Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.828
Filtrar
1.
J Neurosci Res ; 102(10): e25390, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39373381

RESUMO

Visceral feedback from the body is often subconscious, but plays an important role in guiding motivated behaviors. Vagal sensory neurons relay "gut feelings" to noradrenergic (NA) neurons in the caudal nucleus of the solitary tract (cNTS), which in turn project to the anterior ventrolateral bed nucleus of the stria terminalis (vlBNST) and other hypothalamic-limbic forebrain regions. Prior work supports a role for these circuits in modulating memory consolidation and extinction, but a potential role in retrieval of conditioned avoidance remains untested. To examine this, adult male rats underwent passive avoidance conditioning. We then lesioned gut-sensing vagal afferents by injecting cholecystokinin-conjugated saporin toxin (CSAP) into the vagal nodose ganglia (Experiment 1), or lesioned NA inputs to the vlBNST by injecting saporin toxin conjugated to an antibody against dopamine-beta hydroxylase (DSAP) into the vlBNST (Experiment 2). When avoidance behavior was later assessed, rats with vagal CSAP lesions or NA DSAP lesions displayed significantly increased conditioned passive avoidance. These new findings support the view that gut vagal afferents and the cNTSNA-to-vlBNST circuit play a role in modulating the expression/retrieval of learned passive avoidance. Overall, our data suggest a dynamic modulatory role of vagal sensory feedback to the limbic forebrain in integrating interoceptive signals with contextual cues that elicit conditioned avoidance behavior.


Assuntos
Aprendizagem da Esquiva , Ratos Sprague-Dawley , Nervo Vago , Animais , Masculino , Aprendizagem da Esquiva/fisiologia , Aprendizagem da Esquiva/efeitos dos fármacos , Ratos , Nervo Vago/fisiologia , Nervo Vago/efeitos dos fármacos , Nervo Vago/metabolismo , Saporinas , Neurônios Adrenérgicos/efeitos dos fármacos , Neurônios Adrenérgicos/fisiologia , Neurônios Adrenérgicos/metabolismo , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Norepinefrina/metabolismo , Proteínas Inativadoras de Ribossomos Tipo 1/farmacologia , Rememoração Mental/fisiologia , Rememoração Mental/efeitos dos fármacos , Memória/fisiologia , Memória/efeitos dos fármacos , Núcleos Septais/efeitos dos fármacos , Núcleos Septais/metabolismo , Núcleos Septais/fisiologia
2.
Toxicol Appl Pharmacol ; 491: 117074, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39168189

RESUMO

Despite its efficacy in human epidermal growth factor receptor 2 positive cancer treatment, trastuzumab-induced cardiotoxicity (TIC) has become a growing concern. Due to the lack of cardiomyocyte regeneration and proliferation in adult heart, cell death significantly contributes to cardiovascular diseases. Cardiac autonomic modulation by vagus nerve stimulation (VNS) has shown cardioprotective effects in several heart disease models, while the effects of VNS and its underlying mechanisms against TIC have not been found. Forty adult male Wistar rats were divided into 5 groups: (i) control without VNS (CSham) group, (ii) trastuzumab (4 mg/kg/day, i.p.) without VNS (TSham) group, (iii) trastuzumab + VNS (TVNS) group, (iv) trastuzumab + VNS + mAChR blocker (atropine; 1 mg/kg/day, ip, TVNS + Atro) group, and (v) trastuzumab + VNS + nAChR blocker (mecamylamine; 7.5 mg/kg/day, ip, TVNS + Mec) group. Our results showed that trastuzumab induced cardiac dysfunction by increasing autonomic dysfunction, mitochondrial dysfunction/dynamics imbalance, and cardiomyocyte death including apoptosis, autophagic deficiency, pyroptosis, and ferroptosis, which were notably alleviated by VNS. However, mAChR and nAChR blockers significantly inhibited the beneficial effects of VNS on cardiac autonomic dysfunction, mitochondrial dysfunction, cardiomyocyte apoptosis, pyroptosis, and ferroptosis. Only nAChR could counteract the protective effects of VNS on cardiac mitochondrial dynamics imbalance and autophagy insufficiency. Therefore, VNS prevented TIC by rebalancing autonomic activity, ameliorating mitochondrial dysfunction and cardiomyocyte death through mAChR and nAChR activation. The current study provides a novel perspective elucidating the potential treatment of VNS, thus also offering other pharmacological therapeutic promises in TIC patients.


Assuntos
Apoptose , Cardiotoxicidade , Miócitos Cardíacos , Ratos Wistar , Receptores Muscarínicos , Receptores Nicotínicos , Trastuzumab , Estimulação do Nervo Vago , Animais , Estimulação do Nervo Vago/métodos , Masculino , Ratos , Trastuzumab/toxicidade , Trastuzumab/farmacologia , Apoptose/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Receptores Muscarínicos/metabolismo , Receptores Muscarínicos/efeitos dos fármacos , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/efeitos dos fármacos , Antagonistas Nicotínicos/farmacologia , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/toxicidade , Nervo Vago/efeitos dos fármacos
3.
Nutrients ; 16(15)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39125278

RESUMO

(1) Background: We examined the effect of the acute administration of olive oil (EVOO), linseed oil (GLO), soybean oil (SO), and palm oil (PO) on gastric motility and appetite in rats. (2) Methods: We assessed food intake, gastric retention (GR), and gene expression in all groups. (3) Results: Both EVOO and GLO were found to enhance the rate of stomach retention, leading to a decrease in hunger. On the other hand, the reduction in food intake caused by SO was accompanied by delayed effects on stomach retention. PO caused an alteration in the mRNA expression of NPY, POMC, and CART. Although PO increased stomach retention after 180 min, it did not affect food intake. It was subsequently verified that the absence of an autonomic reaction did not nullify the influence of EVOO in reducing food consumption. Moreover, in the absence of parasympathetic responses, animals that received PO exhibited a significant decrease in food consumption, probably mediated by lower NPY expression. (4) Conclusions: This study discovered that different oils induce various effects on parameters related to food consumption. Specifically, EVOO reduces food consumption primarily through its impact on the gastrointestinal tract, making it a recommended adjunct for weight loss. Conversely, the intake of PO limits food consumption in the absence of an autonomic reaction, but it is not advised due to its contribution to the development of cardiometabolic disorders.


Assuntos
Regulação do Apetite , Hipotálamo , Neuropeptídeo Y , Azeite de Oliva , Óleo de Palmeira , Óleo de Soja , Nervo Vago , Animais , Nervo Vago/efeitos dos fármacos , Nervo Vago/fisiologia , Hipotálamo/metabolismo , Hipotálamo/efeitos dos fármacos , Masculino , Azeite de Oliva/farmacologia , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Óleo de Palmeira/farmacologia , Regulação do Apetite/efeitos dos fármacos , Óleo de Soja/administração & dosagem , Óleo de Soja/farmacologia , Ratos Wistar , Óleo de Semente do Linho/farmacologia , Ratos , Ingestão de Alimentos/efeitos dos fármacos , Óleos de Plantas/farmacologia , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Motilidade Gastrointestinal/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , RNA Mensageiro/metabolismo , RNA Mensageiro/genética
4.
Nutrients ; 16(12)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38931247

RESUMO

Guarana (GUA), a Brazilian seed extract, contains caffeine and other bioactive compounds that may have psychoactive effects. To assess the acute effects of GUA compared to a low dose of caffeine (CAF) on cognitive and mood parameters, twenty participants completed a double-blind, crossover experiment where they ingested capsules containing the following: (1) 100 mg CAF, (2) 500 mg GUA containing 130 mg caffeine, or (3) placebo (PLA). Cognitive tests (Simon and 2N-Back Task) were performed at the baseline (pre-ingestion) and 60 min after ingestion. The response time for the cognitive tests and heart rate variability were unaffected (p > 0.05) by treatment, although 2N-Back was overall faster (p = 0.001) across time. The accuracy in the 2N-Back Task showed a significant interaction effect (p = 0.029) due to higher post-ingestion versus pre-ingestion levels (p = 0.033), but only with the PLA. The supplements also had no effect on cognitive measures following physical fatigue (n = 11). There was an interaction effect on perceived mental energy, where the pre-ingestion of GUA had lower mental pep ratings compared to post-ingestion (p = 0.006) and post-exercise (p = 0.018) levels. Neither the acute ingestion of GUA nor low dose of CAF influenced cognitive performance or provided consistent benefit on mood or mental workload through vagal modulation. Additional investigations are beneficial to determining the lowest effective dose for CAF or GUA to influence mood and/or cognitive performance.


Assuntos
Afeto , Cafeína , Cognição , Estudos Cross-Over , Frequência Cardíaca , Paullinia , Humanos , Cafeína/administração & dosagem , Cafeína/farmacologia , Paullinia/química , Masculino , Método Duplo-Cego , Cognição/efeitos dos fármacos , Adulto , Adulto Jovem , Feminino , Frequência Cardíaca/efeitos dos fármacos , Afeto/efeitos dos fármacos , Nervo Vago/fisiologia , Nervo Vago/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/administração & dosagem , Suplementos Nutricionais
5.
JCI Insight ; 9(14)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38885308

RESUMO

Parasympathetic dysfunction after chronic myocardial infarction (MI) is known to predispose ventricular tachyarrhythmias (ventricular tachycardia/ventricular fibrillation [VT/VF]). VT/VF after MI is more common in males than females. The mechanisms underlying the decreased vagal tone and the associated sex difference in the occurrence of VT/VF after MI remain elusive. In this study, using optogenetic approaches, we found that responses of glutamatergic vagal afferent neurons were impaired following chronic MI in male mice, leading to reduced reflex efferent parasympathetic function. Molecular analyses of vagal ganglia demonstrated reduced glutamate levels, accompanied by decreased mitochondrial function and impaired redox status in infarcted males versus sham animals. Interestingly, infarcted females demonstrated reduced vagal sensory impairment, associated with greater vagal ganglia glutamate levels and decreased vagal mitochondrial dysfunction and oxidative stress compared with infarcted males. Treatment with 17ß-estradiol mitigated this pathological remodeling and improved vagal neurotransmission in infarcted male mice. These data suggest that a decrease in efferent vagal tone following MI results from reduced glutamatergic afferent vagal signaling that may be due to impaired redox homeostasis in the vagal ganglia, which subsequently leads to pathological remodeling in a sex-dependent manner. Importantly, estrogen prevents pathological remodeling and improves parasympathetic function following MI.


Assuntos
Estradiol , Ácido Glutâmico , Infarto do Miocárdio , Transmissão Sináptica , Nervo Vago , Animais , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Masculino , Feminino , Camundongos , Estradiol/farmacologia , Estradiol/metabolismo , Nervo Vago/efeitos dos fármacos , Nervo Vago/metabolismo , Nervo Vago/fisiopatologia , Transmissão Sináptica/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Fatores Sexuais , Modelos Animais de Doenças , Estresse Oxidativo/efeitos dos fármacos , Camundongos Endogâmicos C57BL
6.
Neurobiol Dis ; 199: 106573, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38901783

RESUMO

Arketamine, the (R)-enantiomer of ketamine, exhibits antidepressant-like effects in mice, though the precise molecular mechanisms remain elusive. It has been shown to reduce splenomegaly and depression-like behaviors in the chronic social defeat stress (CSDS) model of depression. This study investigated whether the spleen contributes to the antidepressant-like effects of arketamine in the CSDS model. We found that splenectomy significantly inhibited arketamine's antidepressant-like effects in CSDS-susceptible mice. RNA-sequencing analysis identified the oxidative phosphorylation (OXPHOS) pathway in the prefrontal cortex (PFC) as a key mediator of splenectomy's impact on arketamine's effects. Furthermore, oligomycin A, an inhibitor of the OXPHOS pathway, reversed the suppressive effects of splenectomy on arketamine's antidepressant-like effects. Specific genes within the OXPHOS pathways, such as COX11, UQCR11 and ATP5e, may contribute to these inhibitory effects. Notably, transforming growth factor (TGF)-ß1, along with COX11, appears to modulate the suppressive effects of splenectomy and contribute to arketamine's antidepressant-like effects. Additionally, SRI-01138, an agonist of the TGF-ß1 receptor, alleviated the inhibitory effects of splenectomy on arketamine's antidepressant-like effects. Subdiaphragmatic vagotomy also counteracted the inhibitory effects of splenectomy on arketamine's antidepressant-like effects in CSDS-susceptible mice. These findings suggest that the OXPHOS pathway and TGF-ß1 in the PFC play significant roles in the antidepressant-like effects of arketamine, mediated through the spleen-brain axis via the vagus nerve.


Assuntos
Antidepressivos , Ketamina , Camundongos Endogâmicos C57BL , Fosforilação Oxidativa , Baço , Esplenectomia , Nervo Vago , Animais , Ketamina/farmacologia , Antidepressivos/farmacologia , Baço/efeitos dos fármacos , Baço/metabolismo , Camundongos , Masculino , Nervo Vago/efeitos dos fármacos , Nervo Vago/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Depressão/tratamento farmacológico , Depressão/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Estresse Psicológico/metabolismo , Estresse Psicológico/tratamento farmacológico , Derrota Social
7.
Am J Physiol Regul Integr Comp Physiol ; 327(1): R79-R87, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38766774

RESUMO

Sulfur dioxide (SO2), a common environmental and industrial air pollutant, possesses a potent effect in eliciting cough reflex, but the primary type of airway sensory receptors involved in its tussive action has not been clearly identified. This study was carried out to determine the relative roles of three major types of vagal bronchopulmonary afferents [slowly adapting receptors (SARs), rapidly adapting receptors (RARs), and C-fibers] in regulating the cough response to inhaled SO2. Our results showed that inhalation of SO2 (300 or 600 ppm for 8 min) evoked an abrupt and intense stimulatory effect on bronchopulmonary C-fibers, which continued for the entire duration of inhalation challenge and returned toward the baseline in 1-2 min after resuming room air-breathing in anesthetized and mechanically ventilated mice. In stark contrast, the same SO2 inhalation challenge generated a distinct and consistent inhibitory effect on both SARs and phasic RARs; their phasic discharges synchronized with respiratory cycles during the baseline (breathing room air) began to decline progressively within 1-3 min after the onset of SO2 inhalation, ceased completely before termination of the 8-min inhalation challenge, and then slowly returned toward the baseline after >40 min. In a parallel study in awake mice, inhalation of SO2 at the same concentration and duration as that in the nerve recording experiments evoked cough responses in a pattern and time course similar to that observed in the C-fiber responses. Based on these results, we concluded that stimulation of vagal bronchopulmonary C-fibers is primarily responsible for triggering the cough response to inhaled SO2.NEW & NOTEWORTHY This study demonstrated that inhalation of a high concentration of sulfur dioxide, an irritant gas and common air pollutant, completely and reversibly inhibited the neural activities of both slowly adapting receptor and rapidly adapting receptor, two major types of mechanoreceptors in the lungs with their activities conducted by myelinated fibers. Furthermore, the results of this study suggested that stimulation of vagal bronchopulmonary C-fibers is primarily responsible for triggering the cough reflex responses to inhaled sulfur dioxide.


Assuntos
Tosse , Fibras Nervosas Amielínicas , Dióxido de Enxofre , Nervo Vago , Animais , Dióxido de Enxofre/administração & dosagem , Tosse/fisiopatologia , Tosse/induzido quimicamente , Nervo Vago/efeitos dos fármacos , Nervo Vago/fisiologia , Camundongos , Masculino , Fibras Nervosas Amielínicas/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Reflexo/efeitos dos fármacos , Administração por Inalação , Brônquios/inervação , Brônquios/efeitos dos fármacos , Pulmão/inervação , Pulmão/efeitos dos fármacos , Neurônios Aferentes/efeitos dos fármacos
8.
Acta Pharmacol Sin ; 45(9): 1821-1831, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38702501

RESUMO

Enteroendocrine cells (EECs) and vagal afferent neurons constitute functional sensory units of the gut, which have been implicated in bottom-up modulation of brain functions. Sodium oligomannate (GV-971) has been shown to improve cognitive functions in murine models of Alzheimer's disease (AD) and recently approved for the treatment of AD patients in China. In this study, we explored whether activation of the EECs-vagal afferent pathways was involved in the therapeutic effects of GV-971. We found that an enteroendocrine cell line RIN-14B displayed spontaneous calcium oscillations due to TRPA1-mediated calcium entry; perfusion of GV-971 (50, 100 mg/L) concentration-dependently enhanced the calcium oscillations in EECs. In ex vivo murine jejunum preparation, intraluminal infusion of GV-971 (500 mg/L) significantly increased the spontaneous and distension-induced discharge rate of the vagal afferent nerves. In wild-type mice, administration of GV-971 (100 mg· kg-1 ·d-1, i.g. for 7 days) significantly elevated serum serotonin and CCK levels and increased jejunal afferent nerve activity. In 7-month-old APP/PS1 mice, administration of GV-971 for 12 weeks significantly increased jejunal afferent nerve activity and improved the cognitive deficits in behavioral tests. Sweet taste receptor inhibitor Lactisole (0.5 mM) and the TRPA1 channel blocker HC-030031 (10 µM) negated the effects of GV-971 on calcium oscillations in RIN-14B cells as well as on jejunal afferent nerve activity. In APP/PS1 mice, co-administration of Lactisole (30 mg ·kg-1 ·d-1, i.g. for 12 weeks) attenuated the effects of GV-971 on serum serotonin and CCK levels, vagal afferent firing, and cognitive behaviors. We conclude that GV-971 activates sweet taste receptors and TRPA1, either directly or indirectly, to enhance calcium entry in enteroendocrine cells, resulting in increased CCK and 5-HT release and consequent increase of vagal afferent activity. GV-971 might activate the EECs-vagal afferent pathways to modulate cognitive functions.


Assuntos
Células Enteroendócrinas , Jejuno , Canal de Cátion TRPA1 , Nervo Vago , Animais , Masculino , Camundongos , Vias Aferentes/efeitos dos fármacos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular , Colecistocinina/metabolismo , Modelos Animais de Doenças , Células Enteroendócrinas/metabolismo , Células Enteroendócrinas/efeitos dos fármacos , Jejuno/efeitos dos fármacos , Jejuno/metabolismo , Jejuno/inervação , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Presenilina-1/genética , Serotonina/metabolismo , Canal de Cátion TRPA1/metabolismo , Nervo Vago/efeitos dos fármacos , Nervo Vago/metabolismo
9.
Biochem Pharmacol ; 224: 116201, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38608783

RESUMO

Intestinal barrier dysfunction, leaky gut, is implicated in various diseases, including irritable bowel syndrome (IBS) and neurodegenerative conditions like Alzheimer's disease. Our recent investigation revealed that basal forebrain cholinergic neurons (BFCNs), critical for cognitive function, receive signals from butyrate and orexin, playing a role in regulating intestinal barrier function through adenosine A2B signaling and the vagus. This study explores the involvement and function of brain histamine, linked to BFCNs, in the regulation of intestinal barrier function. Colonic permeability, assessed by quantifying absorbed Evans blue in rat colonic tissue, showed that histamine did not affect increased colonic permeability induced by LPS when administered subcutaneously. However, intracisternal histamine administration improved colonic hyperpermeability. Elevating endogenous histamine levels in the brain with SKF91488, a histamine N-methyltransferase inhibitor, also improved colonic hyperpermeability. This effect was abolished by intracisternal chlorpheniramine, an histamine H1 receptor antagonist, not ranitidine, an H2 receptor antagonist. The SKF91488-induced improvement in colonic hyperpermeability was blocked by vagotomy, intracisternal pirenzepine (suppressing BFCNs activity), or alloxazine (an adenosine A2B receptor antagonist). Additionally, intracisternal chlorpheniramine injection eliminated butyrate-induced improvement in colonic hyperpermeability. These findings suggest that brain histamine, acting via the histamine H1 receptor, regulates intestinal barrier function involving BFCNs, adenosine A2B signaling, and the vagus. Brain histamine appears to centrally regulate intestinal barrier function influenced by butyrate, differentiating its actions from peripheral histamine in conditions like IBS, where mast cell-derived histamine induces leaky gut. Brain histamine emerges as a potential pharmacological target for diseases associated with leaky gut, such as dementia and IBS.


Assuntos
Neurônios Colinérgicos , Colo , Histamina , Permeabilidade , Ratos Sprague-Dawley , Receptor A2B de Adenosina , Nervo Vago , Animais , Histamina/metabolismo , Histamina/farmacologia , Ratos , Masculino , Receptor A2B de Adenosina/metabolismo , Neurônios Colinérgicos/efeitos dos fármacos , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/fisiologia , Nervo Vago/efeitos dos fármacos , Nervo Vago/fisiologia , Nervo Vago/metabolismo , Colo/metabolismo , Colo/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos , Prosencéfalo/efeitos dos fármacos , Prosencéfalo/metabolismo
10.
Brain Res ; 1837: 148955, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38679314

RESUMO

Swallowing is induced by a central pattern generator in the nucleus tractus solitarius (NTS). We aimed to create a medullary slice preparation to elucidate the neural architecture of the central pattern generator of swallowing (Sw-CPG) and record its neural activities. Experiments were conducted on 2-day-old Sprague-Dawley rats (n = 46). The brainstem-spinal cord was transected at the pontomedullary and cervicothoracic junctions; the medulla was sliced transversely at thicknesses of 600, 700, or 800 µm. The rostral end of the slice was 100 µm rostral to the vagus nerve. We recorded hypoglossal nerve activity and electrically stimulated the vagus nerve or microinjected bicuculline methiodide (BIC) into the NTS. The 800-µm slices generated both rhythmic respiratory activity and electrically elicited neural activity. The 700-µm slices generated only respiratory activity, while the 600-µm slices did not generate any neural activity. BIC microinjection into the NTS in 800-µm slices resulted in the typical activity that closely resembled the swallowing activity reported in other experiments. This swallowing-like activity consistently lengthened the respiratory interval. Despite complete inhibition of respiratory activity, weak swallowing-like activity was observed under bath application of a non-NMDA receptor antagonist. Contrastingly, bath application of NMDA receptor antagonists resulted in a complete loss of swallowing-like activity and no change in respiratory activity. These results suggest that the 800-µm medullary slice preparation contains both afferent and efferent neural circuits and pattern generators of swallowing activity. Additionally, NMDA receptors may be necessary for generating swallowing activity. This medullary slice preparation can therefore elucidate Sw-CPG neural networks.


Assuntos
Animais Recém-Nascidos , Bicuculina , Geradores de Padrão Central , Deglutição , Nervo Hipoglosso , Bulbo , Ratos Sprague-Dawley , Nervo Vago , Animais , Deglutição/fisiologia , Deglutição/efeitos dos fármacos , Bulbo/fisiologia , Bulbo/efeitos dos fármacos , Bicuculina/farmacologia , Bicuculina/análogos & derivados , Ratos , Nervo Vago/fisiologia , Nervo Vago/efeitos dos fármacos , Geradores de Padrão Central/fisiologia , Geradores de Padrão Central/efeitos dos fármacos , Nervo Hipoglosso/fisiologia , Nervo Hipoglosso/efeitos dos fármacos , Estimulação Elétrica , Núcleo Solitário/efeitos dos fármacos , Núcleo Solitário/fisiologia
11.
Int J Mol Sci ; 23(2)2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-35054856

RESUMO

The appearance of the SARS-CoV-2 virus initiated many studies on the effects of the virus on the human body. So far, its negative influence on the functioning of many morphological and physiological units, including the nervous system, has been demonstrated. Consequently, research has been conducted on the changes that SARS-CoV-2 may cause in the cholinergic system. The aim of this study is to review the latest research from the years 2020/2021 regarding disorders in the cholinergic system caused by the SARS-CoV-2 virus. As a result of the research, it was found that the presence of the COVID-19 virus disrupts the activity of the cholinergic system, for example, causing the development of myasthenia gravis or a change in acetylcholine activity. The SARS-CoV-2 spike protein has a sequence similar to neurotoxins, capable of binding nicotinic acetylcholine receptors (nAChR). This may be proof that SARS-CoV-2 can bind nAChR. Nicotine and caffeine have similar structures to antiviral drugs, capable of binding angiotensin-converting enzyme 2 (ACE 2) epitopes that are recognized by SARS-CoV-2, with the potential to inhibit the formation of the ACE 2/SARS-CoV-2 complex. The blocking is enhanced when nicotine and caffeine are used together with antiviral drugs. This is proof that nAChR agonists can be used along with antiviral drugs in COVID-19 therapy. As a result, it is possible to develop COVID-19 therapies that use these compounds to reduce cytokine production. Another promising therapy is non-invasive stimulation of the vagus nerve, which soothes the body's cytokine storm. Research on the influence of COVID-19 on the cholinergic system is an area that should continue to be developed as there is a need for further research. It can be firmly stated that COVID-19 causes a dysregulation of the cholinergic system, which leads to a need for further research, because there are many promising therapies that will prevent the SARS-CoV-2 virus from binding to the nicotinic receptor. There is a need for further research, both in vitro and in vivo. It should be noted that in the functioning of the cholinergic system and its connection with the activity of the COVID-19 virus, there might be many promising dependencies and solutions.


Assuntos
COVID-19/complicações , COVID-19/virologia , Neurônios Colinérgicos/virologia , Acetilcolinesterase/metabolismo , Animais , Síndrome da Liberação de Citocina/complicações , Síndrome da Liberação de Citocina/virologia , Humanos , Miastenia Gravis/virologia , SARS-CoV-2 , Síndrome de Resposta Inflamatória Sistêmica/virologia , Nervo Vago/efeitos dos fármacos , Nervo Vago/virologia
12.
Sci Rep ; 12(1): 54, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34997096

RESUMO

Ulcerative colitis (UC) is a chronic inflammatory bowel disease. Several studies have demonstrated that α7 nicotinic acetylcholine receptors (α7nAChRs) exert anti-inflammatory effects on immune cells and nicotine suppress UC onset and relapse. Plasmacytoid dendritic cells (pDCs) reportedly accumulate in the colon of UC patients. Therefore, we investigated the pathophysiological roles of α7nAChRs on pDCs in the pathology of UC using oxazolone (OXZ)-induced Th2-type colitis with BALB/c mice. 2-deoxy-D-glucose, a central vagal stimulant suppressed OXZ colitis, and nicotine also ameliorated OXZ colitis with suppressing Th2 cytokines, which was reversed by α7nAChR antagonist methyllycaconitine. Additionally, α7nAChRs were expressed on pDCs, which were located very close to cholinergic nerve fibers in the colon of OXZ mice. Furthermore, nicotine suppressed CCL21-induced bone marrow-derived pDC migration due to Rac 1 inactivation, which was reversed by methyllycaconitine, a JAK2 inhibitor AG490 or caspase-3 inhibitor AZ-10417808. CCL21 was mainly expressed in the isolated lymphoid follicles (ILFs) of the colon during OXZ colitis. The therapeutic effect of cholinergic pathway on OXZ colitis probably through α7nAChRs on pDCs were attributed to the suppression of pDC migration toward the ILFs. Therefore, the activation of α7nAChRs has innovative therapeutic potential for the treatment of UC.


Assuntos
Neurônios Colinérgicos/efeitos dos fármacos , Colite Ulcerativa/tratamento farmacológico , Células Dendríticas/efeitos dos fármacos , Neuroimunomodulação , Células Th2/metabolismo , Aconitina/análogos & derivados , Aconitina/farmacologia , Aconitina/uso terapêutico , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Caspase 3/metabolismo , Inibidores de Caspase/farmacologia , Inibidores de Caspase/uso terapêutico , Estimulantes do Sistema Nervoso Central/farmacologia , Estimulantes do Sistema Nervoso Central/uso terapêutico , Colite Ulcerativa/induzido quimicamente , Colo/metabolismo , Células Dendríticas/metabolismo , Desoxiglucose/farmacologia , Desoxiglucose/uso terapêutico , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Janus Quinase 2/metabolismo , Camundongos Endogâmicos BALB C , Neuropeptídeos/metabolismo , Nicotina/farmacologia , Nicotina/uso terapêutico , Oxazolona/toxicidade , Fator de Transcrição STAT3/metabolismo , Células Th2/efeitos dos fármacos , Tirfostinas/farmacologia , Tirfostinas/uso terapêutico , Nervo Vago/efeitos dos fármacos , Receptor Nicotínico de Acetilcolina alfa7/agonistas , Receptor Nicotínico de Acetilcolina alfa7/antagonistas & inibidores , Receptor Nicotínico de Acetilcolina alfa7/genética , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
13.
Pharmacology ; 107(1-2): 102-110, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34718242

RESUMO

INTRODUCTION: Ghrelin is an endogenous peptide with potential protective effects on ischemic heart. METHODS: Synthetic ghrelin was administered (100 µg·kg-1 subcutaneous injection, twice daily) for 4 weeks in a rat model of myocardial infarction (MI) with coronary artery occlusion. At the 5th week, electrocardiogram, monophasic action potentials and autonomic nerve function were evaluated. Cardiac tyrosine hydroxylase (TH) was determined by immunofluorescence staining. RESULTS: MI significantly increased sympathetic nerve activity (SNA) and ventricular arrhythmias, and prolonged APD dispersion and APD alternans (p < 0.01). Ghrelin treatment significantly increased ventricular fibrillation threshold (VFT), shortened APD dispersion and APD alternans, inhibited SNA and promoted vagus nerve activities (p < 0.01). Ghrelin also markedly reversed abnormal expression of TH in the peri-infarcted area of the heart (p < 0.01). DISCUSSION/CONCLUSION: Ghrelin provides a sustained electrophysiological protection by the increase of VFT and improvement of APD dispersion and APD alternans. The mechanism may be related to the regulation of autonomic nerve and sympathetic nerve remodeling. Thus, ghrelin represents a novel drug to prevent ventricular arrhythmia in ischemic heart disease.


Assuntos
Arritmias Cardíacas/tratamento farmacológico , Cardiotônicos/farmacologia , Grelina/farmacologia , Infarto do Miocárdio/tratamento farmacológico , Potenciais de Ação/efeitos dos fármacos , Animais , Arritmias Cardíacas/etiologia , Vias Autônomas/efeitos dos fármacos , Cardiotônicos/uso terapêutico , Modelos Animais de Doenças , Eletrocardiografia/efeitos dos fármacos , Grelina/uso terapêutico , Masculino , Infarto do Miocárdio/complicações , Ratos Sprague-Dawley , Sistema Nervoso Simpático/efeitos dos fármacos , Tirosina 3-Mono-Oxigenase/metabolismo , Nervo Vago/efeitos dos fármacos , Fibrilação Ventricular/tratamento farmacológico
14.
J Trauma Acute Care Surg ; 92(2): 323-329, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34789702

RESUMO

BACKGROUND: The systemic inflammatory response (SIRS) drives late morbidity and mortality after injury. The α7 nicotinic acetylcholine receptor (α7nAchR) expressed on immune cells regulates the vagal anti-inflammatory pathway that prevents an overwhelming SIRS response to injury. Nonspecific pharmacologic stimulation of the vagus nerve has been evaluated as a potential therapeutic to limit SIRS. Unfortunately, the results of clinical trials have been underwhelming. We hypothesized that directly targeting the α7nAchR would more precisely stimulate the vagal anti-inflammatory pathway on immune cells and decrease gut and lung injury after severe burn. METHODS: C57BL/6 mice underwent 30% total body surface area steam burn. Mice were treated with an intraperitoneal injection of a selective agonist of the α7nAchR (AR-R17779) at 30 minutes postburn. Intestinal permeability to 4 kDa FITC-dextran was measured at multiple time points postinjury. Lung vascular permeability was measured 6 hours after burn injury. Serial behavioral assessments were performed to quantify activity levels. RESULTS: Intestinal permeability peaked at 6 hours postburn. AR-R17779 decreased burn-induced intestinal permeability in a dose-dependent fashion (p < 0.001). There was no difference in gut permeability to 4 kDa FITC-dextran between sham and burn-injured animals treated with 5 mg/kg of AR-R17779. While burn injury increased lung permeability 10-fold, AR-R17779 prevented burn-induced lung permeability with no difference compared with sham (p < 0.01). Postinjury activity levels were significantly improved in burned animals treated with AR-R17779. CONCLUSION: Directly stimulating the α7nAchR prevents burn-induced gut and lung injury. Directly targeting the α7nAChR that mediates the cholinergic anti-inflammatory response may be an improved strategy compared with nonspecific vagal agonists.


Assuntos
Queimaduras/complicações , Neuroimunomodulação , Síndrome de Resposta Inflamatória Sistêmica/etiologia , Síndrome de Resposta Inflamatória Sistêmica/prevenção & controle , Nervo Vago/efeitos dos fármacos , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Animais , Dextranos/farmacologia , Modelos Animais de Doenças , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/farmacologia , Mucosa Intestinal/metabolismo , Lesão Pulmonar/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Permeabilidade
15.
Am J Physiol Lung Cell Mol Physiol ; 321(6): L1105-L1118, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34668415

RESUMO

Increased insulin is associated with obesity-related airway hyperreactivity and asthma. We tested whether the use of metformin, an antidiabetic drug used to reduce insulin resistance, can reduce circulating insulin, thereby preventing airway hyperreactivity in rats with dietary obesity. Male and female rats were fed a high- or low-fat diet for 5 wk. Some male rats were simultaneously treated with metformin (100 mg/kg orally). In separate experiments, after 5 wk of a high-fat diet, some rats were switched to a low-fat diet, whereas others continued a high-fat diet for an additional 5 wk. Bronchoconstriction and bradycardia in response to bilateral electrical vagus nerve stimulation or to inhaled methacholine were measured in anesthetized and vagotomized rats. Body weight, body fat, caloric intake, fasting glucose, and insulin were measured. Vagally induced bronchoconstriction was potentiated only in male rats on a high-fat diet. Males gained more body weight, body fat, and had increased levels of fasting insulin compared with females. Metformin prevented development of vagally induced airway hyperreactivity in male rats on high-fat diet, in addition to inhibiting weight gain, fat gain, and increased insulin. In contrast, switching rats to a low-fat diet for 5 wk reduced body weight and body fat, but it did not reverse fasting glucose, fasting insulin, or potentiation of vagally induced airway hyperreactivity. These data suggest that medications that target insulin may be effective treatment for obesity-related asthma.


Assuntos
Asma/tratamento farmacológico , Hiper-Reatividade Brônquica/tratamento farmacológico , Broncoconstrição , Dieta Hiperlipídica/efeitos adversos , Hiperinsulinismo/prevenção & controle , Metformina/farmacologia , Obesidade/complicações , Animais , Asma/induzido quimicamente , Asma/metabolismo , Asma/patologia , Hiper-Reatividade Brônquica/induzido quimicamente , Hiper-Reatividade Brônquica/metabolismo , Hiper-Reatividade Brônquica/patologia , Broncoconstritores/toxicidade , Feminino , Glucose/metabolismo , Hiperinsulinismo/etiologia , Hiperinsulinismo/metabolismo , Hiperinsulinismo/patologia , Hipoglicemiantes/farmacologia , Masculino , Cloreto de Metacolina/toxicidade , Ratos , Ratos Sprague-Dawley , Nervo Vago/efeitos dos fármacos , Aumento de Peso
16.
Physiol Rep ; 9(18): e15056, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34582125

RESUMO

The intrinsic cardiac nervous system represents the final site of signal integration for neurotransmission to the myocardium to enable local control of cardiac performance. The electrophysiological characteristics and ganglionic transmission of adult mouse intrinsic cardiac ganglion (ICG) neurons were investigated using a whole-mount ganglion preparation of the excised right atrial ganglion plexus and intracellular microelectrode recording techniques. The passive and active electrical properties of ICG neurons and synaptic transmission including synaptic response strength and efficacy as a function of stimulation frequency were examined. The resting membrane potential and input resistance of ICG neurons were -47.9 ± 4.0 mV and 197.2 ± 81.5 MΩ, respectively. All neurons had somatic action potentials with overshoots of >+15 mV and after-hyperpolarizations having an average of 10 mV amplitude and ~45 ms half duration. Phasic discharge activities were recorded from the majority of neurons studied and several types of excitatory synaptic responses were recorded following inputs from the vagus or interganglionic nerve trunk(s). Most postganglionic neurons (>75%) received a strong, suprathreshold synaptic input and reliably followed high-frequency repetitive nerve stimulation up to at least 50 Hz. Nerve-evoked synaptic transmission was blocked by extracellular Cd2+ , ω-conotoxin CVIE, or α-conotoxin RegIIA, a selective α3-containing nicotinic acetylcholine receptor antagonist. Synaptic transmission and the electrical properties of murine ICG neurons contribute to the pattern of discharge which regulates chronotropic, dromotropic, and inotropic elements of cardiac function.


Assuntos
Potenciais de Ação , Coração/inervação , Neurônios/fisiologia , Transmissão Sináptica , Nervo Vago/fisiologia , Animais , Cádmio/farmacologia , Conotoxinas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Antagonistas Nicotínicos/farmacologia , Nervo Vago/citologia , Nervo Vago/efeitos dos fármacos
17.
BMC Anesthesiol ; 21(1): 234, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34587905

RESUMO

BACKGROUND: Postoperative nausea and vomiting (PONV) as a clinically most common postoperative complication requires multimodal antiemetic medications targeting at a wide range of neurotransmitter pathways. Lacking of neurobiological mechanism makes this 'big little problem' still unresolved. We aim to investigate whether gut-vagus-brain reflex generally considered as one of four typical emetic neuronal pathways might be the primary mediator of PONV. METHODS: Three thousand two hundred twenty-three patients who underwent vagus nerve trunk resection (esophagectomy and gastrectomy) and non-vagotomy surgery (hepatectomy, pulmonary lobectomy and colorectomy) from December 2016 to January 2019 were enrolled. Thirty cases of gastrectomy with selective resection on the gastric branch of vagus nerve were also recruited. Nausea and intensity of vomiting was recorded within 24 h after the operation. RESULTS: PONV occurred in 11.9% of 1187 patients who underwent vagus nerve trunk resection and 28.7% of 2036 non-vagotomy patients respectively. Propensity score matching showed that vagotomy surgeries accounted for 19.9% of the whole PONV incidence, much less than that observed in the non-PONV group (35.1%, P <  0.01). Multivariate logistic regression result revealed that vagotomy was one of underlying factor that significantly involved in PONV (OR = 0.302, 95% CI, 0.237-0.386). Nausea was reported in 5.9% ~ 8.6% vagotomy and 12 ~ 17% non-vagotomy patients. Most vomiting were mild, being approximately 3% in vagotomy and 8 ~ 13% in non-vagotomy patients, while sever vomiting was much less experienced. Furthermore, lower PONV occurrence (10%) was also observed in gastrectomy undergoing selective vagotomy. CONCLUSION: Patients undergoing surgeries with vagotomy developed less PONV, suggesting that vagus nerve dependent gut-brain signaling might mainly contribute to PONV.


Assuntos
Analgesia/métodos , Eixo Encéfalo-Intestino/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Náusea e Vômito Pós-Operatórios/epidemiologia , Nervo Vago/efeitos dos fármacos , Nervo Vago/cirurgia , Encéfalo/fisiopatologia , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Vias Neurais/efeitos dos fármacos , Reflexo/efeitos dos fármacos
18.
Am J Physiol Regul Integr Comp Physiol ; 321(5): R672-R686, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34523364

RESUMO

Action potentials depend on voltage-gated sodium channels (NaV1s), which have nine α subtypes. NaV1 inhibition is a target for pathologies involving excitable cells such as pain. However, because NaV1 subtypes are widely expressed, inhibitors may inhibit regulatory sensory systems. Here, we investigated specific NaV1s and their inhibition in mouse esophageal mechanoreceptors-non-nociceptive vagal sensory afferents that are stimulated by low threshold mechanical distension, which regulate esophageal motility. Using single fiber electrophysiology, we found mechanoreceptor responses to esophageal distension were abolished by tetrodotoxin. Single-cell RT-PCR revealed that esophageal-labeled TRPV1-negative vagal neurons expressed multiple tetrodotoxin-sensitive NaV1s: NaV1.7 (almost all neurons) and NaV1.1, NaV1.2, and NaV1.6 (in ∼50% of neurons). Inhibition of NaV1.7, using PF-05089771, had a small inhibitory effect on mechanoreceptor responses to distension. Inhibition of NaV1.1 and NaV1.6, using ICA-121341, had a similar small inhibitory effect. The combination of PF-05089771 and ICA-121341 inhibited but did not eliminate mechanoreceptor responses. Inhibition of NaV1.2, NaV1.6, and NaV1.7 using LSN-3049227 inhibited but did not eliminate mechanoreceptor responses. Thus, all four tetrodotoxin-sensitive NaV1s contribute to action potential initiation from esophageal mechanoreceptors terminals. This is different to those NaV1s necessary for vagal action potential conduction, as demonstrated using GCaMP6s imaging of esophageal vagal neurons during electrical stimulation. Tetrodotoxin-sensitive conduction was abolished in many esophageal neurons by PF-05089771 alone, indicating a critical role of NaV1.7. In summary, multiple NaV1 subtypes contribute to electrical signaling in esophageal mechanoreceptors. Thus, inhibition of individual NaV1s would likely have minimal effect on afferent regulation of esophageal motility.


Assuntos
Potenciais de Ação , Esôfago/inervação , Mecanorreceptores/metabolismo , Mecanotransdução Celular , Nervo Vago/metabolismo , Canais de Sódio Disparados por Voltagem/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Motilidade Gastrointestinal , Mecanorreceptores/efeitos dos fármacos , Mecanotransdução Celular/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Bloqueadores dos Canais de Sódio/farmacologia , Estresse Mecânico , Tetrodotoxina/farmacologia , Fatores de Tempo , Nervo Vago/efeitos dos fármacos , Canais de Sódio Disparados por Voltagem/efeitos dos fármacos , Canais de Sódio Disparados por Voltagem/genética
19.
Sci Rep ; 11(1): 17141, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34433865

RESUMO

We investigated hemodynamic, cardiac morphofunctional, and cardiovascular autonomic adaptations in spontaneously hypertensive rats (SHRs) after aerobic physical training associated with chronic cholinergic stimulation. Fifty-four SHRs were divided into two groups: trained and untrained. Each group was further subdivided into three smaller groups: vehicle, treated with pyridostigmine bromide at 5 mg/kg/day, and treated with pyridostigmine bromide at 15 mg/kg/day. The following protocols were assessed: echocardiography, autonomic double pharmacological blockade, heart rate variability (HRV), blood pressure variability (BPV), and baroreflex sensitivity (BRS). Physical training and pyridostigmine bromide reduced BP and HR and increased vagal participation in cardiac autonomic tonic balance. The associated responses were then potentialized. Treatment with pyridostigmine bromide increased HRV oscillation of both low frequency (LF: 0.2-0.75 Hz) and high frequency (HF: 0.75-3 Hz). However, the association with physical training attenuated HF oscillations. Additionally, treatment with pyridostigmine bromide also increased LF oscillations of BPV. Both treatment groups promoted morphofunctional adaptations, and associated increased ejection volume, ejection fraction, cardiac output, and cardiac index. In conclusion, the association of pyridostigmine bromide and physical training promoted greater benefits in hemodynamic parameters and increased vagal influence on cardiac autonomic tonic balance. Nonetheless, treatment with pyridostigmine bromide alone seems to negatively affect BPV and the association of treatment negatively influences HRV.


Assuntos
Inibidores da Colinesterase/farmacologia , Coração/efeitos dos fármacos , Hipertensão/terapia , Condicionamento Físico Animal/métodos , Brometo de Piridostigmina/farmacologia , Nervo Vago/efeitos dos fármacos , Animais , Pressão Sanguínea , Débito Cardíaco , Inibidores da Colinesterase/administração & dosagem , Inibidores da Colinesterase/uso terapêutico , Coração/fisiopatologia , Hipertensão/tratamento farmacológico , Brometo de Piridostigmina/administração & dosagem , Brometo de Piridostigmina/uso terapêutico , Ratos , Ratos Endogâmicos SHR , Nervo Vago/fisiopatologia
20.
Nutr Metab Cardiovasc Dis ; 31(10): 2945-2958, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34420816

RESUMO

BACKGROUND AND AIMS: Studies of dipeptidyl peptidase inhibitors (DPP4is) report heterogeneous effects on cardiovascular targets in type 2 diabetes. This study aimed to investigate, in patients with impaired glucose tolerance (IGT), whether saxagliptin, a DPP4i, had beneficial cardiovascular effects at fasting and during the post-prandial state. METHODS AND RESULTS: In this randomized, placebo-controlled, double-blind, single-center pilot exploratory study, we included obese individuals with IGT. Twenty-four individuals (BMI 36.8 ± 4.8 kg/m2) were randomized to receive for 12 weeks either saxagliptin 5 mg a day or placebo. They were explored before and after a standardized breakfast for biological markers; microcirculatory blood flow at baseline and after transcutaneous administration of acetylcholine (Periflux System 5000® PERIMED); post-occlusive digital reactive hyperhemia (Endopat2000®); pulse wave velocity, augmentation index, central pulse pressure and subendocardial viability ratio (Sphygmocor®); cardiac hemodynamic parameters and cardiovascular autonomic nervous system activity (Task force monitor®). The results of all the investigations were similar after breakfast in the two groups at Visit 1 (acute post-prandial effects, after the first tablet) and Visit 2 (long-term post-prandial effects), and at fasting at Visit 1 and 2 (long-term effects, after 12 weeks of treatment). Only at Visit 2 the decrease in cardiac vagal activity occurring after breakfast was more sustained in the saxagliptin group than in the placebo group (interaction between treatment and time effect: p = 0.016). CONCLUSION: In obese patients with IGT, the effects of saxagliptin on the large set of cardiovascular parameters measured are neutral, except for a more marked post-prandial depression of vagal activity. CLINICAL TRIAL REGISTRATION NUMBER: NCT01521312.


Assuntos
Adamantano/análogos & derivados , Glicemia/efeitos dos fármacos , Sistema Cardiovascular/efeitos dos fármacos , Dipeptídeos/uso terapêutico , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Intolerância à Glucose/tratamento farmacológico , Obesidade/complicações , Período Pós-Prandial , Adamantano/efeitos adversos , Adamantano/uso terapêutico , Adulto , Biomarcadores/sangue , Glicemia/metabolismo , Sistema Cardiovascular/inervação , Sistema Cardiovascular/fisiopatologia , Dipeptídeos/efeitos adversos , Inibidores da Dipeptidil Peptidase IV/efeitos adversos , Método Duplo-Cego , Feminino , França , Intolerância à Glucose/sangue , Intolerância à Glucose/complicações , Intolerância à Glucose/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/sangue , Obesidade/fisiopatologia , Projetos Piloto , Fatores de Tempo , Resultado do Tratamento , Nervo Vago/efeitos dos fármacos , Nervo Vago/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA