Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 310
Filtrar
1.
ACS Appl Mater Interfaces ; 14(38): 42887-42903, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36094079

RESUMO

Acetaminophen (APAP)-induced liver injury (AILI) is a common liver disease in clinical practice. Only one clinically approved drug, N-acetylcysteine (NAC), for the treatment of AILI is available in clinics, but novel treatment strategies are still needed due to the complicated pathological changes of AILI and the side effects of NAC. Here, we found that astaxanthin (ASX) can prevent AILI through the Nrf2/HO-1 pathway. After treatment with ASX, there was a positive activation of the Nrf2/HO-1 pathway in AILI models both in vivo and in vitro accompanied by enhanced autophagy and reduced ferroptosis. In APAP-challenged L02 liver cells, ASX reduced autophagy and enhanced apoptosis of the cells. Furthermore, we developed ASX-loaded hollow mesoporous silica nanoparticles (HMSN@ASX) to improve the aqueous solubility of ASX and targeted delivery of ASX to the liver and then significantly improve the therapeutic effects. Taken together, we found that ASX can protect against AILI by activating the Nrf2/HO-1 pathway, which mainly affects oxidative stress, autophagy, and ferroptosis processes, and the HMSN@ASX nanosystem can target the liver to enhance the treatment efficiency of AILI.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Ferroptose , Neuropatia Hereditária Motora e Sensorial , Acetaminofen/metabolismo , Acetilcisteína , Autofagia , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Crônica Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas/patologia , Heme Oxigenase-1/metabolismo , Neuropatia Hereditária Motora e Sensorial/tratamento farmacológico , Neuropatia Hereditária Motora e Sensorial/metabolismo , Neuropatia Hereditária Motora e Sensorial/patologia , Humanos , Fígado/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Dióxido de Silício/farmacologia , Xantofilas
2.
Neuromuscul Disord ; 32(6): 503-511, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35501275

RESUMO

Focal thickening of the myelin sheath, also known as tomacula, is a characteristic pathological feature of patients with hereditary neuropathy with liability to pressure palsies (HNPP). However, a deeper understanding of the pathology underlying unmyelinated fibers and nonmyelinating Schwann cells is required. Electron microscopic examination of sural nerve biopsy specimens was performed for 14 HNPP patients with peripheral myelin protein 22 (PMP22) deletion, and their results were compared to 12 normal controls and 14 Charcot-Marie-Tooth disease type 1A (CMT1A) patients with PMP22 duplication. The number of unmyelinated axons in a single axon-containing nonmyelinating Schwann cell subunit in the HNPP group significantly increased compared with that in normal controls (1.99 ±â€¯0.66 vs. 1.57 ±â€¯0.52, p < 0.05). Conversely, these numbers significantly decreased in the CMT1A group compared with those in normal controls (1.16 ±â€¯0.16, p < 0.05). Some unmyelinated axons in patients with HNPP were incompletely surrounded by the cytoplasm of Schwann cells, almost as if the Schwann cells failed to form mesaxons; such failure in mesaxon formation was not observed in normal controls or in patients with CMT1A. These findings suggest that PMP22 dosage affects nonmyelinating as well as myelinating Schwann cells.


Assuntos
Doença de Charcot-Marie-Tooth , Neuropatia Hereditária Motora e Sensorial , Artrogripose , Doença de Charcot-Marie-Tooth/diagnóstico , Neuropatia Hereditária Motora e Sensorial/genética , Neuropatia Hereditária Motora e Sensorial/patologia , Humanos , Proteínas da Mielina/genética , Proteínas da Mielina/metabolismo , Células de Schwann/patologia
3.
Biomolecules ; 11(8)2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34439778

RESUMO

Neuro-muscular disorders include a variety of diseases induced by genetic mutations resulting in muscle weakness and waste, swallowing and breathing difficulties. However, muscle alterations and nerve depletions involve specific molecular and cellular mechanisms which lead to the loss of motor-nerve or skeletal-muscle function, often due to an excessive cell death. Morphological and molecular studies demonstrated that a high number of these disorders seem characterized by an upregulated apoptosis which significantly contributes to the pathology. Cell death involvement is the consequence of some cellular processes that occur during diseases, including mitochondrial dysfunction, protein aggregation, free radical generation, excitotoxicity and inflammation. The latter represents an important mediator of disease progression, which, in the central nervous system, is known as neuroinflammation, characterized by reactive microglia and astroglia, as well the infiltration of peripheral monocytes and lymphocytes. Some of the mechanisms underlying inflammation have been linked to reactive oxygen species accumulation, which trigger mitochondrial genomic and respiratory chain instability, autophagy impairment and finally neuron or muscle cell death. This review discusses the main inflammatory pathways contributing to cell death in neuro-muscular disorders by highlighting the main mechanisms, the knowledge of which appears essential in developing therapeutic strategies to prevent the consequent neuron loss and muscle wasting.


Assuntos
Apoptose/genética , Neuropatia Hereditária Motora e Sensorial/metabolismo , Doença dos Neurônios Motores/metabolismo , Doenças Musculares/metabolismo , Distrofias Musculares/metabolismo , Doenças da Junção Neuromuscular/metabolismo , Astrócitos/metabolismo , Astrócitos/patologia , Autofagia/genética , Citocinas/genética , Citocinas/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Neuropatia Hereditária Motora e Sensorial/genética , Neuropatia Hereditária Motora e Sensorial/patologia , Humanos , Inflamação , Microglia/metabolismo , Microglia/patologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Doença dos Neurônios Motores/genética , Doença dos Neurônios Motores/patologia , Doenças Musculares/genética , Doenças Musculares/patologia , Distrofias Musculares/genética , Distrofias Musculares/patologia , NF-kappa B/genética , NF-kappa B/metabolismo , Doenças da Junção Neuromuscular/genética , Doenças da Junção Neuromuscular/patologia , Neurônios/metabolismo , Neurônios/patologia , Transdução de Sinais
4.
Ann Clin Transl Neurol ; 8(6): 1330-1342, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33943039

RESUMO

BACKGROUND: The expansion of GGC repeat in the 5' untranslated region of the NOTCH2NLC has been associated with various neurogenerative disorders of the central nervous system and, more recently, oculopharyngodistal myopathy. This study aimed to report patients with distal weakness with both neuropathic and myopathic features on electrophysiology and pathology who present GGC repeat expansions in the NOTCH2NLC. METHODS: Whole-exome sequencing (WES) and long-read sequencing were implemented to identify the candidate genes. In addition, the available clinical data and the pathological changes associated with peripheral nerve and muscle biopsies were reviewed and studied. RESULTS: We identified and validated GGC repeat expansions of NOTCH2NLC in three unrelated patients who presented with progressive weakness predominantly affecting distal lower limb muscles, following negative results in an initial WES. We found intranuclear inclusions with multiple proteins deposits in the nuclei of both myofibers and Schwann cells. The clinical features of these patients are compatible with the diagnosis of distal motor neuropathy and rimmed vacuolar myopathy. INTERPRETATION: These phenotypes enrich the class of features associated with NOTCH2NLC-related repeat expansion disorders (NRED), and provide further evidence that the neurological symptoms of NRED include not only brain, spinal cord, and peripheral nerves damage, but also myopathy, and that overlapping symptoms might exist.


Assuntos
Miopatias Distais/genética , Neuropatia Hereditária Motora e Sensorial/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas do Tecido Nervoso/genética , Adulto , Miopatias Distais/patologia , Miopatias Distais/fisiopatologia , Feminino , Neuropatia Hereditária Motora e Sensorial/patologia , Neuropatia Hereditária Motora e Sensorial/fisiopatologia , Humanos , Corpos de Inclusão Intranuclear/genética , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Expansão das Repetições de Trinucleotídeos/genética , Sequenciamento do Exoma
5.
J Mol Neurosci ; 71(12): 2462-2467, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33791913

RESUMO

Sensory ataxic neuropathy, dysarthria, and ophthalmoparesis (SANDO) is a rare mitochondrial disorder associated with mutations in the POLG gene, which encodes the DNA polymerase gamma catalytic subunit. A few POLG-related SANDO cases have been reported, but the genotype-phenotype correlation remains unclear. Here, we report a patient with SANDO carrying two novel missense variants (c.2543G>C, p.G848A and c.452 T>C, p.L151P) in POLG. We also reviewed previously reported cases to systematically evaluate the clinical and genetic features of POLG-related SANDO. A total of 35 distinct variants in the coding region of POLG were identified in 63 patients with SANDO. The most frequent variant was the p.A467T variant, followed by the p.W748S variant. The clinical spectrum of SANDO is heterogeneous. No clear correlation has been observed between the mutation types and clinical phenotypes. Our findings expand the mutational spectrum of POLG and contribute to clinical management and genetic counseling for POLG-related SANDO.


Assuntos
DNA Polimerase gama/genética , Disartria/genética , Neuropatia Hereditária Motora e Sensorial/genética , Oftalmoplegia/genética , Adulto , Disartria/patologia , Neuropatia Hereditária Motora e Sensorial/patologia , Humanos , Masculino , Mutação de Sentido Incorreto , Oftalmoplegia/patologia , Fenótipo
6.
Brain ; 144(2): 584-600, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33559681

RESUMO

The extracellular matrix comprises a network of macromolecules such as collagens, proteoglycans and glycoproteins. VWA1 (von Willebrand factor A domain containing 1) encodes a component of the extracellular matrix that interacts with perlecan/collagen VI, appears to be involved in stabilizing extracellular matrix structures, and demonstrates high expression levels in tibial nerve. Vwa1-deficient mice manifest with abnormal peripheral nerve structure/function; however, VWA1 variants have not previously been associated with human disease. By interrogating the genome sequences of 74 180 individuals from the 100K Genomes Project in combination with international gene-matching efforts and targeted sequencing, we identified 17 individuals from 15 families with an autosomal-recessive, non-length dependent, hereditary motor neuropathy and rare biallelic variants in VWA1. A single disease-associated allele p.(G25Rfs*74), a 10-bp repeat expansion, was observed in 14/15 families and was homozygous in 10/15. Given an allele frequency in European populations approaching 1/1000, the seven unrelated homozygote individuals ascertained from the 100K Genomes Project represents a substantial enrichment above expected. Haplotype analysis identified a shared 220 kb region suggesting that this founder mutation arose >7000 years ago. A wide age-range of patients (6-83 years) helped delineate the clinical phenotype over time. The commonest disease presentation in the cohort was an early-onset (mean 2.0 ± 1.4 years) non-length-dependent axonal hereditary motor neuropathy, confirmed on electrophysiology, which will have to be differentiated from other predominantly or pure motor neuropathies and neuronopathies. Because of slow disease progression, ambulation was largely preserved. Neurophysiology, muscle histopathology, and muscle MRI findings typically revealed clear neurogenic changes with single isolated cases displaying additional myopathic process. We speculate that a few findings of myopathic changes might be secondary to chronic denervation rather than indicating an additional myopathic disease process. Duplex reverse transcription polymerase chain reaction and immunoblotting using patient fibroblasts revealed that the founder allele results in partial nonsense mediated decay and an absence of detectable protein. CRISPR and morpholino vwa1 modelling in zebrafish demonstrated reductions in motor neuron axonal growth, synaptic formation in the skeletal muscles and locomotive behaviour. In summary, we estimate that biallelic variants in VWA1 may be responsible for up to 1% of unexplained hereditary motor neuropathy cases in Europeans. The detailed clinical characterization provided here will facilitate targeted testing on suitable patient cohorts. This novel disease gene may have previously evaded detection because of high GC content, consequential low coverage and computational difficulties associated with robustly detecting repeat-expansions. Reviewing previously unsolved exomes using lower QC filters may generate further diagnoses.


Assuntos
Proteínas da Matriz Extracelular/genética , Neuropatia Hereditária Motora e Sensorial/genética , Adulto , Idoso , Animais , Comportamento Animal/fisiologia , Criança , Feminino , Neuropatia Hereditária Motora e Sensorial/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/patologia , Mutação , Linhagem , Adulto Jovem , Peixe-Zebra
7.
Annu Rev Pathol ; 16: 487-509, 2021 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-33497257

RESUMO

Hereditary peripheral neuropathy (HPN) is a complex group of neurological disorders caused by mutations in genes expressed by neurons and Schwann cells. The inheritance of a single mutation or multiple mutations in several genes leads to disease phenotype. Patients exhibit symptoms during development, at an early age or later in adulthood. Most of the mechanistic understanding about these neuropathies comes from animal models and histopathological analyses of postmortem human tissues. Diagnosis is often very complex due to the heterogeneity and overlap in symptoms and the frequent overlap between various genes and different mutations they possess. Some symptoms in HPN are common through different subtypes such as axonal degeneration, demyelination, and loss of motor and sensory neurons, leading to similar physiologic abnormalities. Recent advances in gene-targeted therapies, genetic engineering, and next-generation sequencing have augmented our understanding of the underlying pathogenetic mechanisms of HPN.


Assuntos
Neuropatia Hereditária Motora e Sensorial/genética , Neuropatia Hereditária Motora e Sensorial/patologia , Adulto , Animais , Neuropatia Hereditária Motora e Sensorial/diagnóstico , Humanos , Mutação
8.
Neurosci Lett ; 744: 135595, 2021 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-33359733

RESUMO

Development of peripheral nervous system (PNS) myelin involves a coordinated series of events between growing axons and the Schwann cell (SC) progenitors that will eventually ensheath them. Myelin sheaths have evolved out of necessity to maintain rapid impulse propagation while accounting for body space constraints. However, myelinating SCs perform additional critical functions that are required to preserve axonal integrity including mitigating energy consumption by establishing the nodal architecture, regulating axon caliber by organizing axonal cytoskeleton networks, providing trophic and potentially metabolic support, possibly supplying genetic translation materials and protecting axons from toxic insults. The intermediate steps between the loss of these functions and the initiation of axon degeneration are unknown but the importance of these processes provides insightful clues. Prevalent demyelinating diseases of the PNS include the inherited neuropathies Charcot-Marie-Tooth Disease, Type 1 (CMT1) and Hereditary Neuropathy with Liability to Pressure Palsies (HNPP) and the inflammatory diseases Acute Inflammatory Demyelinating Polyneuropathy (AIDP) and Chronic Inflammatory Demyelinating Polyneuropathy (CIDP). Secondary axon degeneration is a common feature of demyelinating neuropathies and this process is often correlated with clinical deficits and long-lasting disability in patients. There is abundant electrophysiological and histological evidence for secondary axon degeneration in patients and rodent models of PNS demyelinating diseases. Fully understanding the involvement of secondary axon degeneration in these diseases is essential for expanding our knowledge of disease pathogenesis and prognosis, which will be essential for developing novel therapeutic strategies.


Assuntos
Axônios/metabolismo , Doenças Desmielinizantes/metabolismo , Degeneração Neural/metabolismo , Polineuropatias/metabolismo , Animais , Artrogripose/metabolismo , Artrogripose/patologia , Axônios/patologia , Doença de Charcot-Marie-Tooth/metabolismo , Doença de Charcot-Marie-Tooth/patologia , Doenças Desmielinizantes/patologia , Neuropatia Hereditária Motora e Sensorial/metabolismo , Neuropatia Hereditária Motora e Sensorial/patologia , Humanos , Degeneração Neural/patologia , Polineuropatias/patologia , Células de Schwann/metabolismo , Células de Schwann/patologia
9.
J Peripher Nerv Syst ; 25(4): 423-428, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33107133

RESUMO

Minifascicular neuropathy (MN) is a rare, autosomal recessive disease with prominent structural changes of peripheral nerves. So far, it has been observed in females with a 46,XY karyotype and mutations of the Desert Hedgehog (DHH) gene, thus linking MN to gonadal dysgenesis (GD) and disorders of sex development (DSD). However, a 46,XX proband with normal female sex and gender development underwent clinical evaluations, nerve conduction studies and genetic screening for a severe motor-sensory neuropathy with a pathological phenotype that hinted at MN. Indeed, sural nerve biopsy revealed a profound disturbance of perineurium development with a thin and loose structure. High-resolution ultrasound (HRUS) also disclosed diffuse changes of nerve echotexture that visibly correlated with the pathological features. After extensive genetic testing, a novel homozygous DHH null mutation (p.Ser185*) was identified in the proband and in her sister, who was affected by a similar motor-sensory neuropathy, but was eventually found to be a 46,XY patient according to a late diagnosis of DSD with complete GD. DHH should therefore be considered as a possible cause of rare non-syndromic hereditary motor-sensory neuropathies, regardless of DSD. Furthermore, HRUS could effectively smooth the complex diagnostic workup as it demonstrated a high predictive power to detect MN, providing the same detailed correlations to the pathologic features of the nerve biopsy and Dhh-/- mice in both sisters. Hence, HRUS may assume a pivotal role in guiding molecular analysis in individuals with or without DSD.


Assuntos
Transtorno 46,XY do Desenvolvimento Sexual/diagnóstico , Proteínas Hedgehog/genética , Neuropatia Hereditária Motora e Sensorial , Consanguinidade , Feminino , Testes Genéticos , Neuropatia Hereditária Motora e Sensorial/diagnóstico , Neuropatia Hereditária Motora e Sensorial/genética , Neuropatia Hereditária Motora e Sensorial/patologia , Neuropatia Hereditária Motora e Sensorial/fisiopatologia , Humanos , Microscopia Acústica , Pessoa de Meia-Idade , Irmãos , Nervo Sural/patologia , Síndrome
10.
Int J Mol Sci ; 21(20)2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33076433

RESUMO

Diseases associated with acquired or genetic defects in members of the chaperoning system (CS) are increasingly found and have been collectively termed chaperonopathies. Illustrative instances of genetic chaperonopathies involve the genes for chaperonins of Groups I (e.g., Heat shock protein 60, Hsp60) and II (e.g., Chaperonin Containing T-Complex polypeptide 1, CCT). Examples of the former are hypomyelinating leukodystrophy 4 (HLD4 or MitCHAP60) and hereditary spastic paraplegia (SPG13). A distal sensory mutilating neuropathy has been linked to a mutation [p.(His147Arg)] in subunit 5 of the CCT5 gene. Here, we describe a new possibly pathogenic variant [p.(Leu224Val)] of the same subunit but with a different phenotype. This yet undescribed disease affects a girl with early onset demyelinating neuropathy and a severe motor disability. By whole exome sequencing (WES), we identified a homozygous CCT5 c.670C>G p.(Leu224Val) variant in the CCT5 gene. In silico 3D-structure analysis and bioinformatics indicated that this variant could undergo abnormal conformation and could be pathogenic. We compared the patient's clinical, neurophysiological and laboratory data with those from patients carrying p.(His147Arg) in the equatorial domain. Our patient presented signs and symptoms absent in the p.(His147Arg) cases. Molecular dynamics simulation and modelling showed that the Leu224Val mutation that occurs in the CCT5 intermediate domain near the apical domain induces a conformational change in the latter. Noteworthy is the striking difference between the phenotypes putatively linked to mutations in the same CCT subunit but located in different structural domains, offering a unique opportunity for elucidating their distinctive roles in health and disease.


Assuntos
Chaperonina com TCP-1/genética , Neuropatia Hereditária Motora e Sensorial/genética , Mutação de Sentido Incorreto , Idade de Início , Chaperonina com TCP-1/química , Feminino , Neuropatia Hereditária Motora e Sensorial/patologia , Humanos , Recém-Nascido , Simulação de Dinâmica Molecular , Bainha de Mielina/metabolismo , Fenótipo
12.
Hum Mol Genet ; 29(10): 1689-1699, 2020 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-32356557

RESUMO

Copy number variation of the peripheral nerve myelin gene Peripheral Myelin Protein 22 (PMP22) causes multiple forms of inherited peripheral neuropathy. The duplication of a 1.4 Mb segment surrounding this gene in chromosome 17p12 (c17p12) causes the most common form of Charcot-Marie-Tooth disease type 1A, whereas the reciprocal deletion of this gene causes a separate neuropathy termed hereditary neuropathy with liability to pressure palsies (HNPP). PMP22 is robustly induced in Schwann cells in early postnatal development, and several transcription factors and their cognate regulatory elements have been implicated in coordinating the gene's proper expression. We previously found that a distal super-enhancer domain was important for Pmp22 expression in vitro, with particular impact on a Schwann cell-specific alternative promoter. Here, we investigate the consequences of deleting this super-enhancer in vivo. We find that loss of the super-enhancer in mice reduces Pmp22 expression throughout development and into adulthood, with greater impact on the Schwann cell-specific promoter. Additionally, these mice display tomacula formed by excessive myelin folding, a pathological hallmark of HNPP, as have been previously observed in heterozygous Pmp22 mice as well as sural biopsies from patients with HNPP. Our findings demonstrate a mechanism by which smaller copy number variations, not including the Pmp22 gene, are sufficient to reduce gene expression and phenocopy a peripheral neuropathy caused by the HNPP-associated deletion encompassing PMP22.


Assuntos
Artrogripose/genética , Doença de Charcot-Marie-Tooth/genética , Elementos Facilitadores Genéticos/genética , Neuropatia Hereditária Motora e Sensorial/genética , Proteínas da Mielina/genética , Adulto , Animais , Artrogripose/metabolismo , Artrogripose/patologia , Doença de Charcot-Marie-Tooth/metabolismo , Doença de Charcot-Marie-Tooth/patologia , Variações do Número de Cópias de DNA/genética , Neuropatia Hereditária Motora e Sensorial/metabolismo , Neuropatia Hereditária Motora e Sensorial/patologia , Heterozigoto , Humanos , Camundongos , Bainha de Mielina/genética , Bainha de Mielina/metabolismo , Nervos Periféricos/metabolismo , Nervos Periféricos/patologia , Fenótipo , Células de Schwann/metabolismo , Células de Schwann/patologia
13.
Neuromuscul Disord ; 30(3): 227-231, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32085962

RESUMO

The Tropomyosin-receptor kinase fused gene (TFG) encodes TFG which is expressed in spinal motor neurons, dorsal root ganglia and cranial nerve nuclei, and plays a role in the dynamics of the endoplasmic reticulum. Two dominant missense TFG mutations have previously been reported in limited geographical areas (Far East, Iran, China) in association with hereditary motor sensory neuropathy with proximal involvement (HMSN-P) of the four limbs, or with Charcot-Marie-Tooth disease type 2 (CMT2). The 60-year-old female proband belonging to a three-generation Italian family presented with an atypical neuropathy characterized by diffuse painful cramps and prominent motor-sensory impairment of the distal upper limbs. Her sural nerve biopsy showed chronic axonal neuropathy without active degeneration or regeneration. Targeted next-generation sequencing of a panel with 98 genes associated with inherited peripheral neuropathies/neuromuscular disorders identified three candidate genes: TFG, DHTKD1 and DCTN2. In the family, the disease co-segregated with the TFG p.(Gly269Val) variant. TFG should be considered in genetic testing of patients with heterogeneous inherited neuropathy, independently of their ethnic origin.


Assuntos
Neuropatia Hereditária Motora e Sensorial , Proteínas/genética , Extremidade Superior/fisiopatologia , Feminino , Neuropatia Hereditária Motora e Sensorial/diagnóstico , Neuropatia Hereditária Motora e Sensorial/genética , Neuropatia Hereditária Motora e Sensorial/patologia , Neuropatia Hereditária Motora e Sensorial/fisiopatologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Pessoa de Meia-Idade , Linhagem
14.
Eur J Med Genet ; 63(4): 103826, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31857255

RESUMO

Mutations in spectrin beta non-erythrocytic 4 (SPTBN4) have been linked to congenital hypotonia, intellectual disability and motor neuropathy. Here we report on two siblings with a homozygous splice-site mutation in the SPTBN4 gene, lacking previously reported features of the disorder such as seizures, feeding difficulties, respiratory difficulties or profound intellectual disability. Our findings indicate that muscular hypotonia, myopathic facies with ptosis and axonal neuropathy can be the core clinical features in the SPTBN4 disorder and suggest that SPTBN4 mutation analysis should be considered in infants with marked axonal neuropathy.


Assuntos
Axônios/patologia , Neuropatia Hereditária Motora e Sensorial/genética , Hipotonia Muscular/genética , Isoformas de Proteínas/genética , Espectrina/genética , Axônios/ultraestrutura , Criança , Pré-Escolar , Feminino , Neuropatia Hereditária Motora e Sensorial/patologia , Homozigoto , Humanos , Masculino , Mutação , Fenótipo
15.
Ann Clin Transl Neurol ; 7(1): 15-25, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31872979

RESUMO

OBJECTIVE: Hereditary neuropathy with liability to pressure palsies (HNPP) is caused by heterozygous deletion of the peripheral myelin protein 22 (PMP22) gene. Patients with HNPP present multifocal, reversible sensory/motor deficits due to increased susceptibility to mechanical pressure. Additionally, age-dependent axonal degeneration is reported. We hypothesize that length-dependent axonal loss can be revealed by MRI, irrespective of the multifocal phenotype in HNPP. METHODS: Nerve and muscle MRI data were acquired in the proximal and distal leg of patients with HNPP (n = 10) and matched controls (n = 7). More specifically, nerve magnetization transfer ratios (MTR) were evaluated to assay proximal-to-distal gradients in nerve degeneration, while intramuscular fat percentages (Fper ) were evaluated to assay muscle fat replacement following denervation. Neurological disabilities were assessed via the Charcot-Marie-Tooth neuropathy score (CMTNS) for correlation with MRI. RESULTS: Fper values were elevated in HNPP proximal muscle (9.8 ± 2.2%, P = 0.01) compared to controls (6.9 ± 1.0%). We observed this same elevation of HNPP distal muscles (10.5 ± 2.5%, P < 0.01) relative to controls (6.3 ± 1.1%). Additionally, the amplitude of the proximal-to-distal gradient in Fper was more significant in HNPP patients than controls (P < 0.01), suggesting length-dependent axonal loss. In contrast, nerve MTR values were similar between HNPP subjects (sciatic/tibial nerves = 39.4 ± 2.0/34.2 ± 2.5%) and controls (sciatic/tibial nerves = 37.6 ± 3.8/35.5 ± 1.2%). Proximal muscle Fper values were related to CMTNS (r = 0.69, P = 0.03), while distal muscle Fper and sciatic/tibial nerve MTR values were not related to disability. INTERPRETATION: Despite the multifocal nature of the HNPP phenotype, muscle Fper measurements relate to disability and exhibit a proximal-to-distal gradient consistent with length-dependent axonal loss, suggesting that Fper may be a viable biomarker of disease progression in HNPP.


Assuntos
Adiposidade , Artrogripose/diagnóstico por imagem , Axônios/patologia , Neuropatia Hereditária Motora e Sensorial/diagnóstico por imagem , Perna (Membro)/diagnóstico por imagem , Músculo Esquelético/diagnóstico por imagem , Degeneração Neural/diagnóstico por imagem , Nervo Isquiático/diagnóstico por imagem , Adolescente , Adulto , Artrogripose/patologia , Feminino , Neuropatia Hereditária Motora e Sensorial/patologia , Humanos , Perna (Membro)/patologia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Degeneração Neural/patologia , Nervo Isquiático/patologia , Adulto Jovem
16.
Sci Rep ; 9(1): 19336, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31852952

RESUMO

EGR2 (early growth response 2) is a crucial transcription factor for the myelination of the peripheral nervous system. Mutations in EGR2 are reported to cause a heterogenous spectrum of peripheral neuropathy with wide variation in both severity and age of onset, including demyelinating and axonal forms of Charcot-Marie Tooth (CMT) neuropathy, Dejerine-Sottas neuropathy (DSN/CMT3), and congenital hypomyelinating neuropathy (CHN/CMT4E). Here we report a sporadic de novo EGR2 variant, c.1232A > G (NM_000399.5), causing a missense p.Asp411Gly substitution and discovered through whole-exome sequencing (WES) of the proband. The resultant phenotype is severe demyelinating DSN with onset at two years of age, confirmed through nerve biopsy and electrophysiological examination. In silico analyses showed that the Asp411 residue is evolutionarily conserved, and the p.Asp411Gly variant was predicted to be deleterious by multiple in silico analyses. A luciferase-based reporter assay confirmed the reduced ability of p.Asp411Gly EGR2 to activate a PMP22 (peripheral myelin protein 22) enhancer element compared to wild-type EGR2. This study adds further support to the heterogeneity of EGR2-related peripheral neuropathies and provides strong functional evidence for the pathogenicity of the p.Asp411Gly EGR2 variant.


Assuntos
Proteína 2 de Resposta de Crescimento Precoce/genética , Predisposição Genética para Doença , Neuropatia Hereditária Motora e Sensorial/genética , Mutação/genética , Adolescente , Adulto , Idade de Início , Sequência de Aminoácidos , Sequência de Bases , Criança , Pré-Escolar , Simulação por Computador , Proteína 2 de Resposta de Crescimento Precoce/química , Feminino , Neuropatia Hereditária Motora e Sensorial/diagnóstico por imagem , Neuropatia Hereditária Motora e Sensorial/patologia , Neuropatia Hereditária Motora e Sensorial/fisiopatologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Condução Nervosa , Linhagem , Domínios Proteicos , Células de Schwann/metabolismo , Transcrição Gênica , Ativação Transcricional/genética , Sequenciamento do Exoma
17.
Muscle Nerve ; 60(6): 739-744, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31449671

RESUMO

BACKGROUND: Hereditary motor and sensory neuropathy with proximal dominant involvement (HMSN-P) is characterized by adult onset, a slowly progressive course and autosomal dominant inheritance. It remains unclear whether myopathic changes occur histopathologically. METHODS: We encountered 2 patients in a family with a heterozygous p.P285L mutation in TRK-fused gene (TFG), which is known to cause HMSN-P. The affected individuals developed proximal-dominant muscle weakness in their 40s, which slowly progressed to a motor neuron disease-like phenotype. RESULTS: Muscle biopsy showed myopathic pathology including fiber size variability, increased internal nuclei, fiber splitting, and core-like structures, associated with neurogenic changes: large groups of atrophic fibers and fiber type-grouping. Immunohistochemistry revealed sarcoplasmic aggregates of TFG, TDP-43, and p62 without congophilic material. CONCLUSIONS: The present study demonstrates myopathic changes in HMSN-P. Although the mechanisms underlying the skeletal muscle involvement remain to be elucidated, immunohistochemistry suggests that abnormal protein aggregation may be involved in the myopathic pathology.


Assuntos
Neuropatia Hereditária Motora e Sensorial/patologia , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/patologia , Potenciais de Ação , Proteínas de Ligação a DNA/metabolismo , Feminino , Imunofluorescência , Neuropatia Hereditária Motora e Sensorial/diagnóstico por imagem , Neuropatia Hereditária Motora e Sensorial/genética , Neuropatia Hereditária Motora e Sensorial/fisiopatologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/diagnóstico por imagem , Atrofia Muscular/patologia , Condução Nervosa , Linhagem , Proteínas/genética , Proteínas de Ligação a RNA/metabolismo , Retículo Sarcoplasmático/metabolismo , Irmãos
18.
Ann Clin Transl Neurol ; 6(2): 401-405, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30847374

RESUMO

Vaccinia-related kinase 1 (VRK1) mutations can cause motor phenotypes including axonal sensorimotor neuropathy, distal hereditary motor neuropathy (dHMN), spinal muscular atrophy, and amyotrophic lateral sclerosis. Here, we identify a novel homozygous VRK1 p.W375X mutation causing recessive dHMN. The proband presented with juvenile onset of weakness in the distal lower extremities, slowly progressing to the distal upper limbs, with bilateral pes cavus and no upper motor or sensory neuron involvement. Nerve conduction studies showed a pure motor axonal neuropathy. Our findings extend the ethnic distribution of VRK1 mutations, indicating that these mutations should be included in genetic diagnostic testing for dHMN.


Assuntos
Neuropatia Hereditária Motora e Sensorial/genética , Neuropatia Hereditária Motora e Sensorial/patologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Atrofia Muscular Espinal/genética , Mutação/genética , Proteínas Serina-Treonina Quinases/genética , Adulto , Neuropatia Hereditária Motora e Sensorial/diagnóstico , Humanos , Masculino , Atrofia Muscular Espinal/diagnóstico , Linhagem , Fenótipo
19.
Artigo em Inglês | MEDLINE | ID: mdl-30889971

RESUMO

Objective: To describe a patient with facial onset sensory and motor neuronopathy (FOSMN) carrying heterozygous mutations in both TARDBP and SQSTM1 genes. Methods: The patient underwent neurological, neuropsychological, and neurophysiological examinations. Brain magnetic resonance imaging (MRI) and extensive genetic analysis were also performed. Results: The neurological examination showed dysphonia, left trigeminal hypesthesia, and left masseter and temporalis muscle atrophy. Mild cognitive impairment, affecting predominantly executive functions and social cognition, was appreciable in the neuropsychological examination. The electrophysiological studies revealed: left abnormal blink reflex; neurogenic changes in bulbar and cervical muscles; normal motor evoked potential amplitude, central motor conduction time and cortical silent period. Brain MRI showed right-predominant frontotemporal atrophy. Genetic analysis showed a heterozygous mutation in TARDBP (p.A390S) and in SQSTM1 (p.P392L), both previously described as causing amyotrophic lateral sclerosis. The SQSTM1, but not the TARDBP, mutation was found in both healthy siblings. Conclusions: Our data provide new clinical, neuroimaging, and genetic evidence that FOSMN is a neurodegenerative disease of the motor neuron disease and frontotemporal dementia spectrum, with a possible oligogenic origin. Multicentric efforts focusing on cognitive and genetic studies are necessary to confirm this hypothesis and to determine if ALS genes should be systematically screened in these patients.


Assuntos
Doenças do Nervo Facial/patologia , Neuropatia Hereditária Motora e Sensorial/patologia , Doença dos Neurônios Motores/patologia , Idoso , Piscadela , Disfunção Cognitiva/etiologia , Expansão das Repetições de DNA , Proteínas de Ligação a DNA/genética , Eletromiografia , Neuropatia Hereditária Motora e Sensorial/genética , Neuropatia Hereditária Motora e Sensorial/psicologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Doença dos Neurônios Motores/genética , Doença dos Neurônios Motores/psicologia , Exame Neurológico , Testes Neuropsicológicos , Proteína Sequestossoma-1/genética , Tomografia Computadorizada por Raios X
20.
Eur J Hum Genet ; 27(7): 1081-1089, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30778173

RESUMO

Hexokinase 1 (HK1) phosphorylates glucose to glucose-6-phosphate, the first rate-limiting step in glycolysis. Homozygous and heterozygous variants in HK1 have been shown to cause autosomal recessive non-spherocytic hemolytic anemia, autosomal recessive Russe type hereditary motor and sensory neuropathy, and autosomal dominant retinitis pigmentosa (adRP). We report seven patients from six unrelated families with a neurodevelopmental disorder associated with developmental delay, intellectual disability, structural brain abnormality, and visual impairments in whom we identified four novel, de novo missense variants in the N-terminal half of HK1. Hexokinase activity in red blood cells of two patients was normal, suggesting that the disease mechanism is not due to loss of hexokinase enzymatic activity.


Assuntos
Eritrócitos , Neuropatia Hereditária Motora e Sensorial , Hexoquinase , Mutação de Sentido Incorreto , Linhagem , Adolescente , Adulto , Criança , Eritrócitos/enzimologia , Eritrócitos/patologia , Feminino , Neuropatia Hereditária Motora e Sensorial/enzimologia , Neuropatia Hereditária Motora e Sensorial/genética , Neuropatia Hereditária Motora e Sensorial/patologia , Hexoquinase/genética , Hexoquinase/metabolismo , Humanos , Lactente , Masculino , Retinose Pigmentar/enzimologia , Retinose Pigmentar/genética , Retinose Pigmentar/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA