Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Elife ; 132024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39159057

RESUMO

The dorsal funiculus in the spinal cord relays somatosensory information to the brain. It is made of T-shaped bifurcation of dorsal root ganglion (DRG) sensory axons. Our previous study has shown that Slit signaling is required for proper guidance during bifurcation, but loss of Slit does not affect all DRG axons. Here, we examined the role of the extracellular molecule Netrin-1 (Ntn1). Using wholemount staining with tissue clearing, we showed that mice lacking Ntn1 had axons escaping from the dorsal funiculus at the time of bifurcation. Genetic labeling confirmed that these misprojecting axons come from DRG neurons. Single axon analysis showed that loss of Ntn1 did not affect bifurcation but rather altered turning angles. To distinguish their guidance functions, we examined mice with triple deletion of Ntn1, Slit1, and Slit2 and found a completely disorganized dorsal funiculus. Comparing mice with different genotypes using immunolabeling and single axon tracing revealed additive guidance errors, demonstrating the independent roles of Ntn1 and Slit. Moreover, the same defects were observed in embryos lacking their cognate receptors. These in vivo studies thus demonstrate the presence of multi-factorial guidance mechanisms that ensure proper formation of a common branched axonal structure during spinal cord development.


Assuntos
Orientação de Axônios , Axônios , Gânglios Espinais , Proteínas do Tecido Nervoso , Netrina-1 , Medula Espinal , Animais , Netrina-1/metabolismo , Netrina-1/genética , Camundongos , Medula Espinal/metabolismo , Medula Espinal/embriologia , Axônios/metabolismo , Axônios/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Orientação de Axônios/fisiologia , Gânglios Espinais/metabolismo , Gânglios Espinais/embriologia , Camundongos Knockout , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética
2.
Elife ; 122024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39056276

RESUMO

Dopamine axons are the only axons known to grow during adolescence. Here, using rodent models, we examined how two proteins, Netrin-1 and its receptor, UNC5C, guide dopamine axons toward the prefrontal cortex and shape behaviour. We demonstrate in mice (Mus musculus) that dopamine axons reach the cortex through a transient gradient of Netrin-1-expressing cells - disrupting this gradient reroutes axons away from their target. Using a seasonal model (Siberian hamsters; Phodopus sungorus) we find that mesocortical dopamine development can be regulated by a natural environmental cue (daylength) in a sexually dimorphic manner - delayed in males, but advanced in females. The timings of dopamine axon growth and UNC5C expression are always phase-locked. Adolescence is an ill-defined, transitional period; we pinpoint neurodevelopmental markers underlying this period.


Assuntos
Receptores de Netrina , Netrina-1 , Animais , Netrina-1/metabolismo , Netrina-1/genética , Camundongos , Masculino , Feminino , Receptores de Netrina/metabolismo , Receptores de Netrina/genética , Phodopus , Axônios/metabolismo , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/crescimento & desenvolvimento , Neurônios Dopaminérgicos/metabolismo
3.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000184

RESUMO

Microglia migrate to the cerebral cortex during early embryonic stages. However, the precise mechanisms underlying microglia migration remain incompletely understood. As an extracellular matrix protein, Netrin-1 is involved in modulating the motility of diverse cells. In this paper, we found that Netrin-1 promoted microglial BV2 cell migration in vitro. Mechanism studies indicated that the activation of GSK3ß activity contributed to Netrin-1-mediated microglia migration. Furthermore, Integrin α6/ß1 might be the relevant receptor. Single-cell data analysis revealed the higher expression of Integrin α6 subunit and ß1 subunit in microglia in comparison with classical receptors, including Dcc, Neo1, Unc5a, Unc5b, Unc5c, Unc5d, and Dscam. Microscale thermophoresis (MST) measurement confirmed the high binding affinity between Integrin α6/ß1 and Netrin-1. Importantly, activation of Integrin α6/ß1 with IKVAV peptides mirrored the microglia migration and GSK3 activation induced by Netrin-1. Finally, conditional knockout (CKO) of Netrin-1 in radial glial cells and their progeny led to a reduction in microglia population in the cerebral cortex at early developmental stages. Together, our findings highlight the role of Netrin-1 in microglia migration and underscore its therapeutic potential in microglia-related brain diseases.


Assuntos
Movimento Celular , Microglia , Netrina-1 , Netrina-1/metabolismo , Netrina-1/genética , Microglia/metabolismo , Animais , Camundongos , Camundongos Knockout , Córtex Cerebral/metabolismo , Córtex Cerebral/citologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Linhagem Celular , Integrina beta1/metabolismo , Integrina beta1/genética
4.
Elife ; 122024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023520

RESUMO

Dormancy in cancer is a clinical state in which residual disease remains undetectable for a prolonged duration. At a cellular level, rare cancer cells cease proliferation and survive chemotherapy and disseminate disease. We created a suspension culture model of high-grade serous ovarian cancer (HGSOC) dormancy and devised a novel CRISPR screening approach to identify survival genes in this context. In combination with RNA-seq, we discovered the Netrin signaling pathway as critical to dormant HGSOC cell survival. We demonstrate that Netrin-1, -3, and its receptors are essential for low level ERK activation to promote survival, and that Netrin activation of ERK is unable to induce proliferation. Deletion of all UNC5 family receptors blocks Netrin signaling in HGSOC cells and compromises viability during the dormancy step of dissemination in xenograft assays. Furthermore, we demonstrate that Netrin-1 and -3 overexpression in HGSOC correlates with poor outcome. Specifically, our experiments reveal that Netrin overexpression elevates cell survival in dormant culture conditions and contributes to greater spread of disease in a xenograft model of abdominal dissemination. This study highlights Netrin signaling as a key mediator HGSOC cancer cell dormancy and metastasis.


High-grade serous ovarian cancer (or HGSOC for short) is the fifth leading cause of cancer-related deaths in women. It is generally diagnosed at an advanced stage of disease when the cancer has already spread to other parts of the body. Surgical removal of tumors and subsequent treatment with chemotherapy often reduces the signs and symptoms of the disease for a time but some cancer cells tend to survive so that patients eventually relapse. The HGSOC cells typically spread from the ovaries by moving through the liquid surrounding organs in the abdomen. The cells clump together and enter an inactive state known as dormancy that allows them to survive chemotherapy and low-nutrient conditions. Understanding how to develop new drug therapies that target dormant cancer cells is thought to be an important step in prolonging the life of HGSOC patients. Cancer cells are hardwired to multiply and grow, so Perampalam et al. reasoned that becoming dormant poses challenges for HGSOC cells, which may create unique vulnerabilities not shared by proliferating cancer cells. To find out more, the researchers used HGSOC cells that had been isolated from patients and grown in the laboratory. The team used a gene editing technique to screen HGSOC cells for genes required by the cells to survive when they are dormant. The experiments found that genes involved in a cell signaling pathway, known as Netrin signaling, were critical for the cells to survive. Previous studies have shown that Netrin signaling helps the nervous system form in embryos and inhibits a program of controlled cell death in some cancers. Perampalam et al. discovered that Netrins were present in the environment immediately surrounding dormant HGSOC cells. Human HGSOC patients with higher levels of Netrin gene expression had poorer prognoses than patients with lower levels of Netrin gene expression. Further experiments demonstrated that Netrins help dormant HGSOC cells to spread around the body. These findings suggest that Netrin signalling may provide useful targets for future drug therapies against dormant cells in some ovarian cancers. This could include repurposing drugs already in development or creating new inhibitors of this pathway.


Assuntos
Carcinoma Epitelial do Ovário , Sobrevivência Celular , Netrinas , Neoplasias Ovarianas , Transdução de Sinais , Humanos , Feminino , Animais , Linhagem Celular Tumoral , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/metabolismo , Carcinoma Epitelial do Ovário/patologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Netrinas/metabolismo , Netrinas/genética , Camundongos , Netrina-1/metabolismo , Netrina-1/genética , Proliferação de Células , Receptores de Netrina/metabolismo , Receptores de Netrina/genética
5.
Elife ; 122024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38896465

RESUMO

Spinal pain affects individuals of all ages and is the most common musculoskeletal problem globally. Its clinical management remains a challenge as the underlying mechanisms leading to it are still unclear. Here, we report that significantly increased numbers of senescent osteoclasts (SnOCs) are observed in mouse models of spinal hypersensitivity, like lumbar spine instability (LSI) or aging, compared to controls. The larger population of SnOCs is associated with induced sensory nerve innervation, as well as the growth of H-type vessels, in the porous endplate. We show that deletion of senescent cells by administration of the senolytic drug Navitoclax (ABT263) results in significantly less spinal hypersensitivity, spinal degeneration, porosity of the endplate, sensory nerve innervation, and H-type vessel growth in the endplate. We also show that there is significantly increased SnOC-mediated secretion of Netrin-1 and NGF, two well-established sensory nerve growth factors, compared to non-senescent OCs. These findings suggest that pharmacological elimination of SnOCs may be a potent therapy to treat spinal pain.


Assuntos
Senescência Celular , Osteoclastos , Animais , Camundongos , Osteoclastos/metabolismo , Osteoclastos/efeitos dos fármacos , Osteoclastos/fisiologia , Senescência Celular/efeitos dos fármacos , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/fisiologia , Células Receptoras Sensoriais/metabolismo , Modelos Animais de Doenças , Masculino , Fator de Crescimento Neural/metabolismo , Fator de Crescimento Neural/farmacologia , Netrina-1/metabolismo , Netrina-1/genética , Camundongos Endogâmicos C57BL
6.
Sci Adv ; 10(26): eadm8454, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38941462

RESUMO

The formation of vascular niche is pivotal during the early stage of peripheral nerve regeneration. Nevertheless, the mechanisms of vascular niche in the regulation of peripheral nerve repair remain unclear. Netrin-1 (NTN1) was found up-regulated in nerve stump after peripheral nerve injury (PNI). Herein, we demonstrated that NTN1-high endothelial cells (NTN1+ECs) were the critical component of vascular niche, fostering angiogenesis, axon regeneration, and repair-related phenotypes. We also found that NTN1+EC-derived exosomes (NTN1 EC-EXO) were involved in the formation of vascular niche as a critical role. Multi-omics analysis further verified that NTN1 EC-EXO carried a low-level expression of let7a-5p and activated key pathways associated with niche formation including focal adhesion, axon guidance, phosphatidylinositol 3-kinase-AKT, and mammalian target of rapamycin signaling pathway. Together, our study suggested that the construction of a pre-regenerative niche induced by NTN1 EC-EXO could establish a beneficial microenvironment for nerve repair and facilitate functional recovery after PNI.


Assuntos
Células Endoteliais , Exossomos , Regeneração Nervosa , Netrina-1 , Traumatismos dos Nervos Periféricos , Netrina-1/metabolismo , Netrina-1/genética , Exossomos/metabolismo , Regeneração Nervosa/genética , Animais , Células Endoteliais/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Traumatismos dos Nervos Periféricos/terapia , Traumatismos dos Nervos Periféricos/patologia , Camundongos , Neovascularização Fisiológica , Transdução de Sinais , Humanos , Nervos Periféricos/metabolismo
7.
Metallomics ; 16(7)2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38936837

RESUMO

Ferric-tannic nanoparticles (FTs) are now considered to be new pharmaceuticals appropriate for the prevention of brain aging and related diseases. We have previously shown that FTs could activate axon guidance pathways and cellular clearance functioning in neuronal cell lines. Herein, we further investigated whether FTs could activate the two coordinated neuronal functions of axon guidance and synaptic function in rat brains and neuronal cell lines. A single intravenous injection of a safe dose of FTs has been shown to activate a protein expression of axon attractant Netrin-1 and neurotransmitter receptor GABRA4 in the cerebral cortexes of male Wistar rats. According to RNA-seq with targeted analysis, axon guidance and synapses have been enriched and Ephrin membered genes have been identified as coordinating a network of genes for such processes. In vitro, as expected, FTs are also found to activate axon guidance markers and promote neuronal tubes in neuronal cell lines. At the same time, pre-synaptic markers (synaptophysin), post-synaptic markers (synapsin), and GABRA4 neurotransmitter receptors have been found to be activated by FTs. Interestingly, synaptophysin has been found to localize along the promoted neuronal tubes, suggesting that enhanced axon guidance is associated with the formation and transportation of pre-synaptic vesicles. Preliminarily, repeated injection of FTs into adult rats every 3 days for 10 times could enhance an expression of synaptophysin in the cerebral cortex, as compared to control rats. This work demonstrates that FTs can be used for activating brain function associated with axon guidance and synaptic function.


Assuntos
Orientação de Axônios , Ratos Wistar , Sinapses , Animais , Masculino , Ratos , Sinapses/metabolismo , Encéfalo/metabolismo , Sinaptofisina/metabolismo , Compostos Férricos/metabolismo , Receptores de GABA-A/metabolismo , Netrina-1/metabolismo , Nanopartículas/química , Biomarcadores/metabolismo , Neurônios/metabolismo , Axônios/metabolismo
8.
Alzheimers Dement ; 20(7): 4499-4511, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38856164

RESUMO

INTRODUCTION: The ɛ4 allele of the apolipoprotein E gene (APOE ɛ4) is the strongest genetic risk factor for Alzheimer's disease (AD), but the mechanisms connecting APOE ɛ4 to AD are not clear. METHODS: Participants (n = 596) were from two clinical-pathological studies. Tissues from dorsolateral prefrontal cortex were examined to identify 8425 proteins. Post mortem pathological assessment used immunohistochemistry to obtain amyloid beta (Aß) load and tau tangle density. RESULTS: In separate models, APOE ɛ4 was associated with 18 proteins, which were associated with Aß and tau tangles. Examining the proteins in a single model identified Netrin-1 and secreted frizzled-related protein 1 (SFRP1) as the two proteins linking APOE ɛ4 with Aß with the largest effect sizes and Netrin-1 and testican-3 linking APOE ɛ4 with tau tangles. DISCUSSION: We identified Netrin-1, SFRP1, and testican-3 as the most promising proteins that link APOE ɛ4 with Aß and tau tangles. HIGHLIGHTS: Of 8425 proteins extracted from prefrontal cortex, 18 were related to APOE ɛ4. The 18 proteins were also related to amyloid beta (Aß) and tau. The 18 proteins were more related to APOE ɛ4 than other AD genetic risk variants. Netrin-1 and secreted frizzled-related protein 1 were the two most promising proteins linking APOE ɛ4 with Aß. Netrin-1 and testican-3 were two most promising proteins linking APOE ɛ4 with tau.


Assuntos
Doença de Alzheimer , Apolipoproteína E4 , Proteínas de Membrana , Netrina-1 , Emaranhados Neurofibrilares , Córtex Pré-Frontal , Proteoglicanas , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Apolipoproteína E4/genética , Netrina-1/metabolismo , Netrina-1/genética , Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/patologia , Córtex Pré-Frontal/metabolismo , Proteínas tau/metabolismo , Proteínas de Membrana/metabolismo , Proteoglicanas/metabolismo
9.
Physiol Res ; 73(2): 305-314, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38710054

RESUMO

Netrin-1 (NTN-1) plays a vital role in the progress of nervous system development and inflammatory diseases. However, the role and underlying mechanism of NTN-1 in inflammatory pain (IP) are unclear. BV2 microglia were treated with LPS to mimic the cell status under IP. Adeno-associated virus carrying the NTN-1 gene (AAV-NTN-1) was used to overexpress NTN-1. Complete Freund's Adjuvant (CFA)-induced mouse was recruited as an in vivo model. MTT and commercial kits were utilized to evaluate cell viability and cell death of BV2 cells. The mRNA expressions and secretions of cytokines were measured using the ELISA method. Also, the pyroptosis and activation of BV2 cells were investigated based on western blotting. To verify the role of Rac1/NF-kappaB signaling, isochamaejasmin (ISO) and AAV-Rac1 were presented. The results showed that NTN-1 expression was decreased in LPS-treated BV2 microglia and spinal cord tissues of CFA-injected mice. Overexpressing NTN-1 dramatically reversed cell viability and decreased cell death rate of BV2 microglia under lipopolysaccharide (LPS) stimulation, while the level of pyroptosis was inhibited. Besides, AAV-NTN-1 rescued the activation of microglia and inflammatory injury induced by LPS, decreasing IBA-1 expression, as well as iNOS, IL-1beta and IL-6 secretions. Meanwhile AAV-NTN-1 promoted the anti-inflammation response, including increases in Arg-1, IL-4 and IL-10 levels. In addition, the LPS-induced activation of Rac1/NF-kappaB signaling was depressed by NTN-1 overexpression. The same results were verified in a CFA-induced mouse model. In conclusion, NTN-1 alleviated IP by suppressing pyroptosis and promoting M2 type activation of microglia via inhibiting Rac1/NF-?B signaling, suggesting the protective role of NTN-1 in IP. Keywords: Netrin-1, Inflammatory pain, Pyroptosis, Microglia M2 activation, Rac1/NF-kappaB.


Assuntos
Inflamação , Microglia , NF-kappa B , Netrina-1 , Neuropeptídeos , Piroptose , Transdução de Sinais , Proteínas rac1 de Ligação ao GTP , Animais , Piroptose/fisiologia , Piroptose/efeitos dos fármacos , Microglia/metabolismo , Camundongos , Netrina-1/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , NF-kappa B/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos Endogâmicos C57BL , Dor/metabolismo , Linhagem Celular , Lipopolissacarídeos
10.
Cell Death Dis ; 15(5): 343, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760361

RESUMO

The corticospinal tract (CST) is the principal neural pathway responsible for conducting voluntary movement in the vertebrate nervous system. Netrin-1 is a well-known guidance molecule for midline crossing of commissural axons during embryonic development. Families with inherited Netrin-1 mutations display congenital mirror movements (CMM), which are associated with malformations of pyramidal decussation in most cases. Here, we investigated the role of Netrin-1 in CST formation by generating conditional knockout (CKO) mice using a Gfap-driven Cre line. A large proportion of CST axons spread laterally in the ventral medulla oblongata, failed to decussate and descended in the ipsilateral spinal white matter of Ntn1Gfap CKO mice. Netrin-1 mRNA was expressed in the ventral ventricular zone (VZ) and midline, while Netrin-1 protein was transported by radial glial cells to the ventral medulla, through which CST axons pass. The level of transported Netrin-1 protein was significantly reduced in Ntn1Gfap CKO mice. In addition, Ntn1Gfap CKO mice displayed increased symmetric movements. Our findings indicate that VZ-derived Netrin-1 deletion leads to an abnormal trajectory of the CST in the spinal cord due to the failure of CST midline crossing and provides novel evidence supporting the idea that the Netrin-1 signalling pathway is involved in the pathogenesis of CMM.


Assuntos
Camundongos Knockout , Netrina-1 , Tratos Piramidais , Animais , Netrina-1/metabolismo , Netrina-1/genética , Camundongos , Tratos Piramidais/metabolismo , Tratos Piramidais/patologia , Axônios/metabolismo , Axônios/patologia
11.
J Diabetes Investig ; 15(8): 1068-1074, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38725153

RESUMO

AIMS/INTRODUCTION: Deficiency of neurotropic factors is implicated in diabetic neuropathy (DN). Netrin-1 is a neurotropic factor, but its association with DN has not been explored. We have assessed the association between serum netrin-1 levels and early diabetic neuropathy assessed by quantifying corneal nerve fiber loss using corneal confocal microscopy. MATERIALS AND METHODS: A total of 72 participants with type 2 diabetes, without and with corneal nerve fiber loss (DN- n = 42, DN+ n = 30), and 45 healthy controls were studied. Serum netrin-1 levels were measured by enzyme-linked immunosorbent assay, and corneal nerve morphology was assessed using corneal confocal microscopy. RESULTS: Corneal nerve fiber density, branch density, fiber length and serum netrin-1 levels were significantly lower in the DN- and DN+ groups compared with controls (P < 0.001). Netrin-1 levels correlated with corneal nerve fiber length in the DN+ group (r = 0.51; P < 0.01). A receiver operating characteristic curve analysis showed that a netrin-1 cut-off value of 599.6 (pg/mL) had an area under the curve of 0.85, with a sensitivity of 76% and specificity of 74% (P < 0.001; 95% confidence interval 0.76-0.94) for differentiating patients with and without corneal nerve loss. CONCLUSIONS: Serum netrin-1 levels show a progressive decline with increasing severity of small nerve fiber damage in patients with diabetes. Netrin-1 could act as a biomarker for small nerve fiber damage in DN.


Assuntos
Córnea , Diabetes Mellitus Tipo 2 , Neuropatias Diabéticas , Fibras Nervosas , Netrina-1 , Humanos , Netrina-1/sangue , Masculino , Feminino , Pessoa de Meia-Idade , Neuropatias Diabéticas/sangue , Neuropatias Diabéticas/patologia , Neuropatias Diabéticas/etiologia , Fibras Nervosas/patologia , Córnea/inervação , Córnea/patologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/patologia , Idoso , Biomarcadores/sangue , Estudos de Casos e Controles , Microscopia Confocal
13.
Int J Gynaecol Obstet ; 166(3): 1337-1344, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38588254

RESUMO

BACKGROUND/OBJECTIVES: At present, there are few biomarkers used to predict the prognosis of uterine serous carcinoma (USC). Netrin-1 may be a promising biomarker candidate. We investigated netrin-1 expression in USC tissues and healthy endometrial tissues to determine its relevance to disease prognosis. MATERIALS AND METHODS: Netrin-1 expression was examined in the tissues of 48 patients with USC and 30 patients with healthy benign endometrial tissues via immunohistochemistry. RESULTS: None of the healthy tissues were stained with netrin-1. In tumor tissues, the overall positivity rate of netrin-1 was 75%, detected as high expression in 17 patients (35%) and low in 19 (40%). Patients who had tumors with no netrin-1 expression (n = 12) had a median overall survival (OS) of 60.0 months (95% confidence interval [CI], 47-98), whereas patients who had tumors with low to strong netrin-1 expression (n = 33) had a lower median OS of 50 months, but the difference was not statistically significant (95% CI, 58-108; P = 0.531). Disease-free survival (DFS) was not statistically significant between the groups (95% CI, 67.7-115.9; P = 0.566). Patients with a tumor diameter ≥2 cm had higher netrin-1 expression than those with a tumor diameter of 2 cm (P = 0.027). We did not find any difference in overall and DFS when age, tumor stage, histology, tumor diameter, p53 status, lymphovascular space invasion, myometrial invasion, and lymph node metastasis were compared according to netrin-1 expression (P > 0.05). CONCLUSION: Netrin-1 was expressed in USC but not in healthy tissues. Its expression was not associated with OS or DFS.


Assuntos
Biomarcadores Tumorais , Cistadenocarcinoma Seroso , Netrina-1 , Neoplasias Uterinas , Humanos , Feminino , Netrina-1/metabolismo , Pessoa de Meia-Idade , Idoso , Neoplasias Uterinas/patologia , Neoplasias Uterinas/metabolismo , Neoplasias Uterinas/mortalidade , Prognóstico , Biomarcadores Tumorais/metabolismo , Adulto , Cistadenocarcinoma Seroso/metabolismo , Cistadenocarcinoma Seroso/patologia , Cistadenocarcinoma Seroso/mortalidade , Imuno-Histoquímica , Proteínas Supressoras de Tumor/metabolismo , Intervalo Livre de Doença , Idoso de 80 Anos ou mais
14.
Biomed Pharmacother ; 173: 116385, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460369

RESUMO

Lilii Bulbus (Lilium lancifolium Thunberg) has a proneurogenic effect on the hippocampus. However, its effects on epilepsy and associated pathological features remain unknown. In this study, we investigated the antiseizure effects of a water extract of Lilii Bulbus (WELB) in mouse model of pentylenetetrazol (PTZ)-induced seizure. Mice were injected with PTZ once every 48 h until full kindling was achieved. WELB (100 and 500 mg/kg) was orally administered once daily before PTZ administration and during the kindling process. We found that WELB treatment protected against PTZ-induced low seizure thresholds and high seizure severity. Further, WELB-treated mice showed attenuated PTZ kindling-induced anxiety and memory impairment. Immunostaining and immunoblots showed that hyperactivation and ectopic migration of dentate granule cells (DGCs) were significantly reduced by WELB treatment in PTZ kindling-induced seizure mice. Staining for mossy fiber sprouting (MFS) using Timm staining and ZnT3 showed that WELB treatment significantly decreased PTZ kindling-induced MFS. Furthermore, the increased or decreased expression of proteins related to ectopic DGCs (Reelin and Dab-1), MFS (Netrin-1, Sema3A, and Sema3F), and their downstream effectors (ERK, AKT, and CREB) in the hippocampus of PTZ kindling mice was significantly restored by WELB treatment. Overall, our findings suggest that WELB is a potential antiseizure drug that acts by reducing ectopic DGCs and MFS and modulating epileptogenesis-related signaling in the hippocampus.


Assuntos
Excitação Neurológica , Semaforinas , Animais , Camundongos , Netrina-1 , Pentilenotetrazol , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Convulsões/metabolismo
15.
J Integr Neurosci ; 23(3): 47, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538215

RESUMO

BACKGROUND: Bone cancer pain (BCP) is a common primary or metastatic bone cancer complication. Netrin-1 plays an essential role in neurite elongation and pain sensitization. This study aimed to determine the role of netrin-1 from the metastatic bone microenvironment in BCP development and identify the associated signaling pathway for the strategy of BCP management. METHODS: The rat BCP model was established by intratibial implantation of Walker 256 cells. Von Frey filaments measured the mechanical pain threshold. Movement-induced pain was assessed using limb use scores. Expressions of associated molecules in the affected tibias or dorsal root ganglia (DRG) were measured by immunofluorescence, immunohistochemistry, real-time quantitative polymerase chain reaction, or western blotting. Transduction of deleted in colorectal cancer (DCC) signaling was inhibited by intrathecal injection of DCC-siRNA. RESULTS: In BCP rats, the presence of calcitonin gene-related peptide (CGRP)-positive nerve fibers increased in the metastatic bone lesions. The metastatic site showed enrichment of well-differentiated osteoclasts and expressions of netrin-1 and its attractive receptor DCC. Upregulation of DCC and increased phosphorylation levels of focal adhesion kinase (FAK) and Rac family small GTPase 1/Cell division cycle 42 (Rac1/Cdc42) were found in the DRG. Intrathecal administration of DCC-siRNA led to a significant reduction in FAK and Rac1/Cdc42 phosphorylation levels in the DRG, decreased nociceptive nerve innervation, and improved pain behaviors. CONCLUSIONS: Netrin-1 may contribute to the activation of the BCP by inducing nociceptive nerve innervation and improving pain behaviors.


Assuntos
Neoplasias Ósseas , Dor do Câncer , Netrina-1 , Animais , Ratos , Neoplasias Ósseas/complicações , Dor do Câncer/etiologia , Receptor DCC/metabolismo , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/farmacologia , Netrina-1/genética , Nociceptores/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , RNA Interferente Pequeno , Transdução de Sinais , Microambiente Tumoral , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
16.
Mol Biol Cell ; 35(5): ar67, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38507236

RESUMO

During neuronal development, dynamic filopodia emerge from dendrites and mature into functional dendritic spines during synaptogenesis. Dendritic filopodia and spines respond to extracellular cues, influencing dendritic spine shape and size as well as synaptic function. Previously, the E3 ubiquitin ligase TRIM9 was shown to regulate filopodia in early stages of neuronal development, including netrin-1-dependent axon guidance and branching. Here, we demonstrate that TRIM9 also localizes to dendritic filopodia and spines of murine cortical and hippocampal neurons during synaptogenesis and is required for synaptic responses to netrin. In particular, TRIM9 is enriched in the postsynaptic density (PSD) within dendritic spines and loss of Trim9 alters the PSD proteome, including the actin cytoskeleton landscape. While netrin exposure induces accumulation of the Arp2/3 complex and filamentous actin in dendritic spine heads, this response is disrupted by genetic deletion of Trim9. In addition, we document changes in the synaptic receptors associated with loss of Trim9. These defects converge on a loss of netrin-dependent increases in neuronal firing rates, indicating TRIM9 is required downstream of synaptic netrin-1 signaling. We propose that TRIM9 regulates cytoskeletal dynamics in dendritic spines and is required for the proper response to synaptic stimuli.


Assuntos
Actinas , Ubiquitina-Proteína Ligases , Camundongos , Animais , Actinas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Netrina-1 , Neurônios/metabolismo , Hipocampo/metabolismo , Espinhas Dendríticas/metabolismo , Proteínas do Tecido Nervoso/metabolismo
17.
Clin Biochem ; 127-128: 110760, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38556035

RESUMO

BACKGROUND: Recent data show that netrin-1 has a role in development of pulmonary fibrosis. This study was aimed to investigate serum netrin-1 level and its relation to interstitial lung disease(ILD) in patients with rheumatoid arthritis (RA). METHOD: 42 RA patients with RA-ILD, 58 RA patients without RA-ILD (RA non-ILD group), and 61 healthy volunteers were included in this study. The modified DAS28-ESR score was used to calculate disease activity in RA patients. Using the quantitative immunoassay method, Serum netrin-1 levels were measured with an ELISA kit (Catalog number: E-EL-H2328; lab science, lot number: GZWTKZ5SWK, Texas, USA). RESULTS: The median value of netrin-1 was found to be significantly higher in the RA-ILD group (82.9 [59.9-124]) compared to both the RA non-ILD group(52.9 [49.5-73.1])(B = -0.006, OR = 0.994, CI 95 %=0.989-0.999, P = 0.018) and the control group(53.5 [49.5-87.5]) (B: -0.005, OR: 0.994, CI 95 %: 0.990-0.999, p: 0.022). A cut-off value of 61.78 for netrin-1 was found to have a sensitivity of 73.8 % and a specificity of 69 % for the diagnosis of RA-ILD (AUC [95 %Cl] = 0.771 [0.679-0.862], p < 0.0001).It was found that high serum netrin-1 level was strongly associated with the RA-usual interstitial pneumonia(UIP) pattern and poorly related to the RA-nonspecific interstitial pneumonia(NSIP) pattern compared to the RA non-ILD group. CONCLUSIONS: Netrin-1 is elevated in the serum of patients with RA-ILD, especially in the UIP pattern. Netrin-1 may be a potential candidate for predicting the development of RA-ILD that should be investigated in the pathophysiological and therapeutic fields..


Assuntos
Artrite Reumatoide , Doenças Pulmonares Intersticiais , Netrina-1 , Humanos , Netrina-1/sangue , Artrite Reumatoide/sangue , Artrite Reumatoide/complicações , Doenças Pulmonares Intersticiais/sangue , Doenças Pulmonares Intersticiais/etiologia , Doenças Pulmonares Intersticiais/complicações , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Biomarcadores/sangue , Adulto , Estudos de Casos e Controles
18.
Ann Anat ; 254: 152247, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38458575

RESUMO

Neural guidance proteins participate in motor neuron migration, axonal projection, and muscle fiber innervation during development. One of the guidance proteins that participates in axonal pathfinding is Netrin-1. Despite the well-known role of Netrin-1 in embryogenesis of central nervous tissue, it is still unclear how the expression of this guidance protein contributes to primary innervation of the periphery, as well as reinnervation. This is especially true in the larynx where Netrin-1 is upregulated within the intrinsic laryngeal muscles after nerve injury and where blocking of Netrin-1 alters the pattern of reinnervation of the intrinsic laryngeal muscles. Despite this consistent finding, it is unknown how Netrin-1 expression contributes to guidance of the axons towards the larynx. Improved knowledge of Netrin-1's role in nerve regeneration and reinnervation post-injury in comparison to its role in primary innervation during embryological development, may provide insights in the search for therapeutics to treat nerve injury. This paper reviews the known functions of Netrin-1 during the formation of the central nervous system and during cranial nerve primary innervation. It also describes the role of Netrin-1 in the formation of the larynx and during recurrent laryngeal reinnervation following nerve injury in the adult.


Assuntos
Laringe , Regeneração Nervosa , Netrina-1 , Netrina-1/metabolismo , Animais , Humanos , Regeneração Nervosa/fisiologia , Laringe/fisiologia , Fatores de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/fisiologia , Proteínas Supressoras de Tumor/metabolismo , Orientação de Axônios/fisiologia
19.
Genes (Basel) ; 15(3)2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38540364

RESUMO

The UNC-5 family of netrin receptor genes, predominantly expressed in brain tissues, plays a pivotal role in various neuronal processes. Mutations in genes involved in axon development contribute to a wide spectrum of human diseases, including developmental, neuropsychiatric, and neurodegenerative disorders. The NTN1/DCC signaling pathway, interacting with UNC5C, plays a crucial role in central nervous system axon guidance and has been associated with psychiatric disorders during adolescence in humans. Whole-exome sequencing analysis unveiled two compound heterozygous causative mutations within the UNC5C gene in a patient diagnosed with psychiatric disorders. In silico analysis demonstrated that neither of the observed variants affected the allosteric linkage between UNC5C and NTN1. In fact, these mutations are located within crucial cytoplasmic domains, specifically ZU5 and the region required for the netrin-mediated axon repulsion of neuronal growth cones. These domains play a critical role in forming the supramodular protein structure and directly interact with microtubules, thereby ensuring the functionality of the axon repulsion process. We emphasize that these mutations disrupt the aforementioned processes, thereby associating the UNC5C gene with psychiatric disorders for the first time and expanding the number of genes related to psychiatric disorders. Further research is required to validate the correlation of the UNC5C gene with psychiatric disorders, but we suggest including it in the genetic analysis of patients with psychiatric disorders.


Assuntos
Orientação de Axônios , Transtornos Mentais , Humanos , Orientação de Axônios/genética , Netrina-1/genética , Netrina-1/metabolismo , Receptores de Netrina/genética , Receptores de Netrina/metabolismo , Axônios/metabolismo , Transtornos Mentais/metabolismo
20.
Mov Disord ; 39(2): 400-410, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38314870

RESUMO

BACKGROUND: Congenital mirror movements (CMM) is a rare neurodevelopmental disorder characterized by involuntary movements from one side of the body that mirror voluntary movements on the opposite side. To date, five genes have been associated with CMM, namely DCC, RAD51, NTN1, ARHGEF7, and DNAL4. OBJECTIVE: The aim of this study is to characterize the genetic landscape of CMM in a large group of 80 affected individuals. METHODS: We screened 80 individuals with CMM from 43 families for pathogenic variants in CMM genes. In large CMM families, we tested for presence of pathogenic variants in multiple affected and unaffected individuals. In addition, we evaluated the impact of three missense DCC variants on binding between DCC and Netrin-1 in vitro. RESULTS: Causal pathogenic/likely pathogenic variants were found in 35% of probands overall, and 70% with familial CMM. The most common causal gene was DCC, responsible for 28% of CMM probands and 80% of solved cases. RAD51, NTN1, and ARHGEF7 were rare causes of CMM, responsible for 2% each. Penetrance of CMM in DCC pathogenic variant carriers was 68% and higher in males than females (74% vs. 54%). The three tested missense variants (p.Ile164Thr; p.Asn176Ser; and p.Arg1343His) bind Netrin-1 similarly to wild type DCC. CONCLUSIONS: A genetic etiology can be identified in one third of CMM individuals, with DCC being the most common gene involved. Two thirds of CMM individuals were unsolved, highlighting that CMM is genetically heterogeneous and other CMM genes are yet to be discovered. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Discinesias , Transtornos dos Movimentos , Masculino , Feminino , Humanos , Netrina-1/genética , Receptor DCC/genética , Transtornos dos Movimentos/genética , Mutação de Sentido Incorreto/genética , Fatores de Troca de Nucleotídeo Guanina Rho/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA