Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Invest Ophthalmol Vis Sci ; 62(15): 11, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34901994

RESUMO

Purpose: Retinoblastoma is the most common primary intraocular malignant tumor in children. Although intra-arterial chemotherapy and conventional chemotherapy have become promising therapeutic approaches for advanced intraocular retinoblastoma, the side effects threaten health and are unavoidable, making the development of targeted therapy an urgent need. Therefore, we intended to find a potential drug for human retinoblastoma by screening an in-house compound library that included 89 purified and well-characterized natural products. Methods: We screened a panel of 89 natural products in retinoblastoma cell lines to find the inhibitor. The inhibition of the identified inhibitor xanthatin on cell growth was detected through half-maximal inhibitory concentration (IC50), flow cytometry assay, and zebrafish model system. RNA-seq further selected the target gene PLK1. Results: We reported the discovery of xanthatin as an effective inhibitor of retinoblastoma. Mechanistically, xanthatin selectively inhibited the proliferation of retinoblastoma cells by inducing cell cycle arrest and promoting apoptosis. Interestingly, xanthatin targeted PLK1-mediated cell cycle progression. The efficacy of xanthatin was further confirmed in zebrafish models. Conclusions: Collectively, our data suggested that xanthatin significantly inhibited tumor growth in vitro and in vivo, and xanthatin could be a potential drug treatment for retinoblastoma.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Proteínas de Ciclo Celular/antagonistas & inibidores , Ciclo Celular/efeitos dos fármacos , Furanos/uso terapêutico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Neoplasias da Retina/tratamento farmacológico , Retinoblastoma/tratamento farmacológico , Apoptose/efeitos dos fármacos , Western Blotting , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Neoplasias da Retina/enzimologia , Neoplasias da Retina/patologia , Retinoblastoma/enzimologia , Retinoblastoma/patologia , Transdução de Sinais/efeitos dos fármacos , Sincalida/metabolismo , Quinase 1 Polo-Like
2.
Invest Ophthalmol Vis Sci ; 62(3): 16, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33704359

RESUMO

Purpose: Aurora kinase B (AURKB) plays a pivotal role in the regulation of mitosis and is gaining prominence as a therapeutic target in cancers; however, the role of AURKB in retinoblastoma (RB) has not been studied. The purpose of this study was to determine if AURKB plays a role in RB, how its expression is regulated, and whether it could be specifically targeted. Methods: The protein expression of AURKB was determined using immunohistochemistry in human RB patient specimens and immunoblotting in cell lines. Pharmacological inhibition and shRNA-mediated knockdown were used to understand the role of AURKB in cell viability, apoptosis, and cell cycle distribution. Cell viability in response to AURKB inhibition was also assessed in enucleated RB specimens. Immunoblotting was employed to determine the protein levels of phospho-histone H3, p53, p21, and MYCN. Chromatin immunoprecipitation-qPCR was performed to verify the binding of MYCN on the promoter region of AURKB. Results: The expression of AURKB was found to be markedly elevated in human RB tissues, and the overexpression significantly correlated with optic nerve and anterior chamber invasion. Targeting AURKB with small-molecule inhibitors and shRNAs resulted in reduced cell survival and increased apoptosis and cell cycle arrest at the G2/M phase. More importantly, primary RB specimens showed decreased cell viability in response to pharmacological AURKB inhibition. Additional studies have demonstrated that the MYCN oncogene regulates the expression of AURKB in RB. Conclusions: AURKB is overexpressed in RB, and targeting it could serve as a novel therapeutic strategy to restrict tumor cell growth.


Assuntos
Aurora Quinase B/genética , Regulação Enzimológica da Expressão Gênica/fisiologia , Terapia de Alvo Molecular , Inibidores de Proteínas Quinases/farmacologia , Neoplasias da Retina/enzimologia , Retinoblastoma/enzimologia , Apoptose/efeitos dos fármacos , Compostos Aza/farmacologia , Benzamidas/farmacologia , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Immunoblotting , Imuno-Histoquímica , Indóis/farmacologia , Organofosfatos/farmacologia , Quinazolinas/farmacologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Neoplasias da Retina/patologia , Retinoblastoma/patologia , Células Tumorais Cultivadas
3.
Exp Eye Res ; 202: 108286, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33035554

RESUMO

Retinoblastoma (RB) is the most common intraocular malignant tumour in infants, and chemotherapy has been the primary therapy method in recent years. PRMT5 is an important member of the protein arginine methyltransferase family, which plays an important role in various tumours. Our study showed that PRMT5 was overexpressed in retinoblastoma and played an important role in retinoblastoma cell growth. EPZ015666 is a novel PRMT5 inhibitor, and we found that it inhibited retinoblastoma cell proliferation and led to cell cycle arrest at the G1 phase. At the same time, EPZ015666 regulated cell cycle related protein (P53, P21, P27, CDK2) expression. In brief, our study showed that PRMT5 promoted retinoblastoma growth, the PRMT5 inhibitor EPZ015666 inhibited retinoblastoma in vitro by regulating P53-P21/P27-CDK2 signaling pathways and slowed retinoblastoma growth in a xenograft model.


Assuntos
Antineoplásicos/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Isoquinolinas/uso terapêutico , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Pirimidinas/uso terapêutico , Neoplasias da Retina/tratamento farmacológico , Retinoblastoma/tratamento farmacológico , Animais , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Nus , Proteína-Arginina N-Metiltransferases/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Neoplasias da Retina/enzimologia , Neoplasias da Retina/patologia , Retinoblastoma/enzimologia , Retinoblastoma/patologia , Sais de Tetrazólio , Tiazóis , Fatores de Tempo , Transplante Heterólogo
4.
J Cancer Res Clin Oncol ; 146(8): 2029-2040, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32474753

RESUMO

PURPOSE: Expression microarrays are powerful technology that allows large-scale analysis of RNA profiles in a tissue; these platforms include underexploited detection scores outputs. We developed an algorithm using the detection score, to generate a detection profile of shared elements in retinoblastoma as well as to determine its transcriptomic size and structure. METHODS: We analyzed eight briefly cultured primary retinoblastomas with the Human transcriptome array 2.0 (HTA2.0). Transcripts and genes detection scores were determined using the Detection Above Background algorithm (DABG). We used unsupervised and supervised computational tools to analyze detected and undetected elements; WebGestalt was used to explore functions encoded by genes in relevant clusters and performed experimental validation. RESULTS: We found a core cluster with 7,513 genes detected and shared by all samples, 4,321 genes in a cluster that was commonly absent, and 7,681 genes variably detected across the samples accounting for tumor heterogeneity. Relevant pathways identified in the core cluster relate to cell cycle, RNA transport, and DNA replication. We performed a kinome analysis of the core cluster and found 4 potential therapeutic kinase targets. Through analysis of the variably detected genes, we discovered 123 differentially expressed transcripts between bilateral and unilateral cases. CONCLUSIONS: This novel analytical approach allowed determining the retinoblastoma transcriptomic size, a shared active transcriptomic core among the samples, potential therapeutic target kinases shared by all samples, transcripts related to inter tumor heterogeneity, and to determine transcriptomic profiles without the need of control tissues. This approach is useful to analyze other cancer or tissue types.


Assuntos
Neoplasias da Retina/genética , Retinoblastoma/genética , Algoritmos , Pré-Escolar , Éxons , Feminino , Perfilação da Expressão Gênica , Genes do Retinoblastoma , Genoma Humano , Humanos , Lactente , Masculino , Família Multigênica , Fosfotransferases/genética , Fosfotransferases/metabolismo , Neoplasias da Retina/enzimologia , Retinoblastoma/enzimologia , Transcriptoma , Células Tumorais Cultivadas
5.
Pathol Res Pract ; 215(12): 152641, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31727502

RESUMO

BACKGROUND: Retinoblastoma (RB) is the most common primary intraocular malignancy in children. Accumulating evidences have clarified that microRNAs (miRNAs) modulated signaling molecules by acting as oncogenes or tumor-suppressor genes in RB. Thus, in our study, we aimed to investigate the function of miR-129-5p in RB cells through PI3K/AKT signaling pathway by targeting PAX6. Two RB cell lines, Y79 and WERI-Rb-1, were selected in our study, followed by transfection of miR-129-5p inhibitor or si-PAX6 to explore the regulatory role of miR-129-5p in RB cell proliferation, invasion and migration. MATERIAL AND METHODS: Dual-luciferase assay was used for the detection of targeting relationship between miR-129-5p and PAX6. Besides, western blot analysis was applied to detect expression of cell cycle-related factors (CDK2 and Cyclin E) and PI3K/AKT signaling pathway-related factors (p-AKT and AKT). Nude mice tumorigenesis experiment was used to evaluate the effect of miR-129a-5p on RB growth in vivo. RESULTS: miR-129-5p was down-regulated in RB cell lines. miR-129-5p directly targeted the 3'-untranslated region of PAX6. Artificial down-regulation of miR-129-5p promoted cell proliferation, migration and invasion in RB cell lines Y79 and WERI-Rb-1, and promoted RB growth in vivo via PI3K/AKT signaling pathway, which could be reversed by transfection with silencing PAX6. CONCLUSION: This study provides evidences that RB progression was suppressed by overexpressed miR-129-5p via direct targeting of PAX6 through PI3K/AKT signaling pathway, which may provide a molecular basis for better treatment for RB.


Assuntos
Movimento Celular , Proliferação de Células , MicroRNAs/metabolismo , Fator de Transcrição PAX6/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias da Retina/enzimologia , Retinoblastoma/enzimologia , Animais , Ciclo Celular , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Invasividade Neoplásica , Fator de Transcrição PAX6/genética , Neoplasias da Retina/genética , Neoplasias da Retina/patologia , Retinoblastoma/genética , Retinoblastoma/patologia , Transdução de Sinais , Carga Tumoral
6.
Med Sci Monit ; 24: 1980-1987, 2018 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-29615601

RESUMO

BACKGROUND The main aim of the current investigation was to study the antiproliferative activity of gingerol in RB355 human retinoblastoma cancer cells. The effects of gingerol on apoptosis induction, cell cycle arrest, and PI3K/Akt signaling pathway were also evaluated. MATERIAL AND METHODS MTT cell viability assay was used to assess the cytotoxic effects of gingerol in these cells while. To study apoptotic effects in these cells, we used inverted microscopy along with fluorescence microscopy using acridine orange/propidium iodide and Hoechst 33258 as staining dyes. Flow cytometry was used to study cell cycle phase distribution and Western blot assay indicated effects on PI3K/Akt protein expression levels. RESULTS Results showed that gingerol exerted dose-dependent and time-dependent growth inhibitory effects in these retinoblastoma cells. However, the growth inhibitory effects of gingerol were less pronounced against normal fr2 cells. As compared to the untreated control cells, gingerol-treated cells at concentrations of 25, 75, and 150 µM had drastic changes in cell morphology, including rounding and withering of cells, with disorganized cell layers. Gingerol-treated cells exhibited bright fluorescence, indicating rupture of the cell membrane. These results were further confirmed by acridine orange/propidium iodide staining, in which untreated cells showed normal green fluorescence and gingerol-treated cells showed yellow/red fluorescence. Gingerol also led to dose-dependent G2/M phase cell cycle arrest in RB355 retinoblastoma cells, as well as concentration-dependent activation of PI3K-related protein expressions. CONCLUSIONS Gingerol exhibits potent anticancer effects in RB355 human retinoblastoma cancer cells and these effects were mediated via apoptosis induction, cell cycle arrest, and modulation of the PI3K/Akt signaling pathway.


Assuntos
Catecóis/farmacologia , Álcoois Graxos/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias da Retina/tratamento farmacológico , Retinoblastoma/tratamento farmacológico , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Neoplasias da Retina/enzimologia , Neoplasias da Retina/patologia , Retinoblastoma/enzimologia , Retinoblastoma/patologia , Transdução de Sinais/efeitos dos fármacos
7.
J Cancer Res Clin Oncol ; 144(4): 675-684, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29372378

RESUMO

PURPOSE: Retinoblastoma (RB) is the most common primary intraocular tumor in children. Chemotherapy is currently the main method of RB treatment. Unfortunately, RB often becomes chemoresistant and turns lethal. Here, we used in vitro cell immunotherapy to explore whether adoptive immunotherapy could be used as a potential treatment for RB. We focused on spleen tyrosine kinase (SYK), which is significantly upregulated in RB cells and serves as a marker for RB cells. METHODS: Using lentiviruses, we genetically modified dendritic cells (DCs) to express and present the SYK peptide antigen to cytotoxic T lymphocytes (CTLs) in vitro. We used SYK-negative cell lines (MDA-MB-231, MCF-10A, and hTERT-RPE1) and SYK-positive cell lines (MCF-7 and RB-Y79) to evaluate the specificity and cytotoxicity of DC presented CTLs using FACS, live-cell imaging, and RNA interference. RESULTS: The cytotoxicity of CTLs induced by SYK-overexpressing DCs (SYK-DC-CTLs) was enhanced more than three times in SYK-positive cell lines compared with SYK-negative cell lines. DCs primed with SYK could drive CTL cytotoxicity against SYK-positive cell lines but not against SYK-negative cell lines. Moreover, SYK-silenced RB-Y79 cells successfully evaded the cytotoxic attack from SYK-DC-CTLs. However, SYK-DC-CTLs could target SYK overexpressed hTERT-RPE1 cells, suggesting that SYK is a specific antigen for RB. Furthermore, SYK-DC-CTL exhibited specific cytotoxicity against carboplatin-resistant RB-Y79 cells in vitro. CONCLUSIONS: Our data showed that SYK could be a potential immunotherapy target mediated by DCs. We propose SYK as a candidate target for treatment of chemoresistant RB.


Assuntos
Células Dendríticas/imunologia , Imunoterapia Adotiva/métodos , Neoplasias da Retina/terapia , Retinoblastoma/terapia , Quinase Syk/imunologia , Linfócitos T Citotóxicos/imunologia , Apresentação de Antígeno , Linhagem Celular Tumoral , Células Dendríticas/enzimologia , Células Dendríticas/transplante , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Células HEK293 , Humanos , Lentivirus/genética , Células MCF-7 , Terapia de Alvo Molecular , Neoplasias da Retina/enzimologia , Neoplasias da Retina/imunologia , Retinoblastoma/enzimologia , Retinoblastoma/imunologia , Quinase Syk/genética
8.
Eur Rev Med Pharmacol Sci ; 21(24): 5624-5629, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29271995

RESUMO

OBJECTIVE: MicroRNAs have caught more attention for their role in tumor progression. Retinoblastoma (RB) is one of these ordinary malignant tumors. This study aims to identify whether mir-138-5p can regulate the development of RB, and find out its potential mechanism. MATERIALS AND METHODS: Mir-138-5p expression in RB cells was monitored by RT-qPCR. Besides, the role of mir-138-5p in RB development was explored through function experiments in vitro. The potential mechanism was further explored by RT-qPCR, luciferase assay, and Western blot assay. RESULTS: In our investigation, mir-138-5p was lower-expressed in RB cells than that in retinal pigment epithelial cells. Moreover, overexpression of mir-138-5p repressed cell viability, migration and invasion, and induced apoptosis of RB cells, while downregulated mir-138-5p increased cell viability, migration and invasion, and reduced apoptosis of RB cells. Furthermore, pyruvate dehydrogenase kinase 1 (PDK1) could be downregulated via overexpression of mir-138-5p, while PDK1 was upregulated via knockdown of mir-138-5p. CONCLUSIONS: Our results suggested that mir-138-5p could repress the development of RB via suppressing PDK1, which may offer a new vision for interpreting the mechanism of RB tumorigenesis.


Assuntos
Genes Supressores de Tumor , MicroRNAs/fisiologia , Proteínas Serina-Treonina Quinases/genética , Neoplasias da Retina/genética , Retinoblastoma/genética , Apoptose , Linhagem Celular Tumoral , Humanos , Piruvato Desidrogenase Quinase de Transferência de Acetil , Neoplasias da Retina/enzimologia , Neoplasias da Retina/etiologia , Neoplasias da Retina/patologia , Retinoblastoma/enzimologia , Retinoblastoma/etiologia , Retinoblastoma/patologia
9.
Cancer Lett ; 380(1): 10-9, 2016 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-27319373

RESUMO

Translational research in retinoblastoma - a pediatric tumor that originates during the development of the retina - would be improved by the creation of new patient-derived models. Using tumor samples from enucleated eyes we established a new battery of preclinical models that grow in vitro in serum-free medium and in vivo in immunodeficient mice. To examine whether the new xenografts recapitulate human disease and disseminate from the retina to the central nervous system, we evaluated their histology and the presence of molecular markers of dissemination that are used in the clinical setting to detect extraocular metastases. We evaluated GD2 synthase and CRX as such markers and generated a Taqman real-time quantitative PCR method to measure CRX mRNA for rapid, sensitive and specific quantification of local and metastatic tumor burden. This approach was able to detect 1 human retinoblastoma cell in 100.000 mouse brain cells. Our research adds novel preclinical tools for the discovery of new retinoblastoma treatments for clinical translation.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/enzimologia , Movimento Celular , Proteínas de Homeodomínio/metabolismo , N-Acetilgalactosaminiltransferases/metabolismo , Neoplasias Experimentais/enzimologia , Neoplasias da Retina/enzimologia , Retinoblastoma/enzimologia , Transativadores/metabolismo , Animais , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/secundário , Linhagem Celular Tumoral , Pré-Escolar , Feminino , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Xenoenxertos , Proteínas de Homeodomínio/genética , Humanos , Lactente , Camundongos Nus , N-Acetilgalactosaminiltransferases/genética , Micrometástase de Neoplasia , Transplante de Neoplasias , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Neoplasias da Retina/genética , Neoplasias da Retina/patologia , Retinoblastoma/genética , Retinoblastoma/secundário , Transdução de Sinais , Transativadores/genética , Células Tumorais Cultivadas
10.
Int J Clin Oncol ; 21(4): 651-657, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26857459

RESUMO

BACKGROUND: Reactive oxygen species (ROS) have been shown to enhance the proliferation of cancer cells. NADPH oxidases (NOX4) are a major intracellular source of ROS and are found to be associated with cancer and tumor cell invasion. Therefore, the purpose of this study is to evaluate the expression of NOX4 protein in human retinoblastoma. METHODS: Immunohistochemical expression of NOX4 protein was analyzed in 109 specimens from prospective cases of retinoblastoma and then correlated with clinicopathological parameters and patient survival. Western blotting confirmed and validated the immunoreactivity of NOX4 protein. RESULTS: In our study we found a male preponderance (55.9 %), and 25/109 (22.9 %) were bilateral. Massive choroidal invasion was the histopathological high-risk factor (HRF) most frequently observed, in 42.2 % of the cases. NOX4 protein was expressed in 67.88 % (74/109) of primary retinoblastoma cases and was confirmed by Western blotting. NOX4 was statistically significant with massive choroidal invasion and pathological TNM staging. There was a statistically significant difference in overall survival in patients with NOX4 expression (p = 0.0461). CONCLUSION: This is the first study to show the expression of NOX4 protein in retinoblastoma tumors. Hence, a retinoblastoma tumor may exhibit greater ROS stress. This protein may prove to be useful as a future therapeutic target for improving the management of retinoblastoma.


Assuntos
Biomarcadores Tumorais/análise , NADPH Oxidases/análise , Neoplasias da Retina/enzimologia , Neoplasias da Retina/patologia , Retinoblastoma/enzimologia , Retinoblastoma/patologia , Pré-Escolar , Corioide/patologia , Feminino , Humanos , Lactente , Masculino , NADPH Oxidase 4 , Invasividade Neoplásica , Estadiamento de Neoplasias , Estresse Oxidativo , Prognóstico , Estudos Prospectivos , Espécies Reativas de Oxigênio , Taxa de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA