular , Movimento Celular , Matriz Extracelular , Fibroblastos , Transdução de Sinais , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Humanos , Linhagem Celular Tumoral , Técnicas de Cultura de Células/métodos , Neoplasias/metabolismo , Neoplasias/patologia , Comunicação Celular , Técnicas de Cultura de Células em Três Dimensões/métodos , Animais , Alicerces Teciduais/química
7.
J Biochem Mol Toxicol ; 38(6): e23735, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38773908

RESUMO

Cancer is one of the major causes of death worldwide, with more than 10 million deaths annually. Despite tremendous advances in the health sciences, cancer continues to be a substantial global contributor to mortality. The current treatment methods demand a paradigm shift that not only improves therapeutic efficacy but also minimizes the side effects of conventional medications. Recently, an increased interest in the potential of natural bioactive compounds in the treatment of several types of cancer has been observed. Ononin, also referred to as formononetin-7-O-ß-d-glucoside, is a natural isoflavone glycoside, derived from the roots, stems, and rhizomes of various plants. It exhibits a variety of pharmacological effects, including Antiangiogenic, anti-inflammatory, antiproliferative, proapoptotic, and antimetastatic activities. The current review presents a thorough overview of sources, chemistry, pharmacokinetics, and the role of ononin in affecting various mechanisms involved in cancer. The review also discusses potential synergistic interactions with other compounds and therapies. The combined synergistic effect of ononin with other compounds increased the efficacy of treatment methods. Finally, the safety studies, comprising both in vitro and in vivo assessments of ononin's anticancer activities, are described.


Assuntos
Isoflavonas , Neoplasias , Isoflavonas/farmacologia , Isoflavonas/química , Isoflavonas/uso terapêutico , Humanos , Animais , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Glucosídeos/farmacologia , Glucosídeos/uso terapêutico , Glucosídeos/química , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/uso terapêutico , Glicosídeos/farmacologia , Glicosídeos/uso terapêutico , Glicosídeos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química
8.
BMC Cancer ; 24(1): 607, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769480

RESUMO

BACKGROUND: Cancerous cells' identity is determined via a mixture of multiple factors such as genomic variations, epigenetics, and the regulatory variations that are involved in transcription. The differences in transcriptome expression as well as abnormal structures in peptides determine phenotypical differences. Thus, bulk RNA-seq and more recent single-cell RNA-seq data (scRNA-seq) are important to identify pathogenic differences. In this case, we rely on k-mer decomposition of sequences to identify pathogenic variations in detail which does not need a reference, so it outperforms more traditional Next-Generation Sequencing (NGS) analysis techniques depending on the alignment of the sequences to a reference. RESULTS: Via our alignment-free analysis, over esophageal and glioblastoma cancer patients, high-frequency variations over multiple different locations (repeats, intergenic regions, exons, introns) as well as multiple different forms (fusion, polyadenylation, splicing, etc.) could be discovered. Additionally, we have analyzed the importance of less-focused events systematically in a classic transcriptome analysis pipeline where these events are considered as indicators for tumor prognosis, tumor prediction, tumor neoantigen inference, as well as their connection with respect to the immune microenvironment. CONCLUSIONS: Our results suggest that esophageal cancer (ESCA) and glioblastoma processes can be explained via pathogenic microbial RNA, repeated sequences, novel splicing variants, and long intergenic non-coding RNAs (lincRNAs). We expect our application of reference-free process and analysis to be helpful in tumor and normal samples differential scRNA-seq analysis, which in turn offers a more comprehensive scheme for major cancer-associated events.


Assuntos
Glioblastoma , Análise de Célula Única , Transcriptoma , Humanos , Análise de Célula Única/métodos , Glioblastoma/genética , Glioblastoma/patologia , Perfilação da Expressão Gênica/métodos , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Sequenciamento de Nucleotídeos em Larga Escala , RNA-Seq/métodos , Análise de Sequência de RNA/métodos , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Neoplasias/patologia
9.
J Korean Med Sci ; 39(19): e156, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769921

RESUMO

The process of cancer metastasis is dependent on the cancer cells' capacity to detach from the primary tumor, endure in a suspended state, and establish colonies in other locations. Anchorage dependence, which refers to the cells' reliance on attachment to the extracellular matrix (ECM), is a critical determinant of cellular shape, dynamics, behavior, and, ultimately, cell fate in nonmalignant and cancer cells. Anchorage-independent growth is a characteristic feature of cells resistant to anoikis, a programmed cell death process triggered by detachment from the ECM. This ability to grow and survive without attachment to a substrate is a crucial stage in the progression of metastasis. The recently discovered phenomenon named "adherent-to-suspension transition (AST)" alters the requirement for anchoring and enhances survival in a suspended state. AST is controlled by four transcription factors (IKAROS family zinc finger 1, nuclear factor erythroid 2, BTG anti-proliferation factor 2, and interferon regulatory factor 8) and can detach cells without undergoing the typical epithelial-mesenchymal transition. Notably, AST factors are highly expressed in circulating tumor cells compared to their attached counterparts, indicating their crucial role in the spread of cancer. Crucially, the suppression of AST substantially reduces metastasis while sparing primary tumors. These findings open up possibilities for developing targeted therapies that inhibit metastasis and emphasize the importance of AST, leading to a fundamental change in our comprehension of how cancer spreads.


Assuntos
Metástase Neoplásica , Neoplasias , Humanos , Neoplasias/patologia , Adesão Celular , Matriz Extracelular/metabolismo , Transição Epitelial-Mesenquimal , Anoikis , Fatores de Transcrição/metabolismo
10.
Nihon Yakurigaku Zasshi ; 159(3): 169-172, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-38692882

RESUMO

Since the approval of HIF-PH inhibitors, HIF-PH inhibitors have been used clinically, and many studies and clinical case reports have been reported in Japan. A lot of information has been accumulated on clinical usage. However, HIF-PH inhibitors require careful administration for cancer patients due to their action mechanism through upregulating hypoxia-inducible factors (HIFs) level. In cancer cells, HIFs affect tumor progression and contribute to chemo- and radio-resistance. On the other hand, upregulation of HIFs in immune cells is associated with inflammation and suppress tumor progression. However, these controversial effects are not clear in in vivo model. It is needed to reveal whether upregulating HIFs level is beneficial for cancer therapy or not. We have previously reported that HIF-PH inhibitor treatment in tumor bearing mice model led to reconstitute tumor blood vessel and inhibit tumor growth. In addition, these phenomena were caused by tumor infiltrated macrophages and they altered these phenotypes. In this review, we will describe our findings on the mechanism of tumor growth suppression by HIF-PH inhibitors. We also want to mention the risks and benefits of future HIF-PH inhibitors.


Assuntos
Neoplasias , Microambiente Tumoral , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Animais , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/patologia , Prolina Dioxigenases do Fator Induzível por Hipóxia/antagonistas & inibidores , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo
11.
Cell Death Dis ; 15(5): 327, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38729953

RESUMO

Programmed cell death (PCD) is a basic process of life that is closely related to the growth, development, aging and disease of organisms and is one of the hotspots of life science research today. PCD is a kind of genetic control, autonomous and orderly important cell death that involves the activation, expression, and regulation of a series of genes. In recent years, with the deepening of research in this field, new mechanisms of multiple PCD pathways have been revealed. This article reviews and summarizes the multiple PCD pathways that have been discovered, analyses and compares the morphological characteristics and biomarkers of different types of PCD, and briefly discusses the role of various types of PCD in the diagnosis and treatment of different diseases, especially malignant tumors.


Assuntos
Apoptose , Humanos , Apoptose/genética , Animais , Neoplasias/patologia , Neoplasias/genética , Neoplasias/metabolismo , Transdução de Sinais
12.
Nat Commun ; 15(1): 3884, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719909

RESUMO

Only a minority of cancer patients benefit from immune checkpoint blockade therapy. Sophisticated cross-talk among different immune checkpoint pathways as well as interaction pattern of immune checkpoint molecules carried on circulating small extracellular vesicles (sEV) might contribute to the low response rate. Here we demonstrate that PD-1 and CD80 carried on immunocyte-derived sEVs (I-sEV) induce an adaptive redistribution of PD-L1 in tumour cells. The resulting decreased cell membrane PD-L1 expression and increased sEV PD-L1 secretion into the circulation contribute to systemic immunosuppression. PD-1/CD80+ I-sEVs also induce downregulation of adhesion- and antigen presentation-related molecules on tumour cells and impaired immune cell infiltration, thereby converting tumours to an immunologically cold phenotype. Moreover, synchronous analysis of multiple checkpoint molecules, including PD-1, CD80 and PD-L1, on circulating sEVs distinguishes clinical responders from those patients who poorly respond to anti-PD-1 treatment. Altogether, our study shows that sEVs carry multiple inhibitory immune checkpoints proteins, which form a potentially targetable adaptive loop to suppress antitumour immunity.


Assuntos
Antígeno B7-1 , Antígeno B7-H1 , Vesículas Extracelulares , Receptor de Morte Celular Programada 1 , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Humanos , Antígeno B7-1/metabolismo , Antígeno B7-H1/metabolismo , Antígeno B7-H1/imunologia , Animais , Camundongos , Linhagem Celular Tumoral , Feminino , Neoplasias/imunologia , Neoplasias/patologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Tolerância Imunológica , Camundongos Endogâmicos C57BL , Masculino , Microambiente Tumoral/imunologia
13.
Cell Death Dis ; 15(5): 330, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740827

RESUMO

The long non-coding RNA X-inactive specific transcript (lncRNA XIST) and MUC1 gene are dysregulated in chronic inflammation and cancer; however, there is no known interaction of their functions. The present studies demonstrate that MUC1-C regulates XIST lncRNA levels by suppressing the RBM15/B, WTAP and METTL3/14 components of the m6A methylation complex that associate with XIST A repeats. MUC1-C also suppresses the YTHDF2-CNOT1 deadenylase complex that recognizes m6A sites and contributes to XIST decay with increases in XIST stability and expression. In support of an auto-regulatory pathway, we show that XIST regulates MUC1-C expression by promoting NF-κB-mediated activation of the MUC1 gene. Of significance, MUC1-C and XIST regulate common genes associated with inflammation and stemness, including (i) miR-21 which is upregulated across pan-cancers, and (ii) TDP-43 which associates with the XIST E repeats. Our results further demonstrate that the MUC1-C/XIST pathway (i) is regulated by TDP-43, (ii) drives stemness-associated genes, and (iii) is necessary for self-renewal capacity. These findings indicate that the MUC1-C/XIST auto-regulatory axis is of importance in cancer progression.


Assuntos
Progressão da Doença , Mucina-1 , RNA Longo não Codificante , RNA Longo não Codificante/metabolismo , RNA Longo não Codificante/genética , Humanos , Mucina-1/metabolismo , Mucina-1/genética , Animais , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Camundongos , Linhagem Celular Tumoral , MicroRNAs/metabolismo , MicroRNAs/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , NF-kappa B/metabolismo
14.
Int J Nanomedicine ; 19: 4451-4464, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799694

RESUMO

Introduction: Researchers are increasingly favouring the use of biological resources in the synthesis of metallic nanoparticles. This synthesis process is quick and affordable. The current study examined the antibacterial and anticancer effects of silver nanoparticles (AgNPs) derived from the Neurada procumbens plant. Biomolecules derived from natural sources can be used to coat AgNPs to make them biocompatible. Methods: UV-Vis spectroscopy was used to verify the synthesis of AgNPs from Neurada procumbens plant extract, while transmission electron microscopy (TEM), photoluminescence (PL) spectroscopy, dynamic light scattering (DLS), and Fourier transform infrared spectroscopy (FTIR) were used to characterize their morphology, crystalline structure, stability, and coating. Results: UV-visible spectrum of AgNPs shows an absorption peak at 422 nm, indicating the isotropic nature of these nanoparticles. As a result of the emergence of a transmission peak at 804.53 and 615.95 cm-1 in the spectrum of the infrared light emitted by atoms in a sample, FTIR spectroscopy demonstrated that the Ag stretching vibration mode is metal-oxygen (M-O). Electron dispersive X-ray (EDX) spectral analysis shows that elementary silver has a peak at 3 keV. Irradiating the silver surface with electrons, photons, or laser beams triggers the illumination. The emission peak locations have been found between 300 and 550 nm. As a result of DLS analysis, suspended particles showed a bimodal size distribution, with their Z-average particle size being 93.38 nm. Conclusion: The findings showed that the antibacterial action of AgNPs was substantially (p≤0.05) more evident against Gramme-positive strains (S. aureus and B. cereus) than E. coli. The biosynthesis of AgNPs is an environmentally friendly method for making nanostructures that have antimicrobial and anticancer properties.


Assuntos
Química Verde , Nanopartículas Metálicas , Prata , Nanomedicina Teranóstica , Prata/química , Prata/farmacologia , Nanopartículas Metálicas/química , Química Verde/métodos , Humanos , Nanomedicina Teranóstica/métodos , Antibacterianos/farmacologia , Antibacterianos/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Invasividade Neoplásica/prevenção & controle , Tamanho da Partícula , Testes de Sensibilidade Microbiana , Espectroscopia de Infravermelho com Transformada de Fourier , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
15.
Adv Exp Med Biol ; 1452: 21-35, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38805123

RESUMO

Tubulin plays a fundamental role in cellular function and as the subject for microtubule-active agents in the treatment of ovarian cancer. Microtubule-binding proteins (e.g., tau, MAP1/2/4, EB1, CLIP, TOG, survivin, stathmin) and posttranslational modifications (e.g., tyrosination, deglutamylation, acetylation, glycation, phosphorylation, polyamination) further diversify tubulin functionality and may permit additional opportunities to understand microtubule behavior in disease and to develop microtubule-modifying approaches to combat ovarian cancer. Tubulin-based structures that project from suspended ovarian cancer cells known as microtentacles may contribute to metastatic potential of ovarian cancer cells and could represent an exciting novel therapeutic target.


Assuntos
Microtúbulos , Metástase Neoplásica , Neoplasias Ovarianas , Processamento de Proteína Pós-Traducional , Tubulina (Proteína) , Humanos , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/química , Feminino , Microtúbulos/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Animais , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/tratamento farmacológico
16.
Mol Cell ; 84(10): 1964-1979.e6, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38759628

RESUMO

The role of the mitochondrial electron transport chain (ETC) in regulating ferroptosis is not fully elucidated. Here, we reveal that pharmacological inhibition of the ETC complex I reduces ubiquinol levels while decreasing ATP levels and activating AMP-activated protein kinase (AMPK), the two effects known for their roles in promoting and suppressing ferroptosis, respectively. Consequently, the impact of complex I inhibitors on ferroptosis induced by glutathione peroxidase 4 (GPX4) inhibition is limited. The pharmacological inhibition of complex I in LKB1-AMPK-inactivated cells, or genetic ablation of complex I (which does not trigger apparent AMPK activation), abrogates the AMPK-mediated ferroptosis-suppressive effect and sensitizes cancer cells to GPX4-inactivation-induced ferroptosis. Furthermore, complex I inhibition synergizes with radiotherapy (RT) to selectively suppress the growth of LKB1-deficient tumors by inducing ferroptosis in mouse models. Our data demonstrate a multifaceted role of complex I in regulating ferroptosis and propose a ferroptosis-inducing therapeutic strategy for LKB1-deficient cancers.


Assuntos
Proteínas Quinases Ativadas por AMP , Complexo I de Transporte de Elétrons , Ferroptose , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Proteínas Serina-Treonina Quinases , Ferroptose/genética , Ferroptose/efeitos dos fármacos , Animais , Humanos , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Complexo I de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Camundongos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Linhagem Celular Tumoral , Neoplasias/genética , Neoplasias/patologia , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Quinases Proteína-Quinases Ativadas por AMP/genética , Mitocôndrias/metabolismo , Mitocôndrias/genética , Mitocôndrias/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Transdução de Sinais , Feminino
17.
Sci Rep ; 14(1): 12307, 2024 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811838

RESUMO

Chimeric antigen receptor (CAR) T-cell therapy is a promising immunotherapy for treating cancers. This method consists in modifying the patients' T-cells to directly target antigen-presenting cancer cells. One of the barriers to the development of this type of therapies, is target antigen heterogeneity. It is thought that intratumour heterogeneity is one of the leading determinants of therapeutic resistance and treatment failure. While understanding antigen heterogeneity is important for effective therapeutics, a good therapy strategy could enhance the therapy efficiency. In this work we introduce an agent-based model (ABM), built upon a previous ABM, to rationalise the outcomes of different CAR T-cells therapies strategies over heterogeneous tumour-derived organoids. We found that one dose of CAR T-cell therapy should be expected to reduce the tumour size as well as its growth rate, however it may not be enough to completely eliminate it. Moreover, the amount of free CAR T-cells (i.e. CAR T-cells that did not kill any cancer cell) increases as we increase the dosage, and so does the risk of side effects. We tested different strategies to enhance smaller dosages, such as enhancing the CAR T-cells long-term persistence and multiple dosing. For both approaches an appropriate dosimetry strategy is necessary to produce "effective yet safe" therapeutic results. Moreover, an interesting emergent phenomenon results from the simulations, namely the formation of a shield-like structure of cells with low antigen expression. This shield turns out to protect cells with high antigen expression. Finally we tested a multi-antigen recognition therapy to overcome antigen escape and heterogeneity. Our studies suggest that larger dosages can completely eliminate the organoid, however the multi-antigen recognition increases the risk of side effects. Therefore, an appropriate small dosages dosimetry strategy is necessary to improve the outcomes. Based on our results, it is clear that a proper therapeutic strategy could enhance the therapies outcomes. In that direction, our computational approach provides a framework to model treatment combinations in different scenarios and to explore the characteristics of successful and unsuccessful treatments.


Assuntos
Simulação por Computador , Imunoterapia Adotiva , Neoplasias , Organoides , Humanos , Organoides/imunologia , Imunoterapia Adotiva/métodos , Neoplasias/terapia , Neoplasias/imunologia , Neoplasias/patologia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia
18.
Eur J Med Chem ; 272: 116475, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38714043

RESUMO

AXL, a receptor tyrosine kinase (RTK), plays a pivotal role in various cellular functions. It is primarily involved in processes such as epithelial-mesenchymal transition (EMT) in tumor cells, angiogenesis, apoptosis, immune regulation, and chemotherapy resistance mechanisms. Therefore, targeting AXL is a promising therapeutic approach for the treatment of cancer. AXL inhibitors that have entered clinical trials, such as BGB324(1), have shown promising efficacy in the treatment of melanoma and non-small cell lung cancer. Additionally, novel AXL-targeted drugs, such as AXL degraders, offer a potential solution to overcome the limitations of traditional small-molecule AXL inhibitors targeting single pathways. We provide an overview of the structure and biological functions of AXL, discusses its correlation with various cancers, and critically analyzes the structure-activity relationship of AXL small-molecule inhibitors in cellular contexts. Additionally, we summarize multiple research and development strategies, offering insights for the future development of innovative AXL inhibitors.


Assuntos
Antineoplásicos , Receptor Tirosina Quinase Axl , Descoberta de Drogas , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas , Receptores Proteína Tirosina Quinases , Humanos , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/síntese química , Relação Estrutura-Atividade , Estrutura Molecular , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Animais , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células/efeitos dos fármacos , Desenvolvimento de Medicamentos
19.
Pathol Res Pract ; 258: 155333, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723325

RESUMO

Long non-coding RNAs (lncRNAs) are a diverse class of RNA molecules that do not code for proteins but play critical roles in gene regulation. One such role involves the modulation of cell cycle progression and proliferation through interactions with cyclin-dependent kinases (CDKs), key regulators of cell division. Dysregulation of CDK activity is a hallmark of cancer, contributing to uncontrolled cell growth and tumor formation. These lncRNA-CDK interactions are part of a complex network of molecular mechanisms underlying cancer pathogenesis, involving various signaling pathways and regulatory circuits. Understanding the interplay between lncRNAs, CDKs, and cancer biology holds promise for developing novel therapeutic strategies targeting these molecular targets for more effective cancer treatment. Furthermore, targeting CDKs, key cell cycle progression and proliferation regulators, offers another avenue for disrupting cancer pathways and overcoming drug resistance. This can open new possibilities for individualized treatment plans and focused therapeutic interventions.


Assuntos
Quinases Ciclina-Dependentes , Progressão da Doença , Neoplasias , RNA Longo não Codificante , Humanos , Neoplasias/genética , Neoplasias/patologia , Neoplasias/enzimologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Regulação Neoplásica da Expressão Gênica , Animais , Transdução de Sinais/genética , Proliferação de Células/genética , Ciclo Celular/genética , Ciclo Celular/fisiologia
20.
BMC Med Educ ; 24(1): 596, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816806

RESUMO

BACKGROUND: The shortage of pathologists in Germany, coupled with an aging workforce, requires innovative approaches to attract medical students to the field. Medical education must address different learning styles to ensure that all students are successful. METHODS: The pilot project "Practical Pathology" aims to enhance students' understanding of pathology by providing hands-on experience in macroscopic gross analysis through the use of tumor dummies built from scratch. RESULTS: An evaluation survey, completed by 63 participating students provided positive feedback on the course methodology, its relevance to understanding the pathology workflow, and its improvement over traditional teaching methods. The majority of students recognized the importance of hands-on training in medical education. Students with previous work experience rated the impact of the course on knowledge acquisition even more positively. CONCLUSION: The course improved students' understanding of pathological processes and potential sources of clinical-pathological misunderstanding. An increase in motivation for a potential career in the field of pathology was observed in a minority of students, although this exceeded the percentage of pathologists in the total medical workforce.


Assuntos
Patologia , Estudantes de Medicina , Humanos , Projetos Piloto , Estudantes de Medicina/psicologia , Patologia/educação , Alemanha , Competência Clínica , Neoplasias/patologia , Educação de Graduação em Medicina , Ensino , Currículo , Patologistas/educação , Masculino , Feminino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA