Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 871
Filtrar
1.
Sci Rep ; 14(1): 16242, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39004628

RESUMO

Chemotherapy-induced neuropathic pain (CINP), a condition with unmet treatment needs, affects over half of cancer patients treated with chemotherapeutics. Researchers have recently focused on the endocannabinoid system because of its critical role in regulating our bodies' most important functions, including pain. We used in vitro and in vivo methods to determine the toxicity profile of a synthetic cannabinoid, JWH-182, and whether it could be potentially effective for CINP alleviation. In vitro, we evaluated JWH-182 general toxicity, measuring fibroblast viability treated with various concentrations of compound, and its neuroprotection on dorsal root ganglion neurons treated with paclitaxel. In vivo, we performed an evaluation of acute and 28-day repeated dose toxicity in mice, with monitoring of health status and a complete histopathological examination. Finally, we evaluated the efficacy of JWH-182 on a CINP model in mice using specific pain assessment tests. JWH-182 has an acceptable toxicity profile, in both, in vitro and in vivo studies and it was able to significantly reduce pain perception in a CINP model in mice. However, the translation of these results to the clinic needs further investigation.


Assuntos
Canabinoides , Neuralgia , Animais , Neuralgia/tratamento farmacológico , Neuralgia/induzido quimicamente , Camundongos , Canabinoides/farmacologia , Modelos Animais de Doenças , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacologia , Masculino , Humanos , Paclitaxel/efeitos adversos , Paclitaxel/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo
2.
Support Care Cancer ; 32(7): 427, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869647

RESUMO

PURPOSE: Sensory chemotherapy-induced peripheral neuropathy (CIPN) is well-recognized, but motor CIPN remains understudied. This secondary analysis focused on the long-term severity and impact of motor disorders, their relation to sensory CIPN, neuropathic pain, psychological distress, and health-related quality of life (HRQoL) after oxaliplatin-based chemotherapy in colorectal cancer (CRC) survivors. METHODS: Data from a multicenter, cross-sectional study were re-analyzed to explore motor CIPN among CRC survivors up to 5 years post-chemotherapy, with no longitudinal follow-up. Questionnaires assessed sensory and motor CIPN (QLQ-CIPN20), neuropathic pain (DN4), anxiety and depression (HADS), and HRQoL (QLQ-C30). RESULTS: Among 405 CRC survivors, 31.1% had sensory CIPN as previously described. When categorizing the 405 CRC survivors based on the years since their last oxaliplatin-based chemotherapy, the motor scores derived from the QLQ-CIPN20 showed no significant difference between years (p = 0.08). Motor CIPN scores correlated with female gender, higher oxaliplatin dose intensity, sensory CIPN, and neuropathic pain. Motor CIPN also linked to decreased HRQoL and increased psychological distress. CONCLUSION: The study underscores the detrimental impact of motor disorders on CRC survivors post-oxaliplatin-based chemotherapy. Oncologists should prioritize assessing and managing motor manifestations alongside sensory symptoms to enhance post-cancer quality of life. TRIAL REGISTRATION: NCT02970526 (2016-11-22). https://classic. CLINICALTRIALS: gov/ct2/show/NCT02970526?term=NCT02970526&draw=2&rank=1 .


Assuntos
Antineoplásicos , Neoplasias Colorretais , Oxaliplatina , Doenças do Sistema Nervoso Periférico , Qualidade de Vida , Humanos , Oxaliplatina/efeitos adversos , Masculino , Feminino , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Pessoa de Meia-Idade , Estudos Transversais , Idoso , Neoplasias Colorretais/tratamento farmacológico , Antineoplásicos/efeitos adversos , Inquéritos e Questionários , Índice de Gravidade de Doença , Transtornos Motores/induzido quimicamente , Neuralgia/induzido quimicamente , Adulto , Sobreviventes de Câncer/psicologia
3.
Eur J Pharmacol ; 977: 176738, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38876275

RESUMO

Pain is a common public health problem and remains as an unmet medical need. Currently available analgesics usually have limited efficacy or are accompanied by many adverse side effects. To achieve satisfactory pain relief by multimodal analgesia, new combinations of nefopam and gabapentinoids (pregabalin/gabapentin) were designed and assessed in inflammatory, osteoarthritis and neuropathic pain. Isobolographic analysis was performed to analyze the interactions between nefopam and gabapentinoids in carrageenan-induced inflammatory pain, mono-iodoacetate-induced osteoarthritis pain and paclitaxel-induced peripheral neuropathic pain in mice. The anti-inflammatory effect and motor performance of monotherapy or their combinations were evaluated in the carrageenan-induced inflammatory responses and rotarod test, respectively. Nefopam (1, 3, 5, 10, 30 mg/kg, p.o.), pregabalin (3, 6, 12, 24 mg/kg, p.o.) or gabapentin (25, 50, 75, 100 mg/kg, p.o.) dose-dependently reversed mechanical allodynia in three pain models. Isobolographic analysis indicated that the combinations of nefopam and gabapentinoids exerted synergistic anti-nociceptive effects in inflammatory, osteoarthritis, and neuropathic pain mouse models, as evidenced by the experimental ED50 (median effective dose) falling below the predicted additive line. Moreover, the combination of nefopam-pregabalin/gabapentin alleviated carrageenan-induced inflammation and edema, and also prevented gabapentinoids-related sedation or ataxia by lowering their effective doses. Collectively, the co-administration of nefopam and gabapentinoids showed synergistic analgesic effects and may result in improved therapeutic benefits for treating pain.


Assuntos
Analgésicos , Modelos Animais de Doenças , Sinergismo Farmacológico , Gabapentina , Inflamação , Nefopam , Neuralgia , Osteoartrite , Animais , Neuralgia/tratamento farmacológico , Neuralgia/induzido quimicamente , Nefopam/farmacologia , Nefopam/uso terapêutico , Camundongos , Gabapentina/farmacologia , Gabapentina/uso terapêutico , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Masculino , Osteoartrite/tratamento farmacológico , Osteoartrite/induzido quimicamente , Inflamação/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Pregabalina/farmacologia , Pregabalina/uso terapêutico , Hiperalgesia/tratamento farmacológico , Hiperalgesia/induzido quimicamente , Carragenina
4.
Biomed Pharmacother ; 176: 116879, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38850666

RESUMO

Cannabinoid CB2 agonists show therapeutic efficacy without unwanted CB1-mediated side effects. The G protein-biased CB2 receptor agonist LY2828360 attenuates the maintenance of chemotherapy-induced neuropathic nociception in male mice and blocks development of morphine tolerance in this model. However, the cell types involved in this phenomenon are unknown and whether this therapeutic profile is observed in female mice has never been investigated. We used conditional deletion of CB2 receptors to determine the cell population(s) mediating the anti-allodynic and morphine-sparing effects of CB2 agonists. Anti-allodynic effects of structurally distinct CB2 agonists (LY2828360 and AM1710) were present in paclitaxel-treated CB2f/f mice and in mice lacking CB2 receptors in CX3CR1 expressing microglia/macrophages (CX3CR1CRE/+; CB2f/f), but were absent in mice lacking CB2 receptors in peripheral sensory neurons (AdvillinCRE/+; CB2f/f). The morphine-sparing effect of LY28282360 occurred in a sexually-dimorphic manner, being present in male, but not female, mice. LY2828360 treatment (3 mg/kg per day i.p. x 12 days) blocked the development of morphine tolerance in male CB2f/f and CX3CR1CRE/+; CB2f/f mice with established paclitaxel-induced neuropathy but was absent in male (or female) AdvillinCRE/+; CB2f/f mice. Co-administration of morphine with a low dose of LY2828360 (0.1 mg/kg per day i.p. x 6 days) reversed morphine tolerance in paclitaxel-treated male CB2f/f mice, but not AdvillinCRE/+; CB2f/f mice of either sex. LY2828360 (3 mg/kg per day i.p. x 8 days) delayed, but did not prevent, the development of paclitaxel-induced mechanical or cold allodynia in either CB2f/f or CX3CR1CRE/+; CB2f/f mice of either sex. Our findings have potential clinical implications.


Assuntos
Tolerância a Medicamentos , Morfina , Neuralgia , Paclitaxel , Receptor CB2 de Canabinoide , Células Receptoras Sensoriais , Animais , Masculino , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/genética , Feminino , Morfina/farmacologia , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Tolerância a Medicamentos/fisiologia , Camundongos , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Nociceptividade/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Caracteres Sexuais , Camundongos Knockout , Agonistas de Receptores de Canabinoides/farmacologia
5.
Int J Mol Sci ; 25(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38892000

RESUMO

Paclitaxel, a microtubule-stabilizing chemotherapy drug, can cause severe paclitaxel-induced peripheral neuropathic pain (PIPNP). The roles of transient receptor potential (TRP) ion channel vanilloid 1 (TRPV1, a nociceptor and heat sensor) and melastatin 8 (TRPM8, a cold sensor) in PIPNP remain controversial. In this study, Western blotting, immunofluorescence staining, and calcium imaging revealed that the expression and functional activity of TRPV1 were upregulated in rat dorsal root ganglion (DRG) neurons in PIPNP. Behavioral assessments using the von Frey and brush tests demonstrated that mechanical hyperalgesia in PIPNP was significantly inhibited by intraperitoneal or intrathecal administration of the TRPV1 antagonist capsazepine, indicating that TRPV1 played a key role in PIPNP. Conversely, the expression of TRPM8 protein decreased and its channel activity was reduced in DRG neurons. Furthermore, activation of TRPM8 via topical application of menthol or intrathecal injection of WS-12 attenuated the mechanical pain. Mechanistically, the TRPV1 activity triggered by capsaicin (a TRPV1 agonist) was reduced after menthol application in cultured DRG neurons, especially in the paclitaxel-treated group. These findings showed that upregulation of TRPV1 and inhibition of TRPM8 are involved in the generation of PIPNP, and they suggested that inhibition of TRPV1 function in DRG neurons via activation of TRPM8 might underlie the analgesic effects of menthol.


Assuntos
Gânglios Espinais , Neuralgia , Paclitaxel , Ratos Sprague-Dawley , Canais de Cátion TRPM , Canais de Cátion TRPV , Animais , Paclitaxel/efeitos adversos , Paclitaxel/farmacologia , Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPV/metabolismo , Gânglios Espinais/metabolismo , Gânglios Espinais/efeitos dos fármacos , Ratos , Neuralgia/metabolismo , Neuralgia/tratamento farmacológico , Neuralgia/induzido quimicamente , Masculino , Hiperalgesia/metabolismo , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Capsaicina/farmacologia , Capsaicina/análogos & derivados , Neurônios/metabolismo , Neurônios/efeitos dos fármacos
6.
Biomaterials ; 309: 122603, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38713972

RESUMO

Sympathetic nerves play a pivotal role in promoting tumor growth through crosstalk with tumor and stromal cells. Chemotherapy exacerbates the infiltration of sympathetic nerves into tumors, thereby providing a rationale for inhibiting sympathetic innervation to enhance chemotherapy. Here, we discovered that doxorubicin increases the density and activity of sympathetic nerves in breast cancer mainly by upregulating the expression of nerve growth factors (NGFs) in cancer cells. To address this, we developed a combination therapy by co-encapsulating small interfering RNA (siRNA) and doxorubicin within breast cancer-targeted poly (lactic-co-glycolic acid) (PLGA) nanoparticles, aiming to suppress NGF expression post-chemotherapy. Incorporating NGF blockade into the nanoplatform for chemotherapy effectively mitigated the chemotherapy-induced proliferation of sympathetic nerves. This not only bolstered the tumoricidal activity of chemotherapy, but also amplified its stimulatory impact on the antitumor immune response by increasing the infiltration of immunostimulatory cells into tumors while concurrently reducing the frequency of immunosuppressive cells. Consequently, the combined nanodrug approach, when coupled with anti-PD-L1 treatment, exhibited a remarkable suppression of primary and deeply metastatic tumors with minimal systematic toxicity. Importantly, the nanoplatform relieved chemotherapy-induced peripheral neuropathic pain (CIPNP) by diminishing the expression of pain mediator NGFs. In summary, this research underscores the significant potential of NGF knockdown in enhancing immunochemotherapy outcomes and presents a nanoplatform for the highly efficient and low-toxicity treatment of breast cancer.


Assuntos
Doxorrubicina , Imunoterapia , Nanopartículas , Neuralgia , Neuralgia/induzido quimicamente , Animais , Doxorrubicina/farmacologia , Feminino , Nanopartículas/química , Linhagem Celular Tumoral , Humanos , Imunoterapia/métodos , Camundongos , RNA Interferente Pequeno , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Fator de Crescimento Neural/metabolismo , Camundongos Endogâmicos BALB C , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Antineoplásicos/farmacologia
7.
Molecules ; 29(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731449

RESUMO

Cannabis sativa L. (hemp) is a herbaceous plant rich in cannabinoids with a long history of use in pain treatment. The most well-characterized cannabinoids, cannabidiol (CBD) and Δ9-tetrahydrocannabinol (Δ9-THC), garnered much attention in chemotherapy-induced peripheral neuropathy (CIPN) treatment. However, few studies have investigated the biological benefits and mechanism of hemp extract on CIPN. In the present study, hemp extract (JG) rich in cannabinoids was extracted by supercritical fluid carbon dioxide extraction (SFCE). The antinociceptive efficacy was evaluated using a paclitaxel-induced peripheral neuropathy (PIPN) rat model based on behavioral tests. Further omics-based approaches were applied to explore the potential mechanisms. The results showed that JG decreased mechanical allodynia, thermal hyperalgesia, and inflammatory cytokines in PIPN rats significantly. Transcriptome analysis identified seven key genes significantly regulated by JG in PIPN model rats, mainly related to the neuroactive ligand-receptor interaction pathway, PPAR signaling pathway, and cAMP signaling pathway. In metabolomic analysis, a total of 39 significantly altered metabolites were identified, mainly correlated with pentose and glucuronate interconversions and the glycerophospholipid metabolism pathway. Gut microbiota analysis suggested that increased community Lachnoclostridium and Lachnospiraceae_UCG-006 in PIPN rats can be reversed significantly by JG. In conclusion, hemp extract exhibited antinociceptive effects on PIPN. The analgesic mechanism was probably related to the regulation of inflammation, neuroactive ligand-receptor interaction pathway, sphingolipid metabolism, etc. This study provides novel insights into the functional interactions of Cannabis sativa L. extract on PIPN.


Assuntos
Analgésicos , Cannabis , Neuralgia , Paclitaxel , Extratos Vegetais , Animais , Cannabis/química , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Ratos , Analgésicos/farmacologia , Analgésicos/química , Paclitaxel/efeitos adversos , Masculino , Metabolômica , Modelos Animais de Doenças , Hiperalgesia/tratamento farmacológico , Hiperalgesia/induzido quimicamente , Hiperalgesia/metabolismo , Canabinoides/farmacologia , Multiômica
8.
EMBO Rep ; 25(5): 2375-2390, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38594391

RESUMO

Cancer patients undergoing treatment with antineoplastic drugs often experience chemotherapy-induced neuropathic pain (CINP), and the therapeutic options for managing CINP are limited. Here, we show that systemic paclitaxel administration upregulates the expression of neurotrophin-3 (Nt3) mRNA and NT3 protein in the neurons of dorsal root ganglia (DRG), but not in the spinal cord. Blocking NT3 upregulation attenuates paclitaxel-induced mechanical, heat, and cold nociceptive hypersensitivities and spontaneous pain without altering acute pain and locomotor activity in male and female mice. Conversely, mimicking this increase produces enhanced responses to mechanical, heat, and cold stimuli and spontaneous pain in naive male and female mice. Mechanistically, NT3 triggers tropomyosin receptor kinase C (TrkC) activation and participates in the paclitaxel-induced increases of C-C chemokine ligand 2 (Ccl2) mRNA and CCL2 protein in the DRG. Given that CCL2 is an endogenous initiator of CINP and that Nt3 mRNA co-expresses with TrkC and Ccl2 mRNAs in DRG neurons, NT3 likely contributes to CINP through TrkC-mediated activation of the Ccl2 gene in DRG neurons. NT3 may be thus a potential target for CINP treatment.


Assuntos
Quimiocina CCL2 , Gânglios Espinais , Neuralgia , Neurônios , Neurotrofina 3 , Paclitaxel , Receptor trkC , Animais , Gânglios Espinais/metabolismo , Gânglios Espinais/efeitos dos fármacos , Quimiocina CCL2/metabolismo , Quimiocina CCL2/genética , Neuralgia/induzido quimicamente , Neuralgia/metabolismo , Neuralgia/genética , Paclitaxel/efeitos adversos , Paclitaxel/farmacologia , Neurotrofina 3/metabolismo , Neurotrofina 3/genética , Masculino , Camundongos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Feminino , Receptor trkC/metabolismo , Receptor trkC/genética , Antineoplásicos/efeitos adversos , RNA Mensageiro/metabolismo , RNA Mensageiro/genética
9.
Toxicol Appl Pharmacol ; 484: 116883, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38437959

RESUMO

BACKGROUND: Chemotherapy-induced peripheral neuropathy (CIPN) reduces the overall quality of life and leads to interruption of chemotherapy. Ursolic acid, a triterpenoid naturally which presents in fruit peels and in many herbs and spices, can function as a peroxisome proliferator-activated receptor γ (PPARγ) agonist, and has been widely used as an herbal medicine with a wide spectrum of pharmacological activities, including anti-cancer, anti-inflammatory and neuroprotective effect. METHODS: We used a phenotypic drug screening approach to identify ursolic acid as a potential neuroprotective drug in vitro and in vivo and carried out additional biochemical experiments to identify its mechanism of action. RESULTS: Our study demonstrated that ursolic acid reduced neurotoxicity and cell apoptosis induced by pacilitaxel, resulting in an improvement of CIPN. Moreover, we explored the potential mechanisms of ursolic acid on CIPN. As a result, ursolic acid inhibited CHOP (C/EBP Homologous Protein) expression, indicating the endoplasmic reticulum (ER) stress suppression, and regulating CHOP related apoptosis regulator (the Bcl2 family) to reverse pacilitaxel induced apoptosis. Moreover, we showed that the therapeutic effect of ursolic acid on the pacilitaxel-induced peripheral neuropathy is PPARγ dependent. CONCLUSIONS: Taken together, the present study suggests ursolic acid has potential as a new PPARγ agonist targeting ER stress-related apoptotic pathways to ameliorate pacilitaxel-induced peripheral neuropathic pain and nerve injury, providing new clinical therapeutic method for CIPN.


Assuntos
Neuralgia , Paclitaxel , Humanos , PPAR gama , Ácido Ursólico , Qualidade de Vida , Neuralgia/induzido quimicamente
10.
J Integr Neurosci ; 23(3): 64, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38538230

RESUMO

BACKGROUND: Pannexin1 (Panx1) is a membrane channel expressed in different cells of the nervous system and is involved in several pathological conditions, including pain and inflammation. At the central nervous system, the role of Panx1 is already well-established. However, in the periphery, there is a lack of information regarding the participation of Panx1 in neuronal sensitization. The dorsal root ganglion (DRG) is a critical structure for pain processing and modulation. For this reason, understanding the molecular mechanism in the DRG associated with neuronal hypersensitivity has become highly relevant to discovering new possibilities for pain treatment. Here, we aimed to investigate the role of Panx1 in acute nociception and peripheral inflammatory and neuropathic pain by using two different approaches. METHODS: Rats were treated with a selective Panx1 blocker peptide (10Panx) into L5-DRG, followed by ipsilateral intraplantar injection of carrageenan, formalin, or capsaicin. DRG neuronal cells were pre-treated with 10Panx and stimulated by capsaicin to evaluate calcium influx. Panx1 knockout mice (Panx1-KO) received carrageenan or capsaicin into the paw and paclitaxel intraperitoneally. The von Frey test was performed to measure the mechanical threshold of rats' and mice's paws before and after each treatment. RESULTS: Pharmacological blockade of Panx1 in the DRG of rats resulted in a dose-dependent decrease of mechanical allodynia triggered by carrageenan, and nociception decreased in the second phase of formalin. Nociceptive behavior response induced by capsaicin was significantly lower in rats treated with Panx1 blockade into DRG. Neuronal cells with Panx1 blockage showed lower intracellular calcium response than untreated cells after capsaicin administration. Accordingly, Panx1-KO mice showed a robust reduction in mechanical allodynia after carrageenan and a lower nociceptive response to capsaicin. A single dose of paclitaxel promoted acute mechanical pain in wildtype (WT) but not in Panx1-KO mice. Four doses of chemotherapy promoted chronic mechanical allodynia in both genotypes, although Panx1-KO mice had significant ablation in the first eight days. CONCLUSION: Our findings suggest that Panx1 is critical for developing peripheral inflammatory pain and acute nociception involving transient receptor potential vanilloid subtype 1 (TRPV1) but is not essential for neuropathic pain chronicity.


Assuntos
Hiperalgesia , Neuralgia , Ratos , Camundongos , Animais , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Hiperalgesia/patologia , Capsaicina/farmacologia , Capsaicina/uso terapêutico , Paclitaxel/efeitos adversos , Carragenina/efeitos adversos , Cálcio , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Formaldeído/efeitos adversos , Gânglios Espinais , Proteínas do Tecido Nervoso , Conexinas/genética , Conexinas/uso terapêutico
11.
Cell Biol Int ; 48(6): 872-882, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38480956

RESUMO

Oxaliplatin (OXA) has shown high effectiveness in the treatment of cancers, but its anticancer clinical effects often induce neurotoxicity leading to neuropathic pain. Oxidative damage and NLRP3 inflammasome play important roles in neuropathic pain development. Here, neuropathic pain mouse model was constructed by continuous intraperitoneal injection of OXA. OXA administration induced mechanical pain, spontaneous pain, thermal hyperalgesia and motor disability in mice. The spinal cord tissues of OXA mice exhibited the suppressed antioxidative response, the activated NLRP3 inflammasome mediated inflammatory responses, and the increased GSK-3ß activity. Next, we injected curcumin (CUR) intraperitoneally in OXA mice for seven consecutive days. CUR-treated mice showed increased mechanical pain thresholds, reduced number of spontaneous flinches, increased paw withdrawal latency, and restored latency to fall. While in the spinal cord, CUR treatment inhibited the NLRP3 inflammasome mediated inflammatory response, increased Nrf2/GPX4-mediated antioxidant responses, and decreased mitochondrial oxidative generation. Additionally, CUR combined with GSK-3ß through four covalent bonds and reduced GSK-3ß activity. In conclusion, our findings suggest that CUR treatment inhibits GSK-3ß activation, increases Nrf2 mediated antioxidant responses, inhibits oxidative damage and inflammatory reaction, and alleviates OXA-induced neuropathic pain.


Assuntos
Antioxidantes , Curcumina , Glicogênio Sintase Quinase 3 beta , Inflamação , Neuralgia , Oxaliplatina , Animais , Oxaliplatina/efeitos adversos , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Curcumina/farmacologia , Curcumina/uso terapêutico , Camundongos , Antioxidantes/farmacologia , Masculino , Glicogênio Sintase Quinase 3 beta/metabolismo , Inflamação/metabolismo , Inflamação/tratamento farmacológico , Inflamação/induzido quimicamente , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Modelos Animais de Doenças , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Medula Espinal/metabolismo , Medula Espinal/efeitos dos fármacos , Hiperalgesia/tratamento farmacológico , Hiperalgesia/induzido quimicamente , Hiperalgesia/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo
12.
J Biochem Mol Toxicol ; 38(3): e23669, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38459698

RESUMO

Paclitaxel (PTX) is a chemotherapeutic agent that is widely used for the treatment of several types of tumors. However, PTX-induced peripheral neuropathy (PIPN) is an adverse effect generally induced by long-term PTX use that significantly impairs the quality of life. Necroptosis has been implicated in various neurodegenerative disorders. Necroptosis of dorsal root ganglion neurons triggers the pathogenesis of PIPN. Therefore, the present study aims to investigate the role of spinal neuronal necroptosis in PIPN. It also explores the potential role of microglial polarization in necroptosis. We established rat models of PIPN via quartic PTX administration on alternate days (accumulated dose: 8 mg/kg). PTX induced obvious neuronal necroptosis and upregulated the expression of receptor-interacting protein kinase (RIP3) and mixed lineage kinase domain-like protein (MLKL) in the spinal dorsal horn. These effects were inhibited with a necroptosis pathway inhibitor, necrostatin-1 (Nec-1). The effect of microglial polarization on the regulation of spinal necroptosis was elucidated by administering minocycline to inhibit PTX-induced M1 polarization of spinal microglia caused by PTX. We observed a significant inhibitory effect of minocycline on PTX-induced necroptosis in spinal cord cells, based on the downregulation of RIP3 and MLKL expression, and suppression of tumor necrosis factor-α and IL-ß synthesis. Additionally, minocycline improved hyperalgesia symptoms in PIPN rats. Overall, this study suggests that PTX-induced polarization of spinal microglia leads to RIP3/MLKL-regulated necroptosis, resulting in PIPN. These findings suggest a potential target for the prevention and treatment of neuropathic pain.


Assuntos
Neuralgia , Paclitaxel , Ratos , Animais , Paclitaxel/efeitos adversos , Microglia/patologia , Necroptose , Minociclina/efeitos adversos , Qualidade de Vida , Neuralgia/induzido quimicamente
13.
Medicina (Kaunas) ; 60(3)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38541085

RESUMO

Refractory peripheral neuropathy can occur as a side effect in 60-70% of patients receiving Paclitaxel (PTX). Yokukansan (YKS) is a Japanese herbal medicine reported to have analgesic properties for entrapment nerve injuries. Therefore, we investigated the anti-allodynic effect of Yokukansan on Paclitaxel-induced neuropathic pain. All experiments used 6-week-old male Sprague Dawley rats. Mechanical allodynia was evaluated using a dynamic plantar aesthesiometer. A mobile touch-stimulator unit applied progressively increasing force to the mid-plantar region of the hind paw in a vertical direction until the animal withdrew its paw. This was carried out before the Paclitaxel administration and during the first, second, third, and fourth weeks. Using a rat model of PTX-induced neuropathic pain (PTX rat), we injected PTX (intraperitoneally, 2 mg/kg) five times every 2 days. Using the dynamic plantar test, we evaluated the anti-allodynic effect of YKS (orally administered, 1 g/kg). YKS administration on a daily basis significantly enhanced the withdrawal threshold in PTX rats and reduced the expression level of activated microglia immunostaining with Iba1, a specific marker for microglia. The intrathecal administration of WAY-100635 (5-hydroxytryptamine [5-HT]1A receptor antagonist) and Ketanserin (5-HT2A/2C receptor antagonist) inhibited the protective effects of YKS. YKS exhibited an anti-allodynic effect in a rodent model of PTX-induced neuropathic pain by reducing the sensitivity to pain stimuli. These results suggest that Yokukansan may activate 5-HT receptors in the spinal cord, mediating Paclitaxel-induced neuropathic pain.


Assuntos
Medicamentos de Ervas Chinesas , Hiperalgesia , Neuralgia , Humanos , Ratos , Masculino , Animais , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Serotonina , Paclitaxel/efeitos adversos , Ratos Sprague-Dawley , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Modelos Animais de Doenças
14.
J Oncol Pharm Pract ; 30(4): 752-758, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38415287

RESUMO

BACKGROUND: Capsaicin is a highly selective agonist of the transient receptor potential vanilloid 1. The adhesive capsaicin patch provides a high capsaicin concentration (8%) directly in the painful area - its efficacy in benign peripheral neuropathic pain (diabetic neuropathy or postherpetic neuralgia) has recently been described in the literature. However, there is scant evidence of its efficacy in chemotherapy-induced peripheral neuropathy (CIPN). This is a concern for patients with multiple myeloma, who suffer from peripheral neuropathic pain induced by first-line treatments (bortezomib or thalidomide). AIM: To describe improved control of CIPN in patients with multiple myeloma using adhesive capsaicin 8% patch. METHODS: We opted for a retrospective observational case series. Between October 2017 and October 2020, we collected clinical data from adult multiple myeloma patients affected by CIPN who were administered the capsaicin 8% patch in our palliative care outpatient clinic. We compiled Numerical Pain Rating Scale (NPRS) scores, patients' medication needs and performance status before and after patch application. RESULTS: Two women and five men with an average age of 62.85 years received bortezomib. Two patients (28.57% of the sample) also received thalidomide. The average NPRS score before patch application was 6.42/10. Five of the seven patients (71.42%) received a mean daily oral morphine dose of 52.85 mg/day, five (71.42%) received gabapentinoids and one (14.28%) received antidepressants. The average NPRS score decreased to 4/10 seven days after patch application, while the mean daily oral morphine dose remained stable. Performance status improved slightly in two patients (28.57%) and remained stable in the rest. One patient (14.28%) required an extra analgesic dose during patch application. CONCLUSIONS: Capsaicin 8% patch application appears to reduce pain intensity in patients with multiple myeloma suffering from CIPN.


Assuntos
Bortezomib , Capsaicina , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Feminino , Estudos Retrospectivos , Capsaicina/administração & dosagem , Idoso , Bortezomib/administração & dosagem , Bortezomib/efeitos adversos , Bortezomib/uso terapêutico , Antineoplásicos/efeitos adversos , Antineoplásicos/administração & dosagem , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Adesivo Transdérmico , Talidomida/administração & dosagem , Talidomida/efeitos adversos , Talidomida/uso terapêutico , Medição da Dor , Neuralgia/tratamento farmacológico , Neuralgia/induzido quimicamente
15.
Chem Biodivers ; 21(4): e202301935, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38363210

RESUMO

Cannabidiol (CBD) is a substance that exerts several therapeutic actions, including analgesia. CBD is generally administered orally, but its poor water solubility and metabolism impair its bioavailability. Thus, the development of molecules with better pharmacokinetic profile from cannabidiol becomes an interesting strategy for the design of novel analgesic drugs for the relief of painful conditions that are difficult to manage clinically, such as neuropathic pain. In the present study, an unprecedented analogue of CBD (1) was synthesized and some of its physicochemical properties were evaluated in silico as well as its stability in an acid medium. Additionally, its effect was investigated in a model of neuropathic pain induced by the chemotherapy drug paclitaxel in mice, in comparison with cannabidiol itself. Cannabidiol (20 mg/kg), pregabalin (30 mg/kg), or analogue 1 (5, 10, and 20 mg/kg), administered on the 14th day after the first administration of paclitaxel, attenuated the mechanical allodynia of the sensitized animals. The antinociceptive activity of analogue 1 was attenuated by previous administration of a cannabinoid CB1 receptor antagonist, AM 251, which indicates that its mechanism of action is related to the activation of CB1 receptors. In conclusion, the CBD analogue 1 developed in this study shows great potential to be used in the treatment of neuropathic pain.


Assuntos
Canabidiol , Neuralgia , Camundongos , Animais , Canabidiol/efeitos adversos , Modelos Animais de Doenças , Neuralgia/tratamento farmacológico , Neuralgia/induzido quimicamente , Paclitaxel/farmacologia , Analgésicos/farmacologia , Analgésicos/uso terapêutico
16.
J Peripher Nerv Syst ; 29(1): 38-46, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311337

RESUMO

OBJECTIVE: To define the incidence and risk factors for developing chemotherapy-induced neuropathic pain (CINP). METHODS: Retrospective, file-based analysis on cancer patients who received any type of conventional chemotherapy and for whom neurological evaluation was asked to reveal the extent of chemotherapy-induced peripheral neurotoxicity (CIPN) with or without CINP. CINP was assessed by means of the PI-NRS and Douleur Neuropathique-4 questionnaire. The total neuropathy score-clinical version graded the severity of CIPN. RESULTS: The medical files of 500 chemotherapy-treated cancer patients were reviewed. Any grade chronic CIPN was disclosed in 343 (68.6%) patients and CINP in 127 (37%) of them, corresponding to an overall percentage of 25.4% among all 500 included patients. The logistic regression analysis identified as independent predictors for CINP development the presence of uncomplicated diabetes (OR: 2.17; p = .039) and grade 2-3 chronic CIPN (OR: 1.61; p < .001) as also the administration of combined paclitaxel plus cisplatin (reference variable), compared to oxaliplatin (OR: 0.18; p = .001) and taxanes (OR: 0.16; p < .001). The increased severity of acute OXAIPN was associated with CINP (OR: 4.51; p < .001). OXA-treated patients with persistent CINP presented a worst likelihood to improve after chemotherapy discontinuation, than patients receiving combined paclitaxel plus cisplatin (OR: 50; p < .001). CONCLUSION: The incidence of CINP in our cohort was comparable to previous reports, with severities fluctuating upwards during chemotherapy and declined post-chemotherapy. Uncomplicated diabetes, the combined paclitaxel plus cisplatin treatment and the increased severity of acute oxaliplatin neurotoxicity mostly increase the risk for developing CINP. OXA-treated patients present less possibilities to recover from CINP after chemotherapy discontinuation, than other chemotherapies.


Assuntos
Antineoplásicos , Diabetes Mellitus , Neoplasias , Neuralgia , Síndromes Neurotóxicas , Humanos , Cisplatino/efeitos adversos , Oxaliplatina/efeitos adversos , Incidência , Estudos Retrospectivos , Neuralgia/induzido quimicamente , Neuralgia/epidemiologia , Paclitaxel/efeitos adversos , Neoplasias/tratamento farmacológico , Neoplasias/complicações , Síndromes Neurotóxicas/epidemiologia , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/tratamento farmacológico , Antineoplásicos/efeitos adversos , Fatores de Risco
17.
Front Immunol ; 15: 1303937, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384464

RESUMO

Introduction: Chemotherapy-induced neuropathic pain (CINP) is one of the main adverse effects of chemotherapy treatment. At the spinal level, CINP modulation involves glial cells that upregulate Toll-like receptor 4 (TLR4) and signaling pathways, which can be activated by pro-inflammatory mediators as the high mobility group box-1 (HMGB1). Objective: To evaluate the spinal role of HMGB1 in the paclitaxel-induced neuropathic pain via receptor for advanced glycation end products (RAGE) and TLR4 activation expressed in glial cells. Methods: Male C57BL/6 Wild type and TLR4 deficient mice were used in the paclitaxel-induced neuropathic pain model. The nociceptive threshold was measured using the von Frey filament test. In addition, recombinant HMGB1 was intrathecally (i.t.) injected to confirm its nociceptive potential. To evaluate the spinal participation of RAGE, TLR4, NF-kB, microglia, astrocytes, and MAPK p38 in HMGB1-mediated nociceptive effect during neuropathic pain and recombinant HMGB1-induced nociception, the drugs FPS-ZM1, LPS-RS, PDTC, minocycline, fluorocitrate, and SML0543 were respectively administrated by i.t. rout. Microglia, astrocytes, glial cells, RAGE, and TLR4 protein expression were analyzed by Western blot. ELISA immunoassay was also used to assess HMGB1, IL-1ß, and TNF-α spinal levels. Results: The pharmacological experiments demonstrated that spinal RAGE, TLR4, microglia, astrocytes, as well as MAPK p38 and NF-kB signaling are involved with HMGB1-induced nociception and paclitaxel-induced neuropathic pain. Furthermore, HMGB1 spinal levels were increased during the early stages of neuropathic pain and associated with RAGE, TLR4 and microglial activation. RAGE and TLR4 blockade decreased spinal levels of pro-inflammatory cytokines during neuropathic pain. Conclusion: Taken together, our findings indicate that HMGB1 may be released during the early stages of paclitaxel-induced neuropathic pain. This molecule activates RAGE and TLR4 receptors in spinal microglia, upregulating pro-inflammatory cytokines that may contribute to neuropathic pain.


Assuntos
Proteína HMGB1 , Neuralgia , Animais , Masculino , Camundongos , Citocinas/metabolismo , Proteína HMGB1/metabolismo , Hiperalgesia/metabolismo , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Neuralgia/induzido quimicamente , Neuralgia/metabolismo , NF-kappa B , Paclitaxel/toxicidade , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Receptor 4 Toll-Like/metabolismo
18.
J Clin Invest ; 134(6)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319733

RESUMO

Epigenetics is a biological process that modifies and regulates gene expression, affects neuronal function, and contributes to pain. However, the mechanism by which epigenetics facilitates and maintains chronic pain is poorly understood. We aimed to determine whether N6-methyladenosine (m6A) specifically modified by methyltransferase-like 14 (METTL14) alters neuronal activity and governs pain by sensitizing the GluN2A subunit of the N-methyl-d-aspartate receptor (NMDAR) in the dorsal root ganglion (DRG) neurons in a model of chemotherapy-induced neuropathic pain (CINP). Using dot blotting, immunofluorescence, gain/loss-of-function, and behavioral assays, we found that m6A levels were upregulated in L4-L6 DRG neurons in CINP in a DBP/METTL14-dependent manner, which was also confirmed in human DRGs. Blocking METTL14 reduced m6A methylation and attenuated pain hypersensitivity. Mechanistically, METTL14-mediated m6A modification facilitated the synaptic plasticity of DRG neurons by enhancing the GluN2A subunit of NMDAR, and inhibiting METTL14 blocked this effect. In contrast, overexpression of METTL14 upregulated m6A modifications, enhanced presynaptic NMDAR activity in DRG neurons, and facilitated pain sensation. Our findings reveal a previously unrecognized mechanism of METTL14-mediated m6A modification in DRG neurons to maintain neuropathic pain. Targeting these molecules may provide a new strategy for pain treatment.


Assuntos
Adenina , Antineoplásicos , Neuralgia , Humanos , Adenina/análogos & derivados , Metiltransferases/genética , Neuralgia/induzido quimicamente , Neuralgia/genética , Receptores de N-Metil-D-Aspartato/genética , Proteínas de Ligação a RNA
19.
Neurochem Res ; 49(4): 980-997, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38170385

RESUMO

Diabetic neuropathic pain is one of the most devasting disorders of peripheral nervous system. The loss of GABAergic inhibition is associated with the development of painful diabetic neuropathy. The current study evaluated the potential of 3-Hydroxy-2-methoxy-6-methyl flavone (3-OH-2'MeO6MF), to ameliorate peripheral neuropathic pain using an STZ-induced hyperglycemia rat model. The pain threshold was assessed by tail flick, cold, mechanical allodynia, and formalin test on days 0, 14, 21, and 28 after STZ administration accompanied by evaluation of several biochemical parameters. Administration of 3-OH-2'-MeO6MF (1,10, 30, and 100 mg/kg, i.p) significantly enhanced the tail withdrawal threshold in tail-flick and tail cold allodynia tests. 3-OH-2'-MeO6MF also increased the paw withdrawal threshold in mechanical allodynia and decreased paw licking time in the formalin test. Additionally, 3-OH-2'-MeO6MF also attenuated the increase in concentrations of myeloperoxidase (MPO), thiobarbituric acid reactive substances (TBARS), nitrite, TNF-α, and IL 6 along with increases in glutathione (GSH). Pretreatment of pentylenetetrazole (PTZ) (40 mg/kg, i.p.) abolished the antinociceptive effect of 3-OH-2'-MeO6MF in mechanical allodynia. Besides, the STZ-induced alterations in the GABA concentration and GABA transaminase activity attenuated by 3-OH-2'-MeO6MF treatment suggest GABAergic mechanisms. Molecular docking also authenticates the involvement of α2ß2γ2L GABA-A receptors and GABA-T enzyme in the antinociceptive activities of 3-OH-2'-MeO6MF.


Assuntos
Diabetes Mellitus , Neuropatias Diabéticas , Flavonas , Neuralgia , Ratos , Animais , Hiperalgesia/tratamento farmacológico , Neuropatias Diabéticas/tratamento farmacológico , Estreptozocina , Simulação de Acoplamento Molecular , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Neuralgia/complicações , Analgésicos/farmacologia , Ácido gama-Aminobutírico/farmacologia , Flavonas/farmacologia , Flavonas/uso terapêutico , Biomarcadores
20.
Neurotherapeutics ; 21(1): e00302, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38241153

RESUMO

Paclitaxel, a frequently utilized chemotherapeutic agent, often gives rise to severe and distressing sensory neuropathy in patients undergoing chemotherapy. Unfortunately, current therapeutics for chemotherapy-induced neuropathic pain (CINP) demonstrate limited effectiveness and are burdened with the potential for central side effects such as sedation, respiratory depression, cognitive impairment, and addiction, posing substantial clinical challenges. In light of these limitations, present study is designed to investigate the therapeutic potential of Dermorphin [D-Arg2, Lys4] (1-4) amide (DALDA), a preferential peripherally acting mu-opioid receptor agonist, in rat model of CINP. The primary objective was to assess the analgesic properties of DALDA and elucidate the underlying mechanisms governing its therapeutic activity. Our findings revealed that DALDA treatment significantly ameliorated paclitaxel-induced evoked and spontaneous ongoing pain in rats without causing drug addiction and other central side effects. Molecular analyses further unveiled that paclitaxel administration resulted in increased expression of TRP channels, NR2B, voltage-gated sodium channels (VGSCs) and neuroinflammatory markers in both the dorsal root ganglion (DRG) and the spinal cord (L4-L5 region) of rats. DALDA treatment significantly downregulated ion channels (TRPs, VGSCs) and NR2B expressions, concomitant with the inhibition of microglial activation, resulting in the suppression of oxido-nitrosative stress and neuroinflammatory cascade. Findings from the current study suggests that peripheral mu-opioid receptors may offer a potential target for the treatment of patients suffering from CINP, offering new avenues for improved pain relief while minimizing central side effects.


Assuntos
Antineoplásicos , Neuralgia , Peptídeos Opioides , Humanos , Ratos , Animais , Amidas/uso terapêutico , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Paclitaxel/toxicidade , Gânglios Espinais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA