Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.409
Filtrar
1.
Int J Biol Sci ; 20(7): 2698-2726, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725864

RESUMO

Pancreatic cancer is a malignancy with high mortality. In addition to the few symptoms until the disease reaches an advanced stage, the high fatality rate is attributed to its rapid development, drug resistance and lack of appropriate treatment. In the selection and research of therapeutic drugs, gemcitabine is the first-line drug for pancreatic cancer. Solving the problem of gemcitabine resistance in pancreatic cancer will contribute to the progress of pancreatic cancer treatment. Long non coding RNAs (lncRNAs), which are RNA transcripts longer than 200 nucleotides, play vital roles in cellular physiological metabolic activities. Currently, our group and others have found that some lncRNAs are aberrantly expressed in pancreatic cancer cells, which can regulate the process of cancer through autophagy and Wnt/ß-catenin pathways simultaneously and affect the sensitivity of cancer cells to therapeutic drugs. This review presents an overview of the recent evidence concerning the node of lncRNA for the cross-talk between autophagy and Wnt/ß-catenin signaling in pancreatic cancer, together with the practicability of lncRNAs and the core regulatory factors as targets in therapeutic resistance.


Assuntos
Autofagia , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pancreáticas , RNA Longo não Codificante , Via de Sinalização Wnt , RNA Longo não Codificante/metabolismo , RNA Longo não Codificante/genética , Humanos , Autofagia/efeitos dos fármacos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Resistencia a Medicamentos Antineoplásicos/genética , Animais
3.
Cells ; 13(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38727266

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease with high mortality due to early metastatic dissemination and high chemoresistance. All these factors are favored by its extracellular matrix (ECM)-rich microenvironment, which is also highly hypoxic and acidic. Gemcitabine (GEM) is still the first-line therapy in PDAC. However, it is quickly deaminated to its inactive metabolite. Several GEM prodrugs have emerged to improve its cytotoxicity. Here, we analyzed how the acidic/hypoxic tumor microenvironment (TME) affects the response of PDAC cell death and invadopodia-mediated ECM proteolysis to both GEM and its C18 prodrug. METHODS: For this, two PDAC cell lines, PANC-1 and Mia PaCa-2 were adapted to pHe 6.6 or not for 1 month, grown as 3D organotypic cultures and exposed to either GEM or C18 in the presence and absence of acidosis and the hypoxia inducer, deferoxamine. RESULTS: We found that C18 has higher cytotoxic and anti-invadopodia activity than GEM in all culture conditions and especially in acid and hypoxic environments. CONCLUSIONS: We propose C18 as a more effective approach to conventional GEM in developing new therapeutic strategies overcoming PDAC chemoresistance.


Assuntos
Desoxicitidina , Gencitabina , Neoplasias Pancreáticas , Microambiente Tumoral , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Humanos , Microambiente Tumoral/efeitos dos fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Linhagem Celular Tumoral , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Podossomos/metabolismo , Podossomos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Pró-Fármacos/farmacologia
4.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731942

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) can originate from acinar-to-ductal metaplasia (ADM). Pancreatic acini harboring oncogenic Kras mutations are transdifferentiated to a duct-like phenotype that further progresses to become pancreatic intraepithelial neoplasia (PanIN) lesions, giving rise to PDAC. Although ADM formation is frequently observed in KrasG12D transgenic mouse models of PDAC, the exact mechanisms of how oncogenic KrasG12D regulates this process remain an enigma. Herein, we revealed a new downstream target of oncogenic Kras, cytokine CCL9, during ADM formation. Higher levels of CCL9 and its receptors, CCR1 and CCR3, were detected in ADM regions of the pancreas in p48cre:KrasG12D mice and human PDAC patients. Knockdown of CCL9 in KrasG12D-expressed pancreatic acini reduced KrasG12D-induced ADM in a 3D organoid culture system. Moreover, exogenously added recombinant CCL9 and overexpression of CCL9 in primary pancreatic acini induced pancreatic ADM. We also showed that, functioning as a downstream target of KrasG12D, CCL9 promoted pancreatic ADM through upregulation of the intracellular levels of reactive oxygen species (ROS) and metalloproteinases (MMPs), including MMP14, MMP3 and MMP2. Blockade of MMPs via its generic inhibitor GM6001 or knockdown of specific MMP such as MMP14 and MMP3 decreased CCL9-induced pancreatic ADM. In p48cre:KrasG12D transgenic mice, blockade of CCL9 through its specific neutralizing antibody attenuated pancreatic ADM structures and PanIN lesion formation. Furthermore, it also diminished infiltrating macrophages and expression of MMP14, MMP3 and MMP2 in the ADM areas. Altogether, our results provide novel mechanistic insight into how oncogenic Kras enhances pancreatic ADM through its new downstream target molecule, CCL9, to initiate PDAC.


Assuntos
Células Acinares , Carcinoma Ductal Pancreático , Metaplasia , Neoplasias Pancreáticas , Proteínas Proto-Oncogênicas p21(ras) , Espécies Reativas de Oxigênio , Animais , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Humanos , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Metaplasia/metabolismo , Metaplasia/genética , Células Acinares/metabolismo , Células Acinares/patologia , Camundongos Transgênicos , Quimiocinas CC/metabolismo , Quimiocinas CC/genética , Proteínas Inflamatórias de Macrófagos/metabolismo , Proteínas Inflamatórias de Macrófagos/genética , Pâncreas/metabolismo , Pâncreas/patologia
5.
Mol Cancer ; 23(1): 87, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702773

RESUMO

BACKGROUND: Intratumoral heterogeneity (ITH) and tumor microenvironment (TME) of pancreatic ductal adenocarcinoma (PDAC) play important roles in tumor evolution and patient outcomes. However, the precise characterization of diverse cell populations and their crosstalk associated with PDAC progression and metastasis is still challenging. METHODS: We performed single-cell RNA sequencing (scRNA-seq) of treatment-naïve primary PDAC samples with and without paired liver metastasis samples to understand the interplay between ITH and TME in the PDAC evolution and its clinical associations. RESULTS: scRNA-seq analysis revealed that even a small proportion (22%) of basal-like malignant ductal cells could lead to poor chemotherapy response and patient survival and that epithelial-mesenchymal transition programs were largely subtype-specific. The clonal homogeneity significantly increased with more prevalent and pronounced copy number gains of oncogenes, such as KRAS and ETV1, and losses of tumor suppressor genes, such as SMAD2 and MAP2K4, along PDAC progression and metastasis. Moreover, diverse immune cell populations, including naïve SELLhi regulatory T cells (Tregs) and activated TIGIThi Tregs, contributed to shaping immunosuppressive TMEs of PDAC through cellular interactions with malignant ductal cells in PDAC evolution. Importantly, the proportion of basal-like ductal cells negatively correlated with that of immunoreactive cell populations, such as cytotoxic T cells, but positively correlated with that of immunosuppressive cell populations, such as Tregs. CONCLUSION: We uncover that the proportion of basal-like subtype is a key determinant for chemotherapy response and patient outcome, and that PDAC clonally evolves with subtype-specific dosage changes of cancer-associated genes by forming immunosuppressive microenvironments in its progression and metastasis.


Assuntos
Evolução Clonal , Neoplasias Hepáticas , Neoplasias Pancreáticas , Análise de Célula Única , Microambiente Tumoral , Humanos , Microambiente Tumoral/genética , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Evolução Clonal/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Transcriptoma , Transição Epitelial-Mesenquimal/genética , Biomarcadores Tumorais/genética , Prognóstico , Adenocarcinoma/genética , Adenocarcinoma/patologia , Masculino , Feminino , Análise da Expressão Gênica de Célula Única
6.
Mol Cancer ; 23(1): 90, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711083

RESUMO

BACKGROUND: Metabolic reprogramming and epigenetic alterations contribute to the aggressiveness of pancreatic ductal adenocarcinoma (PDAC). Lactate-dependent histone modification is a new type of histone mark, which links glycolysis metabolite to the epigenetic process of lactylation. However, the role of histone lactylation in PDAC remains unclear. METHODS: The level of histone lactylation in PDAC was identified by western blot and immunohistochemistry, and its relationship with the overall survival was evaluated using a Kaplan-Meier survival plot. The participation of histone lactylation in the growth and progression of PDAC was confirmed through inhibition of histone lactylation by glycolysis inhibitors or lactate dehydrogenase A (LDHA) knockdown both in vitro and in vivo. The potential writers and erasers of histone lactylation in PDAC were identified by western blot and functional experiments. The potential target genes of H3K18 lactylation (H3K18la) were screened by CUT&Tag and RNA-seq analyses. The candidate target genes TTK protein kinase (TTK) and BUB1 mitotic checkpoint serine/threonine kinase B (BUB1B) were validated through ChIP-qPCR, RT-qPCR and western blot analyses. Next, the effects of these two genes in PDAC were confirmed by knockdown or overexpression. The interaction between TTK and LDHA was identified by Co-IP assay. RESULTS: Histone lactylation, especially H3K18la level was elevated in PDAC, and the high level of H3K18la was associated with poor prognosis. The suppression of glycolytic activity by different kinds of inhibitors or LDHA knockdown contributed to the anti-tumor effects of PDAC in vitro and in vivo. E1A binding protein p300 (P300) and histone deacetylase 2 were the potential writer and eraser of histone lactylation in PDAC cells, respectively. H3K18la was enriched at the promoters and activated the transcription of mitotic checkpoint regulators TTK and BUB1B. Interestingly, TTK and BUB1B could elevate the expression of P300 which in turn increased glycolysis. Moreover, TTK phosphorylated LDHA at tyrosine 239 (Y239) and activated LDHA, and subsequently upregulated lactate and H3K18la levels. CONCLUSIONS: The glycolysis-H3K18la-TTK/BUB1B positive feedback loop exacerbates dysfunction in PDAC. These findings delivered a new exploration and significant inter-relationship between lactate metabolic reprogramming and epigenetic regulation, which might pave the way toward novel lactylation treatment strategies in PDAC therapy.


Assuntos
Carcinoma Ductal Pancreático , Regulação Neoplásica da Expressão Gênica , Glicólise , Histonas , L-Lactato Desidrogenase , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/genética , Humanos , Histonas/metabolismo , Animais , Linhagem Celular Tumoral , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Camundongos , Retroalimentação Fisiológica , Epigênese Genética , Carcinogênese/metabolismo , Carcinogênese/genética , Prognóstico , Proliferação de Células , Feminino
7.
Mol Med Rep ; 30(1)2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38695254

RESUMO

As a pluripotent cell, activated pancreatic stellate cells (PSCs) can differentiate into various pancreatic parenchymal cells and participate in the secretion of extracellular matrix and the repair of pancreatic damage. Additionally, PSCs characteristics allow them to contribute to pancreatic inflammation and carcinogenesis. Moreover, a detailed study of the pathogenesis of activated PSCs in pancreatic disease can offer promise for the development of innovative therapeutic strategies and improved patient prognoses. Therefore, the present study review aimed to examine the involvement of activated PSCs in pancreatic diseases and elucidate the underlying mechanisms to provide a viable therapeutic strategy for the management of pancreas­related diseases.


Assuntos
Pâncreas , Pancreatopatias , Células Estreladas do Pâncreas , Humanos , Células Estreladas do Pâncreas/metabolismo , Células Estreladas do Pâncreas/patologia , Pâncreas/metabolismo , Pâncreas/patologia , Pâncreas/citologia , Pancreatopatias/patologia , Pancreatopatias/metabolismo , Animais , Matriz Extracelular/metabolismo , Diferenciação Celular , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo
8.
Cell Biol Toxicol ; 40(1): 30, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740637

RESUMO

In pancreatic ductal adenocarcinomas (PDAC), profound hypoxia plays key roles in regulating cancer cell behavior, including proliferation, migration, and resistance to therapies. The initial part of this research highlights the important role played by long noncoding RNA (lncRNA) MKLN1-AS, which is controlled by hypoxia-inducible factor-1 alpha (HIF-1α), in the progression of PDAC. Human samples of PDAC showed a notable increase in MKLN1-AS expression, which was linked to a worse outcome. Forced expression of MKLN1-AS greatly reduced the inhibitory impact on the growth and spread of PDAC cells caused by HIF-1α depletion. Experiments on mechanisms showed that HIF-1α influences the expression of MKLN1-AS by directly attaching to a hypoxia response element in the promoter region of MKLN1-AS.MKLN1-AS acts as a competitive endogenous RNA (ceRNA) by binding to miR-185-5p, resulting in the regulation of TEAD1 expression and promoting cell proliferation, migration, and tumor growth. TEAD1 subsequently enhances the development of PDAC. Our study results suggest that MKLN1-AS could serve as a promising target for treatment and a valuable indicator for predicting outcomes in PDAC. PDAC is associated with low oxygen levels, and the long non-coding RNA MKLN1-AS interacts with TEAD1 in this context.


Assuntos
Carcinoma Ductal Pancreático , Movimento Celular , Proliferação de Células , Proteínas de Ligação a DNA , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia , MicroRNAs , Neoplasias Pancreáticas , RNA Longo não Codificante , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição de Domínio TEA/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica/genética , Movimento Celular/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Animais , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Transdução de Sinais/genética , Camundongos Nus , Camundongos
9.
J Transl Med ; 22(1): 453, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741142

RESUMO

BACKGROUND: The lack of distinct biomarkers for pancreatic cancer is a major cause of early-stage detection difficulty. The pancreatic cancer patient group with high metabolic tumor volume (MTV), one of the values measured from positron emission tomography-a confirmatory method and standard care for pancreatic cancer, showed a poorer prognosis than those with low MTV. Therefore, MTV-associated differentially expressed genes (DEGs) may be candidates for distinctive markers for pancreatic cancer. This study aimed to evaluate the possibility of MTV-related DEGs as markers or therapeutic targets for pancreatic cancer. METHODS: Tumor tissues and their normal counterparts were obtained from patients undergoing preoperative 18F-FDG PET/CT. The tissues were classified into MTV-low and MTV-high groups (7 for each) based on the MTV2.5 value of 4.5 (MTV-low: MTV2.5 < 4.5, MTV-high: MTV2.5 ≥ 4.5). Gene expression fold change was first calculated in cancer tissue compared to its normal counter and then compared between low and high MTV groups to obtain significant DEGs. To assess the suitability of the DEGs for clinical application, the correlation of the DEGs with tumor grades and clinical outcomes was analyzed in TCGA-PAAD, a large dataset without MTV information. RESULTS: Total RNA-sequencing (MTV RNA-Seq) revealed that 44 genes were upregulated and 56 were downregulated in the high MTV group. We selected the 29 genes matching MTV RNA-seq patterns in the TCGA-PAAD dataset, a large clinical dataset without MTV information, as MTV-associated genes (MAGs). In the analysis with the TCGA dataset, MAGs were significantly associated with patient survival, treatment outcomes, TCGA-PAAD-suggested markers, and CEACAM family proteins. Some MAGs showed an inverse correlation with miRNAs and were confirmed to be differentially expressed between normal and cancerous pancreatic tissues. Overexpression of KIF11 and RCC1 and underexpression of ADCY1 and SDK1 were detected in ~ 60% of grade 2 pancreatic cancer patients and associated with ~ 60% mortality in stages I and II. CONCLUSIONS: MAGs may serve as diagnostic markers and miRNA therapeutic targets for pancreatic cancer. Among the MAGs, KIF11, RCC1, ADCY, and SDK1 may be early diagnostic markers.


Assuntos
Biomarcadores Tumorais , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas , Carga Tumoral , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Masculino , Feminino , Terapia de Alvo Molecular , Pessoa de Meia-Idade , Idoso , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Fluordesoxiglucose F18/metabolismo
10.
Cell Metab ; 36(5): 886-888, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38718754

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive, malignant, and lethal cancers, displaying strong resistance to immunotherapy. In this issue of Cell Metabolism, a study by Liu et al. identifies tetrahydrobiopterin metabolic dysregulation as a key driver for the immunosuppressive PDAC environment in mouse and human.


Assuntos
Biopterinas , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Humanos , Animais , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Camundongos , Biopterinas/análogos & derivados , Biopterinas/metabolismo , Terapia de Imunossupressão
11.
J Exp Clin Cancer Res ; 43(1): 138, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38715057

RESUMO

BACKGROUND: Although immune checkpoint blockade (ICB) therapy has proven to be extremely effective at managing certain cancers, its efficacy in treating pancreatic ductal adenocarcinoma (PDAC) has been limited. Therefore, enhancing the effect of ICB could improve the prognosis of PDAC. In this study, we focused on the histamine receptor H1 (HRH1) and investigated its impact on ICB therapy for PDAC. METHODS: We assessed HRH1 expression in pancreatic cancer cell (PCC) specimens from PDAC patients through public data analysis and immunohistochemical (IHC) staining. The impact of HRH1 in PCCs was evaluated using HRH1 antagonists and small hairpin RNA (shRNA). Techniques including Western blot, flow cytometry, quantitative reverse transcription polymerase chain reaction (RT-PCR), and microarray analyses were performed to identify the relationships between HRH1 and major histocompatibility complex class I (MHC-I) expression in cancer cells. We combined HRH1 antagonism or knockdown with anti-programmed death receptor 1 (αPD-1) therapy in orthotopic models, employing IHC, immunofluorescence, and hematoxylin and eosin staining for assessment. RESULTS: HRH1 expression in cancer cells was negatively correlated with HLA-ABC expression, CD8+ T cells, and cytotoxic CD8+ T cells. Our findings indicate that HRH1 blockade upregulates MHC-I expression in PCCs via cholesterol biosynthesis signaling. In the orthotopic model, the combined inhibition of HRH1 and αPD-1 blockade enhanced cytotoxic CD8+ T cell penetration and efficacy, overcoming resistance to ICB therapy. CONCLUSIONS: HRH1 plays an immunosuppressive role in cancer cells. Consequently, HRH1 intervention may be a promising method to amplify the responsiveness of PDAC to immunotherapy.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Camundongos , Animais , Receptores Histamínicos H1/metabolismo , Receptores Histamínicos H1/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Linhagem Celular Tumoral , Feminino , Antagonistas dos Receptores Histamínicos H1/farmacologia , Antagonistas dos Receptores Histamínicos H1/uso terapêutico , Masculino
12.
Nanomedicine ; 55: 102714, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38738528

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with poor survival rates. Here, we evaluated iron-doped hydroxyapatite (FeHA) as a potential nanomedicine-based approach to combat PDAC. FeHA, in combination with a sublethal dose of the glutathione peroxidase 4 (GPX4) inhibitor RSL3, was found to trigger ferroptosis in KRAS mutant PANC-1 cells, but not in BxPC3 cells, while sparing normal human cells (fibroblasts and peripheral blood mononuclear cells). These findings were recapitulated in 3D spheroids generated using PDAC cells harboring wild-type versus mutant KRAS. Moreover, ferroptosis induction by FeHA plus RSL3 was reversed by the knockdown of STEAP3, a metalloreductase responsible for converting Fe3+ to Fe2+. Taken together, our data show that FeHA is capable of triggering cancer cell death in a KRAS-selective, STEAP3-dependent manner in PDAC cells.


Assuntos
Carcinoma Ductal Pancreático , Ferroptose , Ferro , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Ferro/química , Ferro/metabolismo , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Ferroptose/efeitos dos fármacos , Linhagem Celular Tumoral , Nanopartículas/química , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
13.
J Photochem Photobiol B ; 255: 112910, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38663337

RESUMO

The prognosis for patients with advanced-stage pancreatic ductal adenocarcinoma (PDAC) remains dismal. It is generally accepted that combination cancer therapies offer the most promise, such as Folforinox, despite their associated high toxicity. This study addresses the issue of chemoresistance by introducing a complementary dual priming approach to attenuate the DNA repair mechanism and to improve the efficacy of a type 1 topoisomerase (Top1) inhibitor. The result is a regimen that integrates drug-repurposing and nanotechnology using 3 clinically relevant FDA-approved agents (1) Top1 inhibitor (irinotecan) at subcytotoxic doses (2) benzoporphyrin derivative (BPD) as a photoactive molecule for photodynamic priming (PDP) to improve the delivery of irinotecan within the cancer cell and (3) minocycline priming (MNP) to modulate DNA repair enzyme Tdp1 (tyrosyl-DNA phosphodiesterase) activity. We demonstrate in heterotypic 3D cancer models that incorporate cancer cells and pancreatic cancer-associated fibroblasts that simultaneous targeting of Tdp1 and Top1 were significantly more effective by employing MNP and photoactivatable multi-inhibitor liposomes encapsulating BPD and irinotecan compared to monotherapies or a cocktail of dual or triple-agents. These data are encouraging and warrant further work in appropriate animal models to evolve improved therapeutic regimens.


Assuntos
Carcinoma Ductal Pancreático , Irinotecano , Minociclina , Neoplasias Pancreáticas , Fotoquimioterapia , Humanos , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Linhagem Celular Tumoral , Minociclina/farmacologia , Minociclina/uso terapêutico , Irinotecano/farmacologia , Irinotecano/uso terapêutico , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/patologia , Diester Fosfórico Hidrolases/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/uso terapêutico , Inibidores da Topoisomerase I/farmacologia , Inibidores da Topoisomerase I/uso terapêutico , Inibidores da Topoisomerase I/química , Lipossomos/química
14.
J Am Soc Cytopathol ; 13(3): 213-218, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38575468

RESUMO

INTRODUCTION: Insulinoma-associated protein 1 (INSM1) is an immunohistochemical marker commonly used to confirm cytomorphological concordant neuroendocrine tumors/carcinomas (NETs/NECs), demonstrating high utility in small samples. Previous reports have suggested comparable INSM1 staining in CytoLyt-fixed cell blocks and formalin-fixed surgical pathology specimens. This study aimed to assess INSM1 immunoreactivity using both fixation methods and investigate potential factors contributing to its variable expression. MATERIALS AND METHODS: A retrospective query was performed (03/31/21-05/31/22) for NET/NEC cases that had both formalin- and CytoLyt-fixed cell blocks. We collected clinical data and reporting of immunostains for each case. INSM1 staining was evaluated in both fixation methods, and reported as positive, negative, or equivocal. Equivocal INSM1 staining was further scored as a percentage of 1%-100% and intensity of weak (faint staining), moderate (darker staining), and strong (dense staining). RESULTS: Our search identified 20 cases from diverse body sites, including mediastinal lymph nodes (40%), pancreas (35%), lung (20%), and porta hepatis lymph nodes (5%). All cases exhibited a widespread positivity (over 90%) in formalin-fixed cell blocks. In contrast, CytoLyt fixed cells showed a negative stain in 65% of cases and 30% exhibited an equivocal positivity. CONCLUSIONS: While INSM1 is previously reported as a sensitive (75%-100%) and specific (82.7%-100%) marker for NET/NECs, our study found a reduced immunohistochemical staining in CytoLyt-fixed cell blocks. Consequently, false negative INSM1 immunohistochemical results in CytoLyt-fixed cell block material may pose a pitfall in the diagnosis of NET/NEC.


Assuntos
Biomarcadores Tumorais , Formaldeído , Imuno-Histoquímica , Proteínas Repressoras , Fixação de Tecidos , Humanos , Estudos Retrospectivos , Proteínas Repressoras/metabolismo , Biomarcadores Tumorais/metabolismo , Imuno-Histoquímica/métodos , Fixação de Tecidos/métodos , Tumores Neuroendócrinos/patologia , Tumores Neuroendócrinos/metabolismo , Tumores Neuroendócrinos/diagnóstico , Feminino , Pessoa de Meia-Idade , Masculino , Idoso , Adulto , Fixadores , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/diagnóstico , Carcinoma Neuroendócrino/patologia , Carcinoma Neuroendócrino/diagnóstico , Carcinoma Neuroendócrino/metabolismo
15.
Cell Signal ; 119: 111174, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38604340

RESUMO

Many challenges are faced in pancreatic cancer treatment due to late diagnosis and poor prognosis because of high recurrence and metastasis. Extracellular vesicles (EVs) and matrix metalloproteinases (MMPs), besides acting in intercellular communication, are key players in the cancer cell plasticity responsible for initiating metastasis. Therefore, these entities provide valuable targets for the development of better treatments. In this context, this study aimed to evaluate the potential of calix[6]arene to disturb the release of EVs and the activity of MMPs in pancreatic cancer cells. We found a correlation between the endocytic-associated mediators and the prognosis of pancreatic cancer patients. We observed a more active EV machinery in the pancreatic cancer cell line PANC-1, which was reduced three-fold by treatment with calix[6]arene at subtoxic concentration (5 µM; p ã€ˆ0,001). We observed the modulation of 186 microRNAs (164 miRNAs upregulated and 22 miRNAs downregulated) upon calix[6]arene treatment. Interestingly, some of them as miR-4443 and miR-3909, regulates genes HIF1A e KIF13A that are well known to play a role in transport of vesicles. Furthermore, Calix[6]arene downmodulated matrix metalloproteinases (MMPs) -2 and - 9 and disturbed the viability of pancreatic organoids which recapitulate the cellular heterogeneity, structure, and functions of primary tissues. Our findings shed new insights on calix[6]arene's antitumor mechanism, including its intracellular effects on vesicle production and trafficking, as well as MMP activity, which may harm the tumor microenvironment and contribute to a reduction in cancer cell dissemination, which is one of the challenges associated with high mortality in pancreatic cancer.


Assuntos
Calixarenos , Vesículas Extracelulares , MicroRNAs , Neoplasias Pancreáticas , Fenóis , Humanos , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Calixarenos/farmacologia , Vesículas Extracelulares/metabolismo , Linhagem Celular Tumoral , Fenóis/farmacologia , MicroRNAs/metabolismo , MicroRNAs/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
16.
Nat Immunol ; 25(5): 755-763, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38641718

RESUMO

T cell infiltration into tumors is a favorable prognostic feature, but most solid tumors lack productive T cell responses. Mechanisms that coordinate T cell exclusion are incompletely understood. Here we identify hepatocyte activation via interleukin-6/STAT3 and secretion of serum amyloid A (SAA) proteins 1 and 2 as important regulators of T cell surveillance of extrahepatic tumors. Loss of STAT3 in hepatocytes or SAA remodeled the tumor microenvironment with infiltration by CD8+ T cells, while interleukin-6 overexpression in hepatocytes and SAA signaling via Toll-like receptor 2 reduced the number of intratumoral dendritic cells and, in doing so, inhibited T cell tumor infiltration. Genetic ablation of SAA enhanced survival after tumor resection in a T cell-dependent manner. Likewise, in individuals with pancreatic ductal adenocarcinoma, long-term survivors after surgery demonstrated lower serum SAA levels than short-term survivors. Taken together, these data define a fundamental link between liver and tumor immunobiology wherein hepatocytes govern productive T cell surveillance in cancer.


Assuntos
Linfócitos T CD8-Positivos , Hepatócitos , Interleucina-6 , Fator de Transcrição STAT3 , Proteína Amiloide A Sérica , Proteína Amiloide A Sérica/metabolismo , Proteína Amiloide A Sérica/genética , Hepatócitos/metabolismo , Hepatócitos/imunologia , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Interleucina-6/metabolismo , Fator de Transcrição STAT3/metabolismo , Microambiente Tumoral/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Evasão Tumoral , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/metabolismo , Transdução de Sinais , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/patologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Linhagem Celular Tumoral
17.
Sci Rep ; 14(1): 8998, 2024 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637546

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is considered the third leading cause of cancer mortality in the western world, offering advanced stage patients with few viable treatment options. Consequently, there remains an urgent unmet need to develop novel therapeutic strategies that can effectively inhibit pro-oncogenic molecular targets underpinning PDACs pathogenesis and progression. One such target is c-RAF, a downstream effector of RAS that is considered essential for the oncogenic growth and survival of mutant RAS-driven cancers (including KRASMT PDAC). Herein, we demonstrate how a novel cell-penetrating peptide disruptor (DRx-170) of the c-RAF-PDE8A protein-protein interaction (PPI) represents a differentiated approach to exploiting the c-RAF-cAMP/PKA signaling axes and treating KRAS-c-RAF dependent PDAC. Through disrupting the c-RAF-PDE8A protein complex, DRx-170 promotes the inactivation of c-RAF through an allosteric mechanism, dependent upon inactivating PKA phosphorylation. DRx-170 inhibits cell proliferation, adhesion and migration of a KRASMT PDAC cell line (PANC1), independent of ERK1/2 activity. Moreover, combining DRx-170 with afatinib significantly enhances PANC1 growth inhibition in both 2D and 3D cellular models. DRx-170 sensitivity appears to correlate with c-RAF dependency. This proof-of-concept study supports the development of DRx-170 as a novel and differentiated strategy for targeting c-RAF activity in KRAS-c-RAF dependent PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Transdução de Sinais , Proliferação de Células , Linhagem Celular Tumoral , 3',5'-AMP Cíclico Fosfodiesterases/metabolismo
18.
Cell ; 187(9): 2269-2287.e16, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38608703

RESUMO

Knudson's "two-hit" paradigm posits that carcinogenesis requires inactivation of both copies of an autosomal tumor suppressor gene. Here, we report that the glycolytic metabolite methylglyoxal (MGO) transiently bypasses Knudson's paradigm by inactivating the breast cancer suppressor protein BRCA2 to elicit a cancer-associated, mutational single-base substitution (SBS) signature in nonmalignant mammary cells or patient-derived organoids. Germline monoallelic BRCA2 mutations predispose to these changes. An analogous SBS signature, again without biallelic BRCA2 inactivation, accompanies MGO accumulation and DNA damage in Kras-driven, Brca2-mutant murine pancreatic cancers and human breast cancers. MGO triggers BRCA2 proteolysis, temporarily disabling BRCA2's tumor suppressive functions in DNA repair and replication, causing functional haploinsufficiency. Intermittent MGO exposure incites episodic SBS mutations without permanent BRCA2 inactivation. Thus, a metabolic mechanism wherein MGO-induced BRCA2 haploinsufficiency transiently bypasses Knudson's two-hit requirement could link glycolysis activation by oncogenes, metabolic disorders, or dietary challenges to mutational signatures implicated in cancer evolution.


Assuntos
Proteína BRCA2 , Neoplasias da Mama , Glicólise , Aldeído Pirúvico , Animais , Proteína BRCA2/metabolismo , Proteína BRCA2/genética , Camundongos , Humanos , Feminino , Aldeído Pirúvico/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Haploinsuficiência , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Mutação , Dano ao DNA , Reparo do DNA , Linhagem Celular Tumoral
20.
Anal Chem ; 96(18): 7248-7256, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38655839

RESUMO

Ferroptosis modulation is a powerful therapeutic option for pancreatic ductal adenocarcinoma (PDAC) with a low 5-year survival rate and lack of effective treatment methods. However, due to the dual role of ferroptosis in promoting and inhibiting pancreatic tumorigenesis, regulating the degree of ferroptosis is very important to obtain the best therapeutic effect of PDAC. Biothiols are suitable as biomarkers of imaging ferroptosis due to the dramatic decreases of biothiol levels in ferroptosis caused by the inhibited synthesis pathway of glutathione (GSH) and the depletion of biothiol by reactive oxygen species. Moreover, a very recent study reported that cysteine (Cys) depletion can lead to pancreatic tumor ferroptosis in mice and may be employed as an effective therapeutic strategy for PDAC. Therefore, visualization of biothiols in ferroptosis of PDAC will be helpful for regulating the degree of ferroptosis, understanding the mechanism of Cys depletion-induced pancreatic tumor ferroptosis, and further promoting the study and treatment of PDAC. Herein, two biothiol-activable near-infrared (NIR) fluorescent/photoacoustic bimodal imaging probes (HYD-BX and HYD-DX) for imaging of pancreatic tumor ferroptosis were reported. These two probes show excellent bimodal response performances for biothiols in solution, cells, and tumors. Subsequently, they have been employed successfully for real-time visualization of changes in concentration levels of biothiols during the ferroptosis process in PDAC cells and HepG2 cells. Most importantly, they have been further applied for bimodal imaging of ferroptosis in pancreatic cancer in mice, with satisfactory results. The development of these two probes provides new tools for monitoring changes in concentration levels of biothiols in ferroptosis and will have a positive impact on understanding the mechanism of Cys depletion-induced pancreatic tumor ferroptosis and further promoting the study and treatment of PDAC.


Assuntos
Ferroptose , Corantes Fluorescentes , Imagem Óptica , Neoplasias Pancreáticas , Técnicas Fotoacústicas , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Humanos , Corantes Fluorescentes/química , Animais , Camundongos , Compostos de Sulfidrila/química , Compostos de Sulfidrila/metabolismo , Raios Infravermelhos , Carcinoma Ductal Pancreático/diagnóstico por imagem , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA