Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Neuron ; 112(10): 1657-1675.e10, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38574730

RESUMO

Astrocytes strongly promote the formation and maturation of synapses by secreted proteins. Several astrocyte-secreted synaptogenic proteins controlling excitatory synapse development were identified; however, those that induce inhibitory synaptogenesis remain elusive. Here, we identify neurocan as an astrocyte-secreted inhibitory synaptogenic protein. After secretion from astrocytes, neurocan is cleaved into N- and C-terminal fragments. We found that these fragments have distinct localizations in the extracellular matrix. The neurocan C-terminal fragment localizes to synapses and controls cortical inhibitory synapse formation and function. Neurocan knockout mice lacking the whole protein or only its C-terminal synaptogenic domain have reduced inhibitory synapse numbers and function. Through super-resolution microscopy, in vivo proximity labeling by secreted TurboID, and astrocyte-specific rescue approaches, we discovered that the synaptogenic domain of neurocan localizes to somatostatin-positive inhibitory synapses and strongly regulates their formation. Together, our results unveil a mechanism through which astrocytes control circuit-specific inhibitory synapse development in the mammalian brain.


Assuntos
Astrócitos , Camundongos Knockout , Neurocam , Sinapses , Animais , Astrócitos/metabolismo , Sinapses/metabolismo , Sinapses/fisiologia , Camundongos , Neurocam/metabolismo , Humanos , Células Cultivadas , Somatostatina/metabolismo
2.
Int J Mol Sci ; 23(15)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35897768

RESUMO

The extracellular matrix (ECM) is an important regulator of excitability and synaptic plasticity, especially in its highly condensed form, the perineuronal nets (PNN). In patients with drug-resistant mesial temporal lobe epilepsy (MTLE), hippocampal sclerosis type 1 (HS1) is the most common histopathological finding. This study aimed to evaluate the ECM profile of HS1 in surgically treated drug-resistant patients with MTLE in correlation to clinical findings. Hippocampal sections were immunohistochemically stained for aggrecan, neurocan, versican, chondroitin-sulfate (CS56), fibronectin, Wisteria floribunda agglutinin (WFA), a nuclear neuronal marker (NeuN), parvalbumin (PV), and glial-fibrillary-acidic-protein (GFAP). In HS1, besides the reduced number of neurons and astrogliosis, we found a significantly changed expression pattern of versican, neurocan, aggrecan, WFA-specific glycosylation, and a reduced number of PNNs. Patients with a lower number of epileptic episodes had a less intense diffuse WFA staining in Cornu Ammonis (CA) fields. Our findings suggest that PNN reduction, changed ECM protein, and glycosylation expression pattern in HS1 might be involved in the pathogenesis and persistence of drug-resistant MTLE by contributing to the increase of CA pyramidal neurons' excitability. This research corroborates the validity of ECM molecules and their modulators as a potential target for the development of new therapeutic approaches to drug-resistant epilepsy.


Assuntos
Gliose , Neurocam , Agrecanas/metabolismo , Matriz Extracelular/metabolismo , Gliose/metabolismo , Hipocampo/metabolismo , Humanos , Neurocam/metabolismo , Esclerose/metabolismo , Versicanas/metabolismo
3.
Sci Rep ; 12(1): 7282, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35508614

RESUMO

As photoreceptor cells die during retinal degeneration, the surrounding microenvironment undergoes significant changes that are increasingly recognized to play a prominent role in determining the efficacy of therapeutic interventions. Chondroitin Sulphate Proteoglycans (CSPGs) are a major component of the extracellular matrix that have been shown to inhibit neuronal regrowth and regeneration in the brain and spinal cord, but comparatively little is known about their expression in retinal degeneration. Here we provide a comprehensive atlas of the expression patterns of four individual CSPGs in three models of inherited retinal degeneration and wildtype mice. In wildtype mice, Aggrecan presented a biphasic expression, while Neurocan and Phosphacan expression declined dramatically with time and Versican expression remained broadly constant. In degeneration, Aggrecan expression increased markedly in Aipl1-/- and Pde6brd1/rd1, while Versican showed regional increases in the periphery of Rho-/- mice. Conversely, Neurocan and Phosphacan broadly decrease with time in all models. Our data reveal significant heterogeneity in the expression of individual CSPGs. Moreover, there are striking differences in the expression patterns of specific CSPGs in the diseased retina, compared with those reported following injury elsewhere in the CNS. Better understanding of the distinct distributions of individual CSPGs will contribute to creating more permissive microenvironments for neuro-regeneration and repair.


Assuntos
Neurocam , Degeneração Retiniana , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Agrecanas/genética , Agrecanas/metabolismo , Animais , Proteoglicanas de Sulfatos de Condroitina/genética , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Lectinas Tipo C/metabolismo , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Neurocam/metabolismo , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/metabolismo , Retina/metabolismo , Degeneração Retiniana/genética , Versicanas/genética , Versicanas/metabolismo
4.
Pharmacology ; 107(5-6): 263-280, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35316816

RESUMO

INTRODUCTION: Cerebral ischemia induces reactive proliferation of astrocytes (astrogliosis) and glial scar formation. As a physical and biochemical barrier, the glial scar not only hinders spontaneous axonal regeneration and neuronal repair but also deteriorates the neuroinflammation in the recovery phase of ischemic stroke. OBJECTIVES: Previous studies have shown the neuroprotective effects of the valproic acid (2-n-propylpentanoic acid, VPA) against ischemic stroke, but its effects on the ischemia-induced formation of astrogliosis and glial scar are still unknown. As targeting astrogliosis has become a therapeutic strategy for ischemic stroke, this study was designed to determine whether VPA can inhibit the ischemic stroke-induced glial scar formation and to explore its molecular mechanisms. METHODS: Glial scar formation was induced by an ischemia-reperfusion (I/R) model in vivo and an oxygen and glucose deprivation (OGD)-reoxygenation (OGD/Re) model in vitro. Animals were treated with an intraperitoneal injection of VPA (250 mg/kg/day) for 28 days, and the ischemic stroke-related behaviors were assessed. RESULTS: Four weeks of VPA treatment could markedly reduce the brain atrophy volume and improve the behavioral deficits in rats' I/R injury model. The results showed that VPA administrated upon reperfusion or 1 day post-reperfusion could also decrease the expression of the glial scar makers such as glial fibrillary acidic protein, neurocan, and phosphacan in the peri-infarct region after I/R. Consistent with the in vivo data, VPA treatment showed a protective effect against OGD/Re-induced astrocytic cell death in the in vitro model and also decreased the expression of GFAP, neurocan, and phosphacan. Further studies revealed that VPA significantly upregulated the expression of acetylated histone 3, acetylated histone 4, and heat-shock protein 70.1B in the OGD/Re-induced glial scar formation model. CONCLUSION: VPA produces neuroprotective effects and inhibits the glial scar formation during the recovery period of ischemic stroke via inhibition of histone deacetylase and induction of Hsp70.1B.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Fármacos Neuroprotetores , Acidente Vascular Cerebral , Animais , Astrócitos/metabolismo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Gliose/tratamento farmacológico , Gliose/metabolismo , Histonas/metabolismo , Histonas/farmacologia , Histonas/uso terapêutico , Neurocam/metabolismo , Neurocam/farmacologia , Neurocam/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Ratos , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Ácido Valproico/farmacologia , Ácido Valproico/uso terapêutico
5.
Mol Psychiatry ; 27(5): 2522-2532, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35264728

RESUMO

Depression is more prevalent among adolescents than adults, but the underlying mechanisms remain largely unknown. Using a subthreshold chronic stress model, here we show that developmentally regulated expressions of the perineuronal nets (PNNs), and one of the components, Neurocan in the prelimbic cortex (PrL) are important for the vulnerability to stress and depressive-like behaviors in both adolescent and adult rats. Reduction of PNNs or Neurocan with pharmacological or viral methods to mimic the expression of PNNs in the PrL during adolescence compromised resilience to stress in adult rats, while virally mediated overexpression of Neurocan reversed vulnerability to stress in adolescent rats. Ketamine, a recent-approved drug for treatment-resistant depression rescued impaired function of Parvalbumin-positive neurons function, increased expression of PNNs in the PrL, and reversed depressive-like behaviors in adolescent rats. Furthermore, we show that Neurocan mediates the anti-depressant effect of ketamine, virally mediated reduction of Neurocan in the PrL abolished the anti-depressant effect of ketamine in adolescent rats. Our findings show an important role of Neurocan in depression in adolescence, and suggest a novel mechanism for the anti-depressant effect of ketamine.


Assuntos
Ketamina , Neurocam , Animais , Ketamina/metabolismo , Ketamina/farmacologia , Neurocam/metabolismo , Neurônios/metabolismo , Parvalbuminas/metabolismo , Córtex Pré-Frontal/metabolismo , Ratos
6.
Nat Commun ; 12(1): 6411, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34741066

RESUMO

Complex traits are characterized by multiple genes and variants acting simultaneously on a phenotype. However, studying the contribution of individual pairs of genes to complex traits has been challenging since human genetics necessitates very large population sizes, while findings from model systems do not always translate to humans. Here, we combine genetics with combinatorial RNAi (coRNAi) to systematically test for pairwise additive effects (AEs) and genetic interactions (GIs) between 30 lipid genome-wide association studies (GWAS) genes. Gene-based burden tests from 240,970 exomes show that in carriers with truncating mutations in both, APOB and either PCSK9 or LPL ("human double knock-outs") plasma lipid levels change additively. Genetics and coRNAi identify overlapping AEs for 12 additional gene pairs. Overlapping GIs are observed for TOMM40/APOE with SORT1 and NCAN. Our study identifies distinct gene pairs that modulate plasma and cellular lipid levels primarily via AEs and nominates putative drug target pairs for improved lipid-lowering combination therapies.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Pró-Proteína Convertase 9/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Apolipoproteínas B/genética , Apolipoproteínas B/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Humanos , Lipase Lipoproteica/genética , Lipase Lipoproteica/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/genética , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/metabolismo , Neurocam/genética , Neurocam/metabolismo , Pró-Proteína Convertase 9/genética
7.
Mol Neurobiol ; 58(12): 6077-6091, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34449046

RESUMO

Following spinal cord injury (SCI), reactive astrocytes in the glial scar produce high levels of chondroitin sulfate proteoglycans (CSPGs), which are known to inhibit axonal regeneration. Transforming growth factor beta (TGFß) is a well-known factor that induces the production of CSPGs, and in this study, we report a novel mechanism underlying TGFß's effects on CSPG secretion in primary rat astrocytes. We observed increased TGFß-induced secretion of the CSPGs neurocan and brevican, and this occurred simultaneously with inhibition of autophagy flux. In addition, we show that neurocan and brevican levels are further increased when TGFß is administered in the presence of an autophagy inhibitor, Bafilomycin-A1, while they are reduced when cells are treated with a concentration of rapamycin that is not sufficient to induce autophagy. These findings suggest that TGFß mediates its effects on CSPG secretion through autophagy pathways. They also represent a potential new approach to reduce CSPG secretion in vivo by targeting autophagy pathways, which could improve axonal regeneration after SCI.


Assuntos
Astrócitos/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Animais , Astrócitos/metabolismo , Autofagia/fisiologia , Brevicam/metabolismo , Inibidores Enzimáticos/farmacologia , Proteína Glial Fibrilar Ácida/metabolismo , Macrolídeos/farmacologia , Neurocam/metabolismo , Ratos , Ratos Long-Evans , Vacúolos/efeitos dos fármacos , Vacúolos/metabolismo
8.
Neurochem Res ; 46(3): 595-610, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33398638

RESUMO

Astrocytes are major producers of the extracellular matrix (ECM), which is involved in the plasticity of the developing brain. In utero alcohol exposure alters neuronal plasticity. Glycosaminoglycans (GAGs) are a family of polysaccharides present in the extracellular space; chondroitin sulfate (CS)- and heparan sulfate (HS)-GAGs are covalently bound to core proteins to form proteoglycans (PGs). Hyaluronic acid (HA)-GAGs are not bound to core proteins. In this study we investigated the contribution of astrocytes to CS-, HS-, and HA-GAG production by comparing the makeup of these GAGs in cortical astrocyte cultures and the neonatal rat cortex. We also explored alterations induced by ethanol in GAG and core protein levels in astrocytes. Finally, we investigated the relative expression in astrocytes of CS-PGs of the lectican family of proteins, major components of the brain ECM, in vivo using translating ribosome affinity purification (TRAP) (in Aldh1l1-EGFP-Rpl10a mice. Cortical astrocytes produce low levels of HA and show low expression of genes involved in HA biosynthesis compared to the whole developing cortex. Astrocytes have high levels of chondroitin-0-sulfate (C0S)-GAGs (possibly because of a higher sulfatase enzyme expression) and HS-GAGs. Ethanol upregulates C4S-GAGs as well as brain-specific lecticans neurocan and brevican, which are highly enriched in astrocytes of the developing cortex in vivo. These results begin to elucidate the role of astrocytes in the biosynthesis of CS- HS- and HA-GAGs, and suggest that ethanol-induced alterations of neuronal development may be in part mediated by increased astrocyte GAG levels and neurocan and brevican expression.


Assuntos
Astrócitos/metabolismo , Córtex Cerebral/metabolismo , Dissacarídeos/metabolismo , Etanol/farmacologia , Glicosaminoglicanos/metabolismo , Animais , Animais Recém-Nascidos , Astrócitos/química , Astrócitos/efeitos dos fármacos , Brevicam/metabolismo , Córtex Cerebral/química , Córtex Cerebral/efeitos dos fármacos , Sulfatos de Condroitina/análise , Sulfatos de Condroitina/metabolismo , Dissacarídeos/análise , Feminino , Glicosaminoglicanos/análise , Heparitina Sulfato/análise , Heparitina Sulfato/metabolismo , Ácido Hialurônico/análise , Ácido Hialurônico/metabolismo , Neurocam/metabolismo , Gravidez , Ratos Sprague-Dawley
9.
Exp Eye Res ; 190: 107859, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31705897

RESUMO

The accumulation of chondroitin sulfate proteoglycans (CSPGs) in the glial scar following acute damage to the central nervous system (CNS) limits the regeneration of injured axons. Given the rich diversity of CSPG core proteins and patterns of GAG sulfation, identifying the composition of these CSPGs is essential for understanding their roles in injury and repair. Differential expression of core proteins and sulfation patterns have been characterized in the brain and spinal cord of mice and rats, but a comprehensive study of these changes following optic nerve injury has not yet been performed. Here, we show that the composition of CSPGs in the optic nerve and retina following optic nerve crush (ONC) in mice and rats exhibits an increase in aggrecan, brevican, phosphacan, neurocan and versican, similar to changes following spinal cord injury. We also observe an increase in inhibitory 4-sulfated (4S) GAG chains, which suggests that the persistence of CSPGs in the glial scar opposes the growth of CNS axons, thereby contributing to the failure of regeneration and recovery of function.


Assuntos
Lesões por Esmagamento/metabolismo , Traumatismos do Nervo Óptico/metabolismo , Nervo Óptico/metabolismo , Retina/metabolismo , Agrecanas/metabolismo , Animais , Brevicam/metabolismo , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Modelos Animais de Doenças , Combinação de Medicamentos , Feminino , Glicosaminoglicanos/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Neurocam/metabolismo , Ratos , Ratos Sprague-Dawley , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/metabolismo , Sulfamonometoxina , Trimetoprima , Versicanas/metabolismo
10.
Sci Rep ; 9(1): 19421, 2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31857661

RESUMO

The inhalation of particulate matter (PM) increases the perineuronal nets (PNNs) in the cerebral cortex; however, little is known about the related molecular changes. We explored how PM exposure impacted cognitive function and the levels of PNN-related genes. BALB/c mice (6-week-old females, n = 32) were exposed to 1-5-µm diesel-extracted particles (DEPs) (100 µg/m3, 5 hours per day, 5 days per week) and categorized into the following four groups: 1) 4-week DEP exposure (n = 8); 2) 4-week control (n = 8); 3) 8-week DEP exposure (n = 8); and 4) 8-week control (n = 8). The Y-maze test and olfactory function test were conducted after 4 and 8 weeks of DEP exposure. The prefrontal cortex, olfactory bulb and temporal cortex were harvested from the animals in each group. The expression of genes related to PNNs (Tenascin C, matrix metalloproteinase [MMP]14, MMP9) and synaptic vesicular transporters of vesicular glutamergic transporter 1 (VGLUT1), VGLUT2, vesicular GABAergic transporter (VGAT) were measured. The temporal cortex was immunostained for neurocan, VGLUT1, and VGAT. The 4-week DEP group had lower total arm entry in the Y-maze test and olfactory sensitivity. These impaired behavioral functions recovered in the 8-week DEP group. Expression of tenascin C and MMP9 were increased in the cerebral cortex in the 8-week DEP group compared with the control group. The levels of VGLUT1, VGLUT2, and VGAT were elevated in the cerebral cortex of the 8-week DEP group compared with the control group. In immunostaining of the temporal cortex, the expression of neurocan, VGLUT1, and GAD67 were increased in the 8-week DEP group compared with the control group. The 4-week DEP inhalation impaired spatial activities and olfactory sensitivities. After 8 weeks of DEP exposure, the PNN components and their proteolytic enzymes and the vesicular transporters increased in the cerebral cortex.


Assuntos
Córtex Cerebral/patologia , Exposição por Inalação , Neurônios/patologia , Material Particulado/efeitos adversos , Animais , Peso Corporal , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Aprendizagem em Labirinto/efeitos da radiação , Memória de Curto Prazo/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Neurocam/genética , Neurocam/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Olfato/efeitos dos fármacos , Tenascina/genética , Tenascina/metabolismo , Emissões de Veículos , Proteínas de Transporte Vesicular/metabolismo
11.
Brain Behav ; 9(8): e01353, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31271523

RESUMO

INTRODUCTION: Cochlear ablation causing sensory deafferentation (SD) of the cochlear nucleus triggers complex re-arrangements in the cellular and molecular communication networks of the adult mammalian central auditory system. Participation of the extracellular matrix (ECM) in these processes is not well understood. METHODS: We investigated consequences of unilateral SD for the expression and distribution of the chondroitin sulfate proteoglycans, neurocan (Ncan) and aggrecan (Agg), alongside various plasticity markers in the auditory brainstem of the adult rat using immunohistochemical techniques. RESULTS: In the deafferented ventral cochlear nucleus (VCN), Ncan expression increased massively within 3 postoperative days (POD), but rapidly decreased thereafter. Agg showed a similar but less pronounced progression. Decrease in Ncan was spatially and temporally related to the re-innervation of VCN documented by the emergence of growth-associated protein Gap43 contained in nerve fibers and presynaptic boutons. Concurrently, astrocytes grew and expressed matrix metalloproteinase-2 (MMP2), an enzyme known to emerge only under re-innervation of VCN. MMP2 is capable of cleaving both Ncan and Agg when released. A transient modulation of the ECM in the central inferior colliculus on the side opposite to SD occurred by POD1. Modulations of glutamatergic synapses and Gap43 expression were detected, reflecting state changes of the surrounding tissue induced by transsynaptic effects of SD. CONCLUSIONS: The ECM variously participates in adaptive responses to sudden deafness by SD on several levels along the central auditory pathway, with a striking spatial and temporal relationship of Ncan modulation to astrocytic activation and to synaptogenesis.


Assuntos
Astrócitos/metabolismo , Vias Auditivas/metabolismo , Tronco Encefálico/metabolismo , Núcleo Coclear/metabolismo , Neurocam/metabolismo , Vias Aferentes/metabolismo , Agrecanas/metabolismo , Animais , Feminino , Metaloproteinase 2 da Matriz/metabolismo , Neurogênese/fisiologia , Ratos , Ratos Wistar
12.
J Mol Neurosci ; 69(2): 324-332, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31327154

RESUMO

Transforming growth factor-ß (TGF-ß) is a key factor that promotes fibrosis or scar formation, which could become an obstacle in the repair of impaired axons in the central nervous system (CNS) of the human body resulting from diseases or injuries. Considering that major pathological reactions occur during this process, we focused on TGF-secreting M2 macrophages to identify the interactions between M2 macrophages and astrocytes (AS) and verify the specific mechanism of fibrosis or glial scar formation. In the present study, we used the Transwell coculturing technique and found an increase in glial fibrillary acidic protein (GFAP), neurocan, IL-13, and TGF-ß expression after incubation for 48 h; the expression of these proteins decreased when additional inhibitors of the TGF-ß receptor were added. We concluded that fibrosis or glial scar formation would be enhanced by the secretion of neurocan from AS, resulting from the release of TGF-ß from M2 macrophages. We also used M2 macrophage-conditioned medium to further confirm this finding in a subsequent experiment. We hope that the findings in this research could provide a foundation for locating new targets for treating CNS diseases or injuries.


Assuntos
Astrócitos/metabolismo , Cicatriz/metabolismo , Macrófagos/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Meios de Cultivo Condicionados/farmacologia , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Interleucina-13/metabolismo , Masculino , Neurocam/metabolismo , Ratos , Ratos Sprague-Dawley
13.
Sci Rep ; 8(1): 6143, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29670169

RESUMO

Perineuronal nets (PNNs) are implicated in closure of critical periods of synaptic plasticity in the brain, but the molecular mechanisms by which PNNs regulate synapse development are obscure. A receptor complex of NCAM and EphA3 mediates postnatal remodeling of inhibitory perisomatic synapses of GABAergic interneurons onto pyramidal cells in the mouse frontal cortex necessary for excitatory/inhibitory balance. Here it is shown that enzymatic removal of PNN glycosaminoglycan chains decreased the density of GABAergic perisomatic synapses in mouse organotypic cortical slice cultures. Neurocan, a key component of PNNs, was expressed in postnatal frontal cortex in apposition to perisomatic synapses of parvalbumin-positive interneurons. Polysialylated NCAM (PSA-NCAM), which is required for ephrin-dependent synapse remodeling, bound less efficiently to neurocan than mature, non-PSA-NCAM. Neurocan bound the non-polysialylated form of NCAM at the EphA3 binding site within the immunoglobulin-2 domain. Neurocan inhibited NCAM/EphA3 association, membrane clustering of NCAM/EphA3 in cortical interneuron axons, EphA3 kinase activation, and ephrin-A5-induced growth cone collapse. These studies delineate a novel mechanism wherein neurocan inhibits NCAM/EphA3 signaling and axonal repulsion, which may terminate postnatal remodeling of interneuron axons to stabilize perisomatic synapses in vivo.


Assuntos
Neurônios GABAérgicos/metabolismo , Interneurônios/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Neurocam/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Animais , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Humanos , Camundongos , Moléculas de Adesão de Célula Nervosa/química , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Receptores Proteína Tirosina Quinases/química , Receptor EphA3
14.
Hippocampus ; 27(8): 920-933, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28512860

RESUMO

Hippocampal synaptic plasticity comprises a key cellular mechanism for information storage. In the hippocampus, both long-term potentiation (LTP) and long-term depression (LTD) are triggered by synaptic Ca2+ -elevations that are typically mediated by the opening of voltage-gated cation channels, such as N-methyl-d-aspartate receptors (NMDAR), in the postsynaptic density. The integrity of the post-synaptic density is ensured by the extracellular matrix (ECM). Here, we explored whether synaptic plasticity is affected in adult behaving mice that lack the ECM proteins brevican, neurocan, tenascin-C, and tenascin-R (KO). We observed that the profiles of synaptic potentiation and depression in the dentate gyrus (DG) were profoundly altered compared to plasticity profiles in wild-type littermates (WT). Specifically, synaptic depression was amplified in a frequency-dependent manner and although late-LTP (>24 hr) was expressed following strong afferent tetanization, the early component of LTP (<75 min post-tetanization) was absent. LTP (>4 hr) elicited by weaker tetanization was equivalent in WT and KO animals. Furthermore, this latter form of LTP was NMDAR-dependent in WT but not KO mice. Scrutiny of DG receptor expression revealed significantly lower levels of both the GluN2A and GluN2B subunits of the N-methyl-d-aspartate receptor, of the metabotropic glutamate receptor, mGlu5 and of the L-type calcium channel, Cav 1.3 in KO compared to WT animals. Homer 1a and of the P/Q-type calcium channel, Cav 1.2 were unchanged in KO mice. Taken together, findings suggest that in mice that lack multiple ECM proteins, synaptic plasticity is intact, but is fundamentally different.


Assuntos
Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Hipocampo/fisiologia , Plasticidade Neuronal/fisiologia , Animais , Animais Recém-Nascidos , Brevicam/genética , Brevicam/metabolismo , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Estimulação Elétrica , Antagonistas de Aminoácidos Excitatórios/farmacologia , Masculino , Camundongos , Camundongos Transgênicos , Neurocam/genética , Neurocam/metabolismo , Plasticidade Neuronal/genética , Técnicas de Patch-Clamp , Piperazinas/farmacologia , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Tenascina/genética , Tenascina/metabolismo , Vigília
15.
PLoS One ; 11(11): e0166672, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27880801

RESUMO

Epilepsy is a serious brain disorder with diverse seizure types and epileptic syndromes. AMPA receptor antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzoquinoxaline-2,3-dione (NBQX) attenuates spontaneous recurrent seizures in rats. However, the anti-epileptic effect of NBQX in chronic epilepsy model is poorly understood. Perineuronal nets (PNNs), specialized extracellular matrix structures, surround parvalbumin-positive inhibitory interneurons, and play a critical role in neuronal cell development and synaptic plasticity. Here, we focused on the potential involvement of PNNs in the treatment of epilepsy by NBQX. Rats were intraperitoneally (i.p.) injected with pentylenetetrazole (PTZ, 50 mg/kg) for 28 consecutive days to establish chronic epilepsy models. Subsequently, NBQX (20 mg/kg, i.p.) was injected for 3 days for the observation of behavioral measurements of epilepsy. The Wisteria floribundi agglutinin (WFA)-labeled PNNs were measured by immunohistochemical staining to evaluate the PNNs. The levels of three components of PNNs such as tenascin-R, aggrecan and neurocan were assayed by Western blot assay. The results showed that there are reduction of PNNs and decrease of tenascin-R, aggrecan and neurocan in the medial prefrontal cortex (mPFC) in the rats injected with PTZ. However, NBQX treatment normalized PNNs, tenascin-R, aggrecan and neurocan levels. NBQX was sufficient to decrease seizures through increasing the latency to seizures, decrease the duration of seizure onset, and reduce the scores for the severity of seizures. Furthermore, the degradation of mPFC PNNs by chondroitinase ABC (ChABC) exacerbated seizures in PTZ-treated rats. Finally, the anti-epileptic effect of NBQX was reversed by pretreatment with ChABC into mPFC. These findings revealed that PNNs degradation in mPFC is involved in the pathophysiology of epilepsy and enhancement of PNNs may be effective for the treatment of epilepsy.


Assuntos
Anticonvulsivantes/farmacologia , Epilepsia/prevenção & controle , Nervos Periféricos/efeitos dos fármacos , Quinoxalinas/farmacologia , Receptores de AMPA/antagonistas & inibidores , Agrecanas/metabolismo , Animais , Anticonvulsivantes/uso terapêutico , Comportamento Animal/efeitos dos fármacos , Condroitina ABC Liase/farmacologia , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Epilepsia/induzido quimicamente , Epilepsia/patologia , Imuno-Histoquímica , Masculino , Neurocam/metabolismo , Pentilenotetrazol/toxicidade , Nervos Periféricos/metabolismo , Córtex Pré-Frontal/metabolismo , Quinoxalinas/uso terapêutico , Ratos , Ratos Wistar , Receptores de AMPA/metabolismo , Tenascina/metabolismo
16.
Brain Res ; 1646: 377-383, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27317830

RESUMO

OBJECTIVE: This study aimed to investigate whether ß-amyloid (Aß) was able to enhance neurocan expression in a Sox9 dependent manner in astrocytes. METHODS AND MATERIALS: Astrocytes were incubated with Aß at different concentrations, the expression of Sox9 and neurocan was detected by Western blot assay. Meanwhile, the viability and proliferation of astrocytes were assessed by MTT assay. Then, the Sox9 expression was silenced, and the expression of Sox9 and neurocan was examined. RESULTS: After incubation with Aß, the viability of astrocytes was increased regardless silencing of Sox9 (all P<0.05). The proliferation of astrocytes was also gradually increased with the increase in the time of Aß incubation (all P<0.05). With the increase in Aß concentration, the expression of Sox9 and neurocan was also increased (all P<0.05). However, after silencing of Sox9 expression, the neurocan expression was significantly reduced as compared to control group and scra-siRNA group (all P<0.05). CONCLUSION: Our study shows the viability and proliferation of astrocytes are significantly increased by Aß in a dose dependent manner. Moreover, Aß may effectively up-regulate the neurocan expression via regulating Sox9.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/administração & dosagem , Astrócitos/metabolismo , Neurocam/metabolismo , Fragmentos de Peptídeos/administração & dosagem , Fatores de Transcrição SOX9/metabolismo , Animais , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/metabolismo
17.
J Orthop Surg Res ; 11: 34, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-27006005

RESUMO

BACKGROUND: In the setting of severe spinal cord injury (SCI), there is no markedly efficacious clinical therapeutic regimen to improve neurological function. After epidural decompression, as is shown in animal models, the swollen cord against non-elastic dura and elevation of intrathecal pressure may be the main causes of aggravated neurologic function. We performed an intrathecal decompression by longitudinal durotomy to evaluate the neuroprotective effect after severe SCI by comparing with epidural decompression. METHODS: Eighty-four adult male Sprague-Dawley rats were assigned to three groups: sham group (group S), epidural decompression (group C), and intrathecal decompression group (group D). A weight-drop model was performed at T9. The Basso-Beattie-Bresnahan (BBB) score was used to evaluate neurological function. Animals were sacrificed at corresponding time points, and we performed pathohistological examinations including HE staining and immunohistochemical staining (IHC) of glial fibrillary acidic protein (GFAP), neurocan, and ED1 at the epicenter of injured cords. Finally, the lesions were quantitatively analyzed by SPSS 22.0. RESULTS: The mortality rates were, respectively, 5.55 % (2/36) and 13.9 % (5/36) in groups C and D, and there was no significant difference between groups C and D (P = 0.214). Compared with epidural decompression, intrathecal decompression could obviously improve BBB scores after SCI. HE staining indicated that more white matter was spared, and fewer vacuoles and less axon degradation were observed. The expression peak of GFAP, neurocan, and ED1 occurred at an earlier time and was down-regulated in group D compared to group C. CONCLUSIONS: Our findings based on rat SCI model suggest that intrathecal decompression by longitudinal durotomy can prompt recovery of neurological function, and this neuroprotective mechanism may be related to the down-regulation of GFAP, neurocan, and ED1.


Assuntos
Descompressão Cirúrgica/métodos , Traumatismos da Medula Espinal/cirurgia , Animais , Modelos Animais de Doenças , Dura-Máter/cirurgia , Ectodisplasinas/metabolismo , Espaço Epidural , Proteína Glial Fibrilar Ácida/metabolismo , Masculino , Atividade Motora , Neurocam/metabolismo , Distribuição Aleatória , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia , Análise de Sobrevida
18.
J Spinal Cord Med ; 39(2): 220-8, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26322652

RESUMO

OBJECTIVE: The primary focus of this study was to investigate the effects of local profound hypothermia and to explore the possible mechanism in adult rats with spinal cord injury. STUDY DESIGN AND METHODS: Spinal cord injury models were established by placing aneurysm clips on T10. An epidural perfusion device was applied to maintain a steady temperature (18 °C) for 120 min with gradual rewarming to 37 °C Total hypothermic duration lasted up to about 170 min. The expression of axon regeneration inhibitors was tested by Western blot and real-time PCR. Luxol Fast Blue (LFB) stain and Bielschowsky silver stain were used to observe spinal cord morphology. Motor function of the hind limbs (BBB score) was monitored for 21 days. RESULTS: The expressions of RhoA, ROCK-II, NG2, Neurocan, Brevican, and Nogo-A were downregulated by regional hypothermia (RH) after spinal cord injury. Subsequent observation showed that rats that had received RH had an alleviated demyelinating condition and a greater number of nerve fibers. Furthermore, the RH group achieved higher BBB scores than the spinal cord injury (SCI) group. CONCLUSIONS: Recovery of hind limb function in rats can be promoted by local profound hypothermia; this may be caused by the suppression of axon regeneration inhibitors.


Assuntos
Hipotermia Induzida , Regeneração Nervosa , Traumatismos da Medula Espinal/terapia , Animais , Axônios/metabolismo , Axônios/fisiologia , Brevicam/genética , Brevicam/metabolismo , Regulação para Baixo , Membro Posterior/inervação , Membro Posterior/fisiologia , Masculino , Neurocam/genética , Neurocam/metabolismo , Proteínas Nogo/genética , Proteínas Nogo/metabolismo , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal/reabilitação , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
19.
Neurosci Lett ; 566: 36-41, 2014 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-24561092

RESUMO

In the central nervous system the extracellular matrix has important roles, e.g. supporting the extracellular space, controlling the tissue hydration, binding soluble factors and influencing their diffusion. The distribution of the extracellular matrix components in the brain has been mapped but data on the circumventricular organs (CVOs) is not available yet. The CVOs lack the blood-brain barrier and have relatively large perivascular spaces. The present study investigates tenascin-R and the lecticans: aggrecan, brevican, neurocan, and versican in the median eminence, the area postrema, the vascular organ of the lamina terminalis, the subfornical organ, the pineal body and the subcommissural organ of the rat applying immunohistochemical methods, and lectin histochemistry, using Wisteria floribunda agglutinin (WFA). The extracellular matrix components were found intensely expressed in the CVOs with two exceptions: aggrecan immunoreactivity visualized only neurons in the arcuate nucleus, and the subcommissural organ was not labeled with either WFA, or lecticans, or tenascin-R. The different labelings usually overlapped each other. The distribution of the extracellular matrix components marked the territories of the CVOs. Considering these we suppose that the extracellular matrix is essential in the maintenance of CVO functions providing the large extracellular space which is required for diffusion and other processes important in their chemosensitive and neurosecretory activities. The decrease of extracellular matrix beyond the border of the organs may contribute to the control of the diffusion of molecules from the CVOs into the surrounding brain substance.


Assuntos
Área Postrema/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Hipotálamo/metabolismo , Eminência Mediana/metabolismo , Sistemas Neurossecretores/metabolismo , Agrecanas/metabolismo , Animais , Brevicam/metabolismo , Feminino , Masculino , Neurocam/metabolismo , Glândula Pineal/metabolismo , Ratos Wistar , Órgão Subcomissural/metabolismo , Órgão Subfornical/metabolismo , Tenascina/metabolismo , Versicanas/metabolismo
20.
J Neurosurg ; 120(5): 1147-55, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24460490

RESUMO

OBJECT: Neurocan is a major form of growth-inhibitory molecule (growth-IM) that suppresses axonal regeneration after neural injury. Bone marrow stromal cells (MSCs) have been shown to inhibit neurocan expression in vitro and in animal models of cerebral ischemia. Therefore, the present study was designed to investigate the effects of treatment of MSCs impregnated with collagen scaffolds on neurocan expression after traumatic brain injury (TBI). METHODS: Adult male Wistar rats were injured with controlled cortical impact and treated with saline, human MSCs (hMSCs) (3 × 10(6)) alone, or hMSCs (3 × 10(6)) impregnated into collagen scaffolds (scaffold + hMSCs) transplanted into the lesion cavity 7 days after TBI (20 rats per group). Rats were sacrificed 14 days after TBI, and brain tissues were harvested for immunohistochemical studies, Western blot analyses, laser capture microdissections, and quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR) to evaluate neurocan protein and gene expressions after various treatments. RESULTS: Animals treated with scaffold + hMSCs after TBI showed increased axonal and synaptic densities compared with the other groups. Scaffold + hMSC treatment was associated with reduced TBI-induced neurocan protein expression and upregulated growth-associated protein 43 (GAP-43) and synaptophysin expression in the lesion boundary zone. In addition, animals in the scaffold + hMSC group had decreased neurocan transcription in reactive astrocytes after TBI. Reduction of neurocan expression was significantly greater in the scaffold + hMSC group than in the group treated with hMSCs alone. CONCLUSIONS: The results of this study show that transplanting hMSCs with scaffolds enhances the effect of hMSCs on axonal plasticity in TBI rats. This enhanced axonal plasticity may partially be attributed to the downregulation of neurocan expression by hMSC treatment after injury.


Assuntos
Axônios/metabolismo , Lesões Encefálicas/terapia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Neurocam/metabolismo , Alicerces Teciduais , Animais , Axônios/patologia , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Colágeno/metabolismo , Modelos Animais de Doenças , Masculino , Ratos , Ratos Wistar , Recuperação de Função Fisiológica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA