Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 800
Filtrar
1.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38674001

RESUMO

Medulloblastoma (MB) encompasses diverse subgroups, and leptomeningeal disease/metastasis (LMD) plays a substantial role in associated fatalities. Despite extensive exploration of canonical genes in MB, the molecular mechanisms underlying LMD and the involvement of the orthodenticle homeobox 2 (OTX2) gene, a key driver in aggressive MB Group 3, remain insufficiently understood. Recognizing OTX2's pivotal role, we investigated its potential as a catalyst for aggressive cellular behaviors, including migration, invasion, and metastasis. OTX2 overexpression heightened cell growth, motility, and polarization in Group 3 MB cells. Orthotopic implantation of OTX2-overexpressing cells in mice led to reduced median survival, accompanied by the development of spinal cord and brain metastases. Mechanistically, OTX2 acted as a transcriptional activator of the Mechanistic Target of Rapamycin (mTOR) gene's promoter and the mTORC2 signaling pathway, correlating with upregulated downstream genes that orchestrate cell motility and migration. Knockdown of mTOR mRNA mitigated OTX2-mediated enhancements in cell motility and polarization. Analysis of human MB tumor samples (N = 952) revealed a positive correlation between OTX2 and mTOR mRNA expression, emphasizing the clinical significance of OTX2's role in the mTORC2 pathway. Our results reveal that OTX2 governs the mTORC2 signaling pathway, instigating LMD in Group 3 MBs and offering insights into potential therapeutic avenues through mTORC2 inhibition.


Assuntos
Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Alvo Mecanístico do Complexo 2 de Rapamicina , Meduloblastoma , Neoplasias Meníngeas , Fatores de Transcrição Otx , Transdução de Sinais , Fatores de Transcrição Otx/metabolismo , Fatores de Transcrição Otx/genética , Humanos , Animais , Meduloblastoma/genética , Meduloblastoma/patologia , Meduloblastoma/metabolismo , Camundongos , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/patologia , Neoplasias Meníngeas/metabolismo , Neoplasias Meníngeas/secundário , Feminino , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Neoplasias Cerebelares/metabolismo , Masculino
2.
J Exp Clin Cancer Res ; 43(1): 130, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689348

RESUMO

BACKGROUND: Medulloblastomas (MBs) are one of the most common malignant brain tumor types in children. MB prognosis, despite improvement in recent years, still depends on clinical and biological risk factors. Metastasis is the leading cause of MB-related deaths, which highlights an unmet need for risk stratification and targeted therapy to improve clinical outcomes. Among the four molecular subgroups, sonic-hedgehog (SHH)-MB harbors clinical and genetic heterogeneity with a subset of high-risk cases. Recently, long non-coding (lnc)RNAs were implied to contribute to cancer malignant progression, but their role in MB remains unclear. This study aimed to identify pro-malignant lncRNAs that have prognostic and therapeutic significance in SHH-MB. METHODS: The Daoy SHH-MB cell line was engineered for ectopic expression of MYCN, a genetic signature of SHH-MB. MYCN-associated lncRNA genes were identified using RNA-sequencing data and were validated in SHH-MB cell lines, MB tissue samples, and patient cohort datasets. SHH-MB cells with genetic manipulation of the candidate lncRNA were evaluated for metastatic phenotypes in vitro, including cell migration, invasion, sphere formation, and expressions of stemness markers. An orthotopic xenograft mouse model was used to evaluate metastasis occurrence and survival. Finally, bioinformatic screening and in vitro assays were performed to explore downstream mechanisms. RESULTS: Elevated lncRNA LOXL1-AS1 expression was identified in MYCN-expressing Daoy cells and MYCN-amplified SHH-MB tumors, and was significantly associated with lower survival in SHH-MB patients. Functionally, LOXL1-AS1 promoted SHH-MB cell migration and cancer stemness in vitro. In mice, MYCN-expressing Daoy cells exhibited a high metastatic rate and adverse effects on survival, both of which were suppressed under LOLX1-AS1 perturbation. Integrative bioinformatic analyses revealed associations of LOXL1-AS1 with processes of cancer stemness, cell differentiation, and the epithelial-mesenchymal transition. LOXL1-AS1 positively regulated the expression of transforming growth factor (TGF)-ß2. Knockdown of TGF-ß2 in SHH-MB cells significantly abrogated their LOXL1-AS1-mediated prometastatic functions. CONCLUSIONS: This study proved the functional significance of LOXL1-AS1 in SHH-MB metastasis by its promotion of TGF-ß2-mediated cancer stem-like phenotypes, providing both prognostic and therapeutic potentials for targeting SHH-MB metastasis.


Assuntos
Proteínas Hedgehog , Meduloblastoma , Células-Tronco Neoplásicas , Humanos , Meduloblastoma/genética , Meduloblastoma/patologia , Meduloblastoma/metabolismo , Animais , Camundongos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Metástase Neoplásica , Fenótipo , Feminino , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Linhagem Celular Tumoral , Masculino , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Neoplasias Cerebelares/metabolismo , Prognóstico , Movimento Celular
3.
J Neurooncol ; 168(1): 139-149, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38662151

RESUMO

PURPOSE: Medulloblastoma (MB), a common and heterogeneous posterior fossa tumor in pediatric patients, presents diverse prognostic outcomes. To advance our understanding of MB's intricate biology, the development of novel patient tumor-derived culture MB models with necessary data is still an essential requirement. METHODS: We continuously passaged PUMC-MB1 in vitro in order to establish a continuous cell line. We examined the in vitro growth using Cell Counting Kit-8 (CCK-8) and in vivo growth with subcutaneous and intracranial xenograft models. The xenografts were investigated histopathologically with Hematoxylin and Eosin (HE) staining and immunohistochemistry (IHC). Concurrently, we explored its molecular features using Whole Genome Sequencing (WGS), targeted sequencing, and RNA sequecing. Guided by bioinformatics analysis, we validated PUMC-MB1's drug sensitivity in vitro and in vivo. RESULTS: PUMC-MB1, derived from a high-risk MB patient, displayed a population doubling time (PDT) of 48.18 h and achieved 100% tumor growth in SCID mice within 20 days. HE and Immunohistochemical examination of the original tumor and xenografts confirmed the classification of PUMC-MB1 as a classic MB. Genomic analysis via WGS revealed concurrent MYC and OTX2 amplifications. The RNA-seq data classified it within the Group 3 MB subgroup, while according to the WHO classification, it fell under the Non-WNT/Non-SHH MB. Comparative analysis with D283 and D341med identified 4065 differentially expressed genes, with notable enrichment in the PI3K-AKT pathway. Cisplatin, 4-hydroperoxy cyclophosphamide/cyclophosphamide, vincristine, and dactolisib (a selective PI3K/mTOR dual inhibitor) significantly inhibited PUMC-MB1 proliferation in vitro and in vivo. CONCLUSIONS: PUMC-MB1, a novel Group 3 (Non-WNT/Non-SHH) MB cell line, is comprehensively characterized for its growth, pathology, and molecular characteristics. Notably, dactolisib demonstrated potent anti-proliferative effects with minimal toxicity, promising a potential therapeutic avenue. PUMC-MB1 could serve as a valuable tool for unraveling MB mechanisms and innovative treatment strategies.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Camundongos SCID , Serina-Treonina Quinases TOR , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Animais , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Meduloblastoma/tratamento farmacológico , Meduloblastoma/patologia , Meduloblastoma/genética , Meduloblastoma/metabolismo , Camundongos , Neoplasias Cerebelares/tratamento farmacológico , Neoplasias Cerebelares/patologia , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética
4.
Nat Commun ; 15(1): 3483, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664416

RESUMO

Chemical discovery efforts commonly target individual protein domains. Many proteins, including the EP300/CBP histone acetyltransferases (HATs), contain several targetable domains. EP300/CBP are critical gene-regulatory targets in cancer, with existing high potency inhibitors of either the catalytic HAT domain or protein-binding bromodomain (BRD). A domain-specific inhibitory approach to multidomain-containing proteins may identify exceptional-responding tumor types, thereby expanding a therapeutic index. Here, we discover that targeting EP300/CBP using the domain-specific inhibitors, A485 (HAT) or CCS1477 (BRD) have different effects in select tumor types. Group 3 medulloblastoma (G3MB) cells are especially sensitive to BRD, compared with HAT inhibition. Structurally, these effects are mediated by the difluorophenyl group in the catalytic core of CCS1477. Mechanistically, bromodomain inhibition causes rapid disruption of genetic dependency networks that are required for G3MB growth. These studies provide a domain-specific structural foundation for drug discovery efforts targeting EP300/CBP and identify a selective role for the EP300/CBP bromodomain in maintaining genetic dependency networks in G3MB.


Assuntos
Proteína p300 Associada a E1A , Redes Reguladoras de Genes , Meduloblastoma , Humanos , Meduloblastoma/genética , Meduloblastoma/tratamento farmacológico , Meduloblastoma/metabolismo , Meduloblastoma/patologia , Proteína p300 Associada a E1A/metabolismo , Proteína p300 Associada a E1A/genética , Proteína p300 Associada a E1A/antagonistas & inibidores , Linhagem Celular Tumoral , Redes Reguladoras de Genes/efeitos dos fármacos , Animais , Domínios Proteicos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Camundongos , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/tratamento farmacológico , Neoplasias Cerebelares/metabolismo , Neoplasias Cerebelares/patologia , Antineoplásicos/farmacologia
5.
Oncogene ; 43(19): 1463-1475, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38514855

RESUMO

Medulloblastoma (MB) is a prevalent malignant brain tumor among children, which can be classified into four primary molecular subgroups. Group 3 MB (G3-MB) is known to be highly aggressive and associated with a poor prognosis, necessitating the development of novel and effective therapeutic interventions. Ferroptosis, a regulated form of cell death induced by lipid peroxidation, has been identified as a natural tumor suppression mechanism in various cancers. Nevertheless, the potential role of ferroptosis in the treatment of G3-MB remains unexplored. In this study, we demonstrate that RNF126 acts as an anti-ferroptotic gene by interacting with ferroptosis suppressor protein 1 (FSP1, also known as AIFM2) and ubiquitinating FSP1 at the 4KR-2 sites. Additionally, the deletion of RNF126 reduces the subcellular localization of FSP1 in the plasma membrane, resulting in an increase in the CoQ/CoQH2 ratio in G3-MB. The RNF126-FSP1-CoQ10 pathway plays a pivotal role in suppressing phospholipid peroxidation and ferroptosis both in vivo and in vitro. Clinically, RNF126 exhibited elevated expression in G3-MB and its overexpression was significantly associated with reduced patient survival. Our findings indicate that RNF126 regulates G3-MB sensitivity to ferroptosis by ubiquitinating FSP1, which provides new evidence for the potential G3-MB therapy.


Assuntos
Ferroptose , Proteínas Mitocondriais , Ubiquitina-Proteína Ligases , Ubiquitinação , Ferroptose/genética , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Animais , Camundongos , Linhagem Celular Tumoral , Neoplasias Cerebelares/metabolismo , Neoplasias Cerebelares/patologia , Neoplasias Cerebelares/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Regulação Neoplásica da Expressão Gênica
6.
Dis Model Mech ; 17(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38411252

RESUMO

Patched 1 (PTCH1) is the primary receptor for the sonic hedgehog (SHH) ligand and negatively regulates SHH signalling, an essential pathway in human embryogenesis. Loss-of-function mutations in PTCH1 are associated with altered neuronal development and the malignant brain tumour medulloblastoma. As a result of differences between murine and human development, molecular and cellular perturbations that arise from human PTCH1 mutations remain poorly understood. Here, we used cerebellar organoids differentiated from human induced pluripotent stem cells combined with CRISPR/Cas9 gene editing to investigate the earliest molecular and cellular consequences of PTCH1 mutations on human cerebellar development. Our findings demonstrate that developmental mechanisms in cerebellar organoids reflect in vivo processes of regionalisation and SHH signalling, and offer new insights into early pathophysiological events of medulloblastoma tumorigenesis without the use of animal models.


Assuntos
Neoplasias Cerebelares , Células-Tronco Pluripotentes Induzidas , Meduloblastoma , Humanos , Camundongos , Animais , Meduloblastoma/genética , Meduloblastoma/metabolismo , Meduloblastoma/patologia , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/metabolismo , Neoplasias Cerebelares/patologia , Receptor Patched-1/genética , Receptor Patched-1/metabolismo , Proteínas Hedgehog/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Transformação Celular Neoplásica , Carcinogênese/genética , Organoides/metabolismo , Receptores Patched
7.
CNS Neurosci Ther ; 30(1): e14485, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37789668

RESUMO

BACKGROUND: Patients with brain tumors, especially pediatric brain tumors such as cerebellar medulloblastoma, always suffer from the severe side effects of radiotherapy. Regeneration of neural cells in irradiation-induced cerebellar injury has been reported, but the underlying mechanism remains elusive. METHODS: We established an irradiation-induced developing cerebellum injury model in neonatal mice. Microarray, KEGG analysis and semi in vivo slice culture were performed for mechanistic study. RESULTS: Nestin-expressing progenitors (NEPs) but not granule neuron precursors (GNPs) were resistant to irradiation and able to regenerate after irradiation. NEPs underwent less apoptosis but similar DNA damage following irradiation compared with GNPs. Subsequently, they started to proliferate and contributed to granule neurons regeneration dependent on the sonic hedgehog (Shh) pathway. In addition, irradiation increased Shh ligand provided by Purkinje cells. And microglia accumulated in the irradiated cerebellum producing more IFN-γ, which augmented Shh ligand production to promote NEP proliferation. CONCLUSIONS: NEP was radioresistant and regenerative. IFN-γ was increased post irradiation to upregulate Shh ligand, contributing to NEP regeneration. Our study provides insight into the mechanisms of neural cell regeneration in irradiation injury of the developing cerebellum and will help to develop new therapeutic targets for minimizing the side effects of radiotherapy for brain tumors.


Assuntos
Neoplasias Cerebelares , Proteínas Hedgehog , Humanos , Criança , Camundongos , Animais , Nestina/metabolismo , Ligantes , Camundongos Transgênicos , Proteínas Hedgehog/metabolismo , Cerebelo , Regeneração Nervosa , Neoplasias Cerebelares/radioterapia , Neoplasias Cerebelares/metabolismo
8.
Acta Neuropathol Commun ; 11(1): 203, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38115140

RESUMO

The prognosis of childhood medulloblastoma (MB) is often poor, and it usually requires aggressive therapy that adversely affects quality of life. microRNA-211 (miR-211) was previously identified as an important regulator of cells that descend from neural cells. Since medulloblastomas primarily affect cells with similar ontogeny, we investigated the role and mechanism of miR-211 in MB. Here we showed that miR-211 expression was highly downregulated in cell lines, PDXs, and clinical samples of different MB subgroups (SHH, Group 3, and Group 4) compared to normal cerebellum. miR-211 gene was ectopically expressed in transgenic cells from MB subgroups, and they were subjected to molecular and phenotypic investigations. Monoclonal cells stably expressing miR-211 were injected into the mouse cerebellum. miR-211 forced expression acts as a tumor suppressor in MB both in vitro and in vivo, attenuating growth, promoting apoptosis, and inhibiting invasion. In support of emerging regulatory roles of metabolism in various forms of cancer, we identified the acyl-CoA synthetase long-chain family member (ACSL4) as a direct miR-211 target. Furthermore, lipid nanoparticle-coated, dendrimer-coated, and cerium oxide-coated miR-211 nanoparticles were applied to deliver synthetic miR-211 into MB cell lines and cellular responses were assayed. Synthesizing nanoparticle-miR-211 conjugates can suppress MB cell viability and invasion in vitro. Our findings reveal miR-211 as a tumor suppressor and a potential therapeutic agent in MB. This proof-of-concept paves the way for further pre-clinical and clinical development.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , MicroRNAs , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Cerebelares/metabolismo , Regulação Neoplásica da Expressão Gênica , Homeostase , Ligases/genética , Ligases/metabolismo , Meduloblastoma/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Qualidade de Vida
9.
J Neurooncol ; 165(2): 329-342, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37976029

RESUMO

PURPOSE: Primary brain tumors are a leading cause of cancer-related death in children, and medulloblastoma is the most common malignant pediatric brain tumor. The current molecular characterization of medulloblastoma is mainly based on protein-coding genes, while little is known about the involvement of long non-coding RNAs (lncRNAs). This study aimed to elucidate the role of the lncRNA OTX2-AS1 in medulloblastoma. METHODS: Analyses of DNA copy number alterations, methylation profiles, and gene expression data were used to characterize molecular alterations of OTX2-AS1 in medulloblastoma tissue samples. In vitro analyses of medulloblastoma cell models and orthotopic in vivo experiments were carried out for functional characterization of OTX2-AS1. High-throughput drug screening was employed to identify pharmacological inhibitors, while proteomics and metabolomics analyses were performed to address potential mechanisms of drug action. RESULTS: We detected amplification and consecutive overexpression of OTX2 and OTX2-AS1 in a subset of medulloblastomas. In addition, OTX2-AS1 promoter methylation was linked to OTX2-AS1 expression. OTX2-AS1 knockout reduced medulloblastoma cell viability and cell migration in vitro and prolonged survival in the D283 orthotopic medulloblastoma mouse xenograft model. Pharmacological inhibition of BCL-2 suppressed the growth of OTX2-AS1 overexpressing medulloblastoma cells in vitro. CONCLUSIONS: Our study revealed a pro-tumorigenic role of OTX2-AS1 in medulloblastoma and identified BCL-2 inhibition as a potential therapeutic approach to target OTX2-AS1 overexpressing medulloblastoma cells.


Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Meduloblastoma , RNA Longo não Codificante , Animais , Criança , Humanos , Camundongos , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Cerebelares/tratamento farmacológico , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/metabolismo , Regulação Neoplásica da Expressão Gênica , Meduloblastoma/patologia , Fatores de Transcrição Otx/genética , Fatores de Transcrição Otx/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Longo não Codificante/genética
10.
Acta Neuropathol Commun ; 11(1): 174, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919824

RESUMO

Group 3 medulloblastoma is one of the most aggressive types of childhood brain tumors. Roughly 30% of cases carry genetic alterations in MYC, SMARCA4, or both genes combined. While overexpression of MYC has previously been shown to drive medulloblastoma formation in mice, the functional significance of SMARCA4 mutations and their suitability as a therapeutic target remain largely unclear. To address this issue, we combined overexpression of MYC with a loss of SMARCA4 in granule cell precursors. Both alterations did not increase proliferation of granule cell precursors in vitro. However, combined MYC overexpression and SMARCA4 loss successfully induced tumor formation in vivo after orthotopic transplantation in recipient mice. Resulting tumors displayed anaplastic histology and exclusively consisted of SMARCA4-negative cells although a mixture of recombined and non-recombined cells was injected. These observations provide first evidence for a tumor-promoting role of a SMARCA4 deficiency in the development of medulloblastoma. In comparing the transcriptome of tumors to the cells of origin and an established Sonic Hedgehog medulloblastoma model, we gathered first hints on deregulated gene expression that could be specifically involved in SMARCA4/MYC driven tumorigenesis. Finally, an integration of RNA sequencing and DNA methylation data of murine tumors with human samples revealed a high resemblance to human Group 3 medulloblastoma on the molecular level. Altogether, the development of SMARCA4-deficient medulloblastomas in mice paves the way to deciphering the role of frequently occurring SMARCA4 alterations in Group 3 medulloblastoma with the perspective to explore targeted therapeutic options.


Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Meduloblastoma , Animais , Humanos , Camundongos , Neoplasias Encefálicas/genética , Neoplasias Cerebelares/metabolismo , DNA Helicases/genética , Proteínas Hedgehog/metabolismo , Meduloblastoma/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/genética , Transcriptoma
11.
Acta Neuropathol Commun ; 11(1): 183, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978570

RESUMO

Chemotherapy resistance is considered one of the main causes of tumor relapse, still challenging researchers for the identification of the molecular mechanisms sustaining its emergence. Here, we setup and characterized chemotherapy-resistant models of Medulloblastoma (MB), one of the most lethal pediatric brain tumors, to uncover targetable vulnerabilities associated to their resistant phenotype. Integration of proteomic, transcriptomic and kinomic data revealed a significant deregulation of several pathways in resistant MB cells, converging to cell metabolism, RNA/protein homeostasis, and immune response, eventually impacting on patient outcome. Moreover, resistant MB cell response to a large library of compounds through a high-throughput screening (HTS), highlighted nucleoside metabolism as a relevant vulnerability of chemotolerant cells, with peculiar antimetabolites demonstrating increased efficacy against them and even synergism with conventional chemotherapeutics. Our results suggest that drug-resistant cells significantly rewire multiple cellular processes, allowing their adaptation to a chemotoxic environment, nevertheless exposing alternative actionable susceptibilities for their specific targeting.


Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Meduloblastoma , Criança , Humanos , Meduloblastoma/tratamento farmacológico , Meduloblastoma/genética , Meduloblastoma/metabolismo , Nucleosídeos/farmacologia , Nucleosídeos/uso terapêutico , Proteômica , Neoplasias Cerebelares/tratamento farmacológico , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/metabolismo , Linhagem Celular Tumoral
12.
Dev Cell ; 58(20): 2015-2031.e8, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37774709

RESUMO

The microenvironment profoundly influences tumor initiation across numerous tissues but remains understudied in brain tumors. In the cerebellum, canonical Wnt signaling controlled by Norrin/Frizzled4 (Fzd4) activation in meningeal endothelial cells is a potent inhibitor of preneoplasia and tumor progression in mouse models of Sonic hedgehog medulloblastoma (Shh-MB). Single-cell transcriptome profiling and phenotyping of the meninges indicate that Norrin/Frizzled4 sustains the activation of meningeal macrophages (mMΦs), characterized by Lyve1 and CXCL4 expression, during the critical preneoplastic period. Depleting mMΦs during this period enhances preneoplasia and tumorigenesis, phenocopying the effects of Norrin loss. The anti-tumorigenic function of mMΦs is derived from the expression of CXCL4, which counters CXCL12/CXCR4 signaling in pre-tumor cells, thereby inhibiting cell-cycle progression and promoting migration away from the pre-tumor niche. These findings identify a pivotal role for mMΦs as key mediators in chemokine-regulated anti-cancer crosstalk between the stroma and pre-tumor cells in the control of MB initiation.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Camundongos , Animais , Meduloblastoma/metabolismo , Proteínas Hedgehog/metabolismo , Células Endoteliais/metabolismo , Via de Sinalização Wnt , Neoplasias Cerebelares/metabolismo , Microambiente Tumoral
13.
Methods Mol Biol ; 2701: 253-259, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37574488

RESUMO

Cancer is a heterogeneous disease, comprising of a mixture of different cell populations. Cancer stem cells (CSCs), also known as tumor-initiating cells (TICs), are a subpopulation of multipotent cells within the cancer that has self-renewing capability, tumor-initiating ability, multi-differentiation potential, and an inherent capacity for drug and chemoresistance. Sphere-formation assay is commonly used for enrichment and analysis of CSC properties in vitro and is typically used as a metric for testing the viability of tumor cells to anticancer agents. This model is based on the ability of CSCs to grow under ultralow-attachment conditions in serum-free medium supplemented with growth factors. In contrast to the adherent 2D culture of cancer cells, the 3D culture of tumorsphere assay exploits inherent biologic features of CSCs such as anoikis resistance and self-renewal. We describe here the detailed methodology for the generation and propagation of spheres generated from pediatric brain tumor medulloblastoma (MB) cells. As signal transducer and activator of transcription (STAT3) is known to play an important role in maintaining cancer stem cell properties, we accessed the effect of depleting or inhibiting STAT3 on MB-sphere sizes, numbers, and integrity. This may serve as a promising platform for screening potential anti-CSC agents and small-molecule inhibitors.


Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Meduloblastoma , Criança , Humanos , Meduloblastoma/patologia , Esferoides Celulares , Neoplasias Encefálicas/patologia , Neoplasias Cerebelares/metabolismo , Células-Tronco Neoplásicas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células
14.
Invest New Drugs ; 41(5): 688-698, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37556022

RESUMO

Medulloblastoma (MB) is the most common pediatric brain tumor. The therapy frequently causes serious side effects, and new selective therapies are needed. MB expresses hyper sialylation, a possible target for selective therapy. The cytotoxic efficacy of a poly guanidine conjugate (GuaDex) incubated with medulloblastoma cell cultures (DAOY and MB-LU-181) was investigated. The cells were incubated with 0.05-8 µM GuaDex from 15 min to 72 h. A fluorometric cytotoxicity assay (FMCA) measured the cytotoxicity. Labeled GuaDex was used to study tumor cell interaction. FITC-label Sambucus nigra confirmed high expression of sialic acid (Sia). Immunofluorescence microscopy was used to visualize the cell F-actin and microtubules. The cell interactions were studied by confocal and fluorescence microscopy. Annexin-V assay was used to detect apoptosis. Cell cycle analysis was done by DNA content determination. A wound-healing migration assay determined the effects on the migratory ability of DAOY cells after GuaDex treatment. IC50 for GuaDex was 223.4 -281.1 nM. FMCA showed potent growth inhibition on DAOY and MB-LU-181 cells at 5 uM GuaDex after 4 h of incubation. GuaDex treatment induced G2/M phase cell cycle arrest. S. nigra FITC-label lectin confirmed high expression of Sia on DAOY medulloblastoma cells. The GuaDex treatment polymerized the cytoskeleton (actin filaments and microtubules) and bound to DNA, inducing condensation. The Annexin V assay results were negative. Cell migration was inhibited at 0.5 µM GuaDex concentration after 24 h of incubation. GuaDex showed potent cytotoxicity and invasion-inhibitory effects on medulloblastoma cells at low micromolar concentrations. GuaDex efficacy was significant and warrants further studies.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Criança , Humanos , Meduloblastoma/tratamento farmacológico , Meduloblastoma/genética , Meduloblastoma/metabolismo , Guanidina/farmacologia , Guanidina/uso terapêutico , Fluoresceína-5-Isotiocianato/farmacologia , Fluoresceína-5-Isotiocianato/uso terapêutico , Proliferação de Células , Linhagem Celular Tumoral , Apoptose , Neoplasias Cerebelares/tratamento farmacológico , Neoplasias Cerebelares/metabolismo , Neoplasias Cerebelares/patologia , DNA
15.
Cell Death Dis ; 14(8): 494, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537194

RESUMO

Sonic hedgehog (Shh)-group medulloblastoma (MB) (Shh-MB) encompasses a clinically and molecularly distinct group of cancers originating from the developing nervous system with aberrant high Shh signaling as a causative driver. We recently reported that RNF220 is required for sustained high Shh signaling during Shh-MB progression; however, how high RNF220 expression is achieved in Shh-MB is still unclear. In this study, we found that the ubiquitin E3 ligases Smurf1 and Smurf2 interact with RNF220, and target it for polyubiquitination and degradation. In MB cells, knockdown or overexpression of Smurf1 or Smurf2 promotes or inhibits cell proliferation, colony formation and xenograft growth, respectively, by controlling RNF220 protein levels, and thus modulating Shh signaling. Furthermore, in clinical human MB samples, the protein levels of Smurf1 or Smurf2 were negatively correlated with those of RNF220 or GAB1, a Shh-MB marker. Overall, this study highlights the importance of the Smurf1- and Smurf2-RNF220 axes during the pathogenesis of Shh-MB and provides new therapeutic targets for Shh-MB treatment.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Ubiquitina-Proteína Ligases , Humanos , Neoplasias Cerebelares/metabolismo , Neoplasias Cerebelares/patologia , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Meduloblastoma/metabolismo , Meduloblastoma/patologia , Transdução de Sinais , Ubiquitinação , Animais , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
16.
Int J Mol Sci ; 24(14)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37511358

RESUMO

Medulloblastoma (MB) is the most common type of malignant pediatric brain tumor. Neuropilin-1 (NRP1), encoded by the NRP1 gene, is a transmembrane glycoprotein overexpressed in several types of cancer. Previous studies indicate that NRP1 inhibition displays antitumor effects in MB models and higher NRP1 levels are associated with poorer prognosis in MB patients. Here, we used a large MB tumor dataset to examine NRP1 gene expression in different molecular subgroups and subtypes of MB. We found overall widespread NRP1 expression across MB samples. Tumors in the sonic hedgehog (SHH) subgroup showed significantly higher NRP1 transcript levels in comparison with Group 3 and Group 4 tumors, with SHH samples belonging to the α, ß, Δ, and γ subtypes. When all MB subgroups were combined, lower NRP1 expression was associated with significantly shorter patient overall survival (OS). Further analysis showed that low NRP1 was related to poorer OS, specifically in MB subgroups SHH and Group 3 MB. Our findings indicate that patients with SHH and Group 3 tumors that show lower expression of NRP1 in MB have a worse prognosis, which highlights the need for subgroup-specific investigation of the NRP1 role in MB.


Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Meduloblastoma , Criança , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Cerebelares/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Meduloblastoma/genética , Meduloblastoma/metabolismo
17.
Biochem Pharmacol ; 215: 115697, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37481140

RESUMO

Medulloblastoma is a highly malignant pediatric brain tumor characterized by its aggressive nature and limited treatment options. Metabolic changes have recently emerged as key factors in the development, progression, and response to therapy in various types of cancer. Cancer cells exhibit remarkable adaptability by modulating glucose, lipids, amino acids, and nucleotide metabolism to survive in nutrient- and oxygen-deprived environments. Although medulloblastoma has been extensively studied from a genomic perspective, leading to the identification of four subgroups and their respective subcategories, the investigation of its metabolic phenotype has remained relatively understudied. This review focus on the available literature, aiming to summarize the current knowledge about the main metabolic pathways that are deregulated in medulloblastoma tumors, while emphasizing the controversial aspects and the progress that is yet to be made. Furthermore, we underscored the insights gained so far regarding the impact of metabolism on the development of drug resistance in medulloblastoma and the therapeutic strategies employed to target specific metabolic pathways.


Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Meduloblastoma , Humanos , Meduloblastoma/metabolismo , Neoplasias Cerebelares/metabolismo , Fome , Redes e Vias Metabólicas
18.
Neuro Oncol ; 25(12): 2287-2301, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-37486991

RESUMO

BACKGROUND: Medulloblastoma is the most common pediatric brain malignancy. Patients with the Group 3 subtype of medulloblastoma (MB) often exhibit MYC amplification and/or overexpression and have the poorest prognosis. While Group 3 MB is known to be highly dependent on MYC, direct targeting of MYC remains elusive. METHODS: Patient gene expression data were used to identify highly expressed EYA2 in Group 3 MB samples, assess the correlation between EYA2 and MYC, and examine patient survival. Genetic and pharmacological studies were performed on EYA2 in Group 3 derived MB cell models to assess MYC regulation and viability in vitro and in vivo. RESULTS: EYA2 is more highly expressed in Group 3 MB than other MB subgroups and is essential for Group 3 MB growth in vitro and in vivo. EYA2 regulates MYC expression and protein stability in Group 3 MB, resulting in global alterations of MYC transcription. Inhibition of EYA2 tyrosine phosphatase activity, using a novel small molecule inhibitor (NCGC00249987, or 9987), significantly decreases Group 3 MB MYC expression in both flank and intracranial growth in vivo. Human MB RNA-seq data show that EYA2 and MYC are significantly positively correlated, high EYA2 expression is significantly associated with a MYC transcriptional signature, and patients with high EYA2 and MYC expression have worse prognoses than those that do not express both genes at high levels. CONCLUSIONS: Our data demonstrate that EYA2 is a critical regulator of MYC in Group 3 MB and suggest a novel therapeutic avenue to target this highly lethal disease.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Humanos , Criança , Meduloblastoma/tratamento farmacológico , Meduloblastoma/genética , Meduloblastoma/metabolismo , Linhagem Celular Tumoral , Proteínas Tirosina Fosfatases/genética , Neoplasias Cerebelares/tratamento farmacológico , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/metabolismo , Tirosina , Proteínas Nucleares/genética , Peptídeos e Proteínas de Sinalização Intracelular
19.
Pflugers Arch ; 475(9): 1073-1087, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37474775

RESUMO

Acid-sensing ion channels (ASICs) are Na+ channels that are almost ubiquitously expressed in neurons of the brain. Functional ASIC1a is also expressed in glioblastoma stem cells, where it might sense the acidic tumor microenvironment. Prolonged acidosis induces cell death in neurons and reduces tumor sphere formation in glioblastoma via activation of ASIC1a. It is currently unknown whether ASICs are expressed and involved in acid-induced cell death in other types of brain tumors. In this study, we investigated ASICs in medulloblastoma, using two established cell lines, DAOY and UW228, as in vitro models. In addition, we characterized ASICs in the most numerous neuron of the brain, the cerebellar granule cell, which shares the progenitor cell with some forms of medulloblastoma. We report compelling evidence using RT-qPCR, western blot and whole-cell patch clamp that DAOY and cerebellar granule cells, but not UW228 cells, functionally express homomeric ASIC1a. Additionally, Ca2+-imaging revealed that extracellular acidification elevated intracellular Ca2+-levels in DAOY cells independently of ASICs. Finally, we show that overexpression of RIPK3, a key component of the necroptosis pathway, renders DAOY cells susceptible to acid-induced cell death via activation of ASIC1a. Our data support the idea that ASIC1a is an important acid sensor in brain tumors and that its activation has potential to induce cell death in tumor cells.


Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Glioblastoma , Meduloblastoma , Humanos , Canais Iônicos Sensíveis a Ácido/metabolismo , Meduloblastoma/metabolismo , Glioblastoma/metabolismo , Neurônios/metabolismo , Linhagem Celular , Neoplasias Encefálicas/metabolismo , Cerebelo , Neoplasias Cerebelares/metabolismo , Microambiente Tumoral
20.
Int J Mol Sci ; 24(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37240259

RESUMO

Sonic hedgehog medulloblastoma (SHH-MB) accounts for 25-30% of all MBs, and conventional therapy results in severe long-term side effects. New targeted therapeutic approaches are urgently needed, drawing also on the fields of nanoparticles (NPs). Among these, plant viruses are very promising, and we previously demonstrated that tomato bushy stunt virus (TBSV), functionalized on the surface with CooP peptide, specifically targets MB cells. Here, we tested the hypothesis that TBSV-CooP can specifically deliver a conventional chemotherapeutic drug (i.e., doxorubicin, DOX) to MB in vivo. To this aim, a preclinical study was designed to verify, by histological and molecular methods, if multiple doses of DOX-TBSV-CooP were able to inhibit tumor progression of MB pre-neoplastic lesions, and if a single dose was able to modulate pro-apoptotic/anti-proliferative molecular signaling in full-blown MBs. Our results demonstrate that when DOX is encapsulated in TBSV-CooP, its effects on cell proliferation and cell death are similar to those obtained with a five-fold higher dose of non-encapsulated DOX, both in early and late MB stages. In conclusion, these results confirm that CooP-functionalized TBSV NPs are efficient carriers for the targeted delivery of therapeutics to brain tumors.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Nanopartículas , Tombusvirus , Camundongos , Animais , Meduloblastoma/metabolismo , Preparações Farmacêuticas , Proteínas Hedgehog/metabolismo , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Neoplasias Cerebelares/metabolismo , Nanopartículas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA