Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.443
Filtrar
1.
Gen Comp Endocrinol ; 357: 114597, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39084320

RESUMO

Neuropeptides are essential neuronal signaling molecules that orchestrate animal behavior and physiology via actions within the nervous system and on peripheral tissues. Due to the small size of biologically active mature peptides, their identification on a proteome-wide scale poses a significant challenge using existing bioinformatics tools like BLAST. To address this, we have developed NeuroPeptide-HMMer (NP-HMMer), a hidden Markov model (HMM)-based tool to facilitate neuropeptide discovery, especially in underexplored invertebrates. NP-HMMer utilizes manually curated HMMs for 46 neuropeptide families, enabling rapid and accurate identification of neuropeptides. Validation of NP-HMMer on Drosophila melanogaster, Daphnia pulex, Tribolium castaneum and Tenebrio molitor demonstrated its effectiveness in identifying known neuropeptides across diverse arthropods. Additionally, we showcase the utility of NP-HMMer by discovering novel neuropeptides in Priapulida and Rotifera, identifying 22 and 19 new peptides, respectively. This tool represents a significant advancement in neuropeptide research, offering a robust method for annotating neuropeptides across diverse proteomes and providing insights into the evolutionary conservation of neuropeptide signaling pathways.


Assuntos
Neuropeptídeos , Proteoma , Neuropeptídeos/metabolismo , Neuropeptídeos/análise , Neuropeptídeos/genética , Animais , Proteoma/metabolismo , Drosophila melanogaster/metabolismo , Cadeias de Markov , Biologia Computacional/métodos
2.
J Proteome Res ; 23(5): 1757-1767, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38644788

RESUMO

The American lobster, Homarus americanus, is not only of considerable economic importance but has also emerged as a premier model organism in neuroscience research. Neuropeptides, an important class of cell-to-cell signaling molecules, play crucial roles in a wide array of physiological and psychological processes. Leveraging the recently sequenced high-quality draft genome of the American lobster, our study sought to profile the neuropeptidome of this model organism. Employing advanced mass spectrometry techniques, we identified 24 neuropeptide precursors and 101 unique mature neuropeptides in Homarus americanus. Intriguingly, 67 of these neuropeptides were discovered for the first time. Our findings provide a comprehensive overview of the peptidomic attributes of the lobster's nervous system and highlight the tissue-specific distribution of these neuropeptides. Collectively, this research not only enriches our understanding of the neuronal complexities of the American lobster but also lays a foundation for future investigations into the functional roles that these peptides play in crustacean species. The mass spectrometry data have been deposited in the PRIDE repository with the identifier PXD047230.


Assuntos
Sequência de Aminoácidos , Nephropidae , Neuropeptídeos , Proteômica , Animais , Nephropidae/metabolismo , Neuropeptídeos/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/análise , Proteômica/métodos , Espectrometria de Massas , Dados de Sequência Molecular
3.
Rapid Commun Mass Spectrom ; 38(12): e9755, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38600731

RESUMO

RATIONALE: Atmospheric pressure matrix-assisted laser desorption/ionization (AP-MALDI) mass spectrometry has enabled the untargeted analysis and imaging of neuropeptides and proteins in biological tissues under ambient conditions. Sensitivity in AP-MALDI can be improved by using sample-specific preparation methods. METHODS: A comprehensive and detailed optimization strategy including instrument parameters, matrix spraying and sample tissue washing pretreatment was implemented to enhance the sensitivity and coverage of neuropeptides in mouse pituitary tissues by commercial AP-MALDI mass spectrometry imaging (MSI). RESULTS: The sensitivity of a commercial AP-MALDI system for endogenous neuropeptides in mouse pituitary was enhanced by up to 15.2-fold by shortening the transmission gap from the sample plate to the inlet, attaching copper adhesive tape to an indium tin oxide-coated glass slide, optimizing the matrix spray solvent and using sample tissue washing pretreatment. Following careful optimization, the distributions of nine endogenous neuropeptides were successfully visualized in the pituitary. Furthermore, the quantitative capability of AP-MALDI for neuropeptides was evaluated and the concentrations of neuropeptides oxytocin and vasopressin in the pituitary posterior lobe were increased approximately twofold under hypertonic saline stress. CONCLUSION: Mouse pituitary neuropeptides have emerged as important signaling molecules due to their role in stress response. This work indicates the potential of modified AP-MALDI as a promising AP MSI method for in situ visualization and quantification of neuropeptides in complex biological tissues.


Assuntos
Neuropeptídeos , Camundongos , Animais , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Neuropeptídeos/análise , Pressão Atmosférica , Lasers
4.
J Proteome Res ; 23(8): 3041-3051, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-38426863

RESUMO

Neuropeptides represent a unique class of signaling molecules that have garnered much attention but require special consideration when identifications are gleaned from mass spectra. With highly variable sequence lengths, neuropeptides must be analyzed in their endogenous state. Further, neuropeptides share great homology within families, differing by as little as a single amino acid residue, complicating even routine analyses and necessitating optimized computational strategies for confident and accurate identifications. We present EndoGenius, a database searching strategy designed specifically for elucidating neuropeptide identifications from mass spectra by leveraging optimized peptide-spectrum matching approaches, an expansive motif database, and a novel scoring algorithm to achieve broader representation of the neuropeptidome and minimize reidentification. This work describes an algorithm capable of reporting more neuropeptide identifications at 1% false-discovery rate than alternative software in five Callinectes sapidus neuronal tissue types.


Assuntos
Algoritmos , Bases de Dados de Proteínas , Neuropeptídeos , Software , Neuropeptídeos/análise , Neuropeptídeos/química , Animais , Espectrometria de Massas/métodos , Sequência de Aminoácidos , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos
5.
Methods Mol Biol ; 2758: 213-225, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38549016

RESUMO

Peptidomic techniques are powerful tools to identify peptides in a biological sample. In the case of brain, which contains a complex mixture of cell types, standard peptidomics procedures reveal the major peptides in a dissected brain region. It is difficult to obtain information on peptides within a specific cell type using standard approaches, unless that cell type can be isolated. This protocol describes a targeted peptidomic approach that uses affinity chromatography to purify peptides that are substrates of carboxypeptidase E (CPE), an enzyme present in the secretory pathway of neuroendocrine cells. Many CPE products function as neuropeptides and/or peptide hormones, and therefore represent an important subset of the peptidome. Because CPE removes C-terminal Lys and Arg residues from peptide processing intermediates, organisms lacking CPE show a large decrease in the levels of the mature forms of most neuropeptides and peptide hormones, and a very large increase in the levels of the processing intermediates that contain C-terminal Lys and/or Arg (i.e., the CPE substrates). These CPE substrates can be purified on an anhydrotrypsin-agarose affinity resin, which specifically binds peptides with C-terminal basic residues. When this method is used with mice lacking CPE activity in genetically defined cell types, it allows the detection of peptides specifically produced in that cell type.


Assuntos
Neuropeptídeos , Hormônios Peptídicos , Camundongos , Animais , Carboxipeptidase H/fisiologia , Neuropeptídeos/análise , Cromatografia de Afinidade/métodos , Encéfalo/metabolismo , Hormônios Peptídicos/metabolismo , Carboxipeptidases/metabolismo
6.
Proteomics ; 24(15): e2300285, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38171828

RESUMO

Neuropeptides have tremendous potential for application in modern medicine, including utility as biomarkers and therapeutics. To overcome the inherent challenges associated with neuropeptide identification and characterization, data-independent acquisition (DIA) is a fitting mass spectrometry (MS) method of choice to achieve sensitive and accurate analysis. It is advantageous for preliminary neuropeptidomic studies to occur in less complex organisms, with crustacean models serving as a popular choice due to their relatively simple nervous system. With spectral libraries serving as a means to interpret DIA-MS output spectra, and Cancer borealis as a model of choice for neuropeptide analysis, we performed the first spectral library mapping of crustacean neuropeptides. Leveraging pre-existing data-dependent acquisition (DDA) spectra, a spectral library was built using PEAKS Online. The library is comprised of 333 unique neuropeptides. The identification results obtained through the use of this spectral library were compared with those achieved through library-free analysis of crustacean brain, pericardial organs (PO), and thoracic ganglia (TG) tissues. A statistically significant increase (Student's t-test, P value < 0.05) in the number of identifications achieved from the TG data was observed in the spectral library results. Furthermore, in each of the tissues, a distinctly different set of identifications was found in the library search compared to the library-free search. This work highlights the necessity for the use of spectral libraries in neuropeptide analysis, illustrating the advantage of spectral libraries for interpreting DIA spectra in a reproducible manner with greater neuropeptidomic depth.


Assuntos
Espectrometria de Massas , Neuropeptídeos , Animais , Neuropeptídeos/análise , Espectrometria de Massas/métodos , Braquiúros/química , Braquiúros/metabolismo , Biblioteca de Peptídeos , Proteômica/métodos , Crustáceos/química , Bases de Dados de Proteínas
7.
Science ; 382(6672): eabq8173, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37972184

RESUMO

Neuropeptides are key signaling molecules in the endocrine and nervous systems that regulate many critical physiological processes. Understanding the functions of neuropeptides in vivo requires the ability to monitor their dynamics with high specificity, sensitivity, and spatiotemporal resolution. However, this has been hindered by the lack of direct, sensitive, and noninvasive tools. We developed a series of GRAB (G protein-coupled receptor activation‒based) sensors for detecting somatostatin (SST), corticotropin-releasing factor (CRF), cholecystokinin (CCK), neuropeptide Y (NPY), neurotensin (NTS), and vasoactive intestinal peptide (VIP). These fluorescent sensors, which enable detection of specific neuropeptide binding at nanomolar concentrations, establish a robust tool kit for studying the release, function, and regulation of neuropeptides under both physiological and pathophysiological conditions.


Assuntos
Técnicas Biossensoriais , Ilhotas Pancreáticas , Neurônios , Neuropeptídeos , Receptores Acoplados a Proteínas G , Humanos , Fluorescência , Células HEK293 , Neuropeptídeos/análise , Neuropeptídeos/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética , Neurônios/química , Córtex Cerebral/química , Animais , Ratos , Ilhotas Pancreáticas/química
8.
Science ; 382(6672): 764-765, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37972194

RESUMO

Bioengineered sensors resolve the dynamics of neuropeptide action.


Assuntos
Técnicas Biossensoriais , Encéfalo , Neuropeptídeos , Neuropeptídeos/análise , Neuropeptídeos/metabolismo , Humanos , Animais , Ratos
9.
HNO ; 71(5): 337-346, 2023 May.
Artigo em Alemão | MEDLINE | ID: mdl-37041304

RESUMO

Allergic rhinitis (AR) is a very common disease with a high prevalence worldwide. It is an IgE-mediated type 2 inflammatory disease following exposure to inhalant allergens. A multitude of different neuropeptides including substance P, vasoactive intestinal peptide (VIP), calcitonin gene-related peptide (CGRP), nerve growth factor (NGF), and neuromedin U (NMU) can be released via peripheral axon or central reflexes, interact with immune cells, and thus contribute to neurogenic inflammation which causes the nasal hyperreactivity (NHR) characteristic of AR. Independent production of neuroendocrine hormones and neuropeptides by immune cells has also been demonstrated. Neuro-immune cell units arise when immune and neuronal cells colocalize, for which typical anatomic regions are, e.g., the mast cell-nerve functional unit. The focus of this review is the elucidation of neuroimmune communication mechanisms in AR.


Assuntos
Neuropeptídeos , Rinite Alérgica , Humanos , Neuroimunomodulação , Neuropeptídeos/análise , Neuropeptídeos/fisiologia , Peptídeo Intestinal Vasoativo/análise , Peptídeo Intestinal Vasoativo/fisiologia , Peptídeo Relacionado com Gene de Calcitonina/análise , Peptídeo Relacionado com Gene de Calcitonina/fisiologia , Mucosa Nasal
10.
Mass Spectrom Rev ; 42(2): 706-750, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-34558119

RESUMO

Due to their involvement in numerous biochemical pathways, neuropeptides have been the focus of many recent research studies. Unfortunately, classic analytical methods, such as western blots and enzyme-linked immunosorbent assays, are extremely limited in terms of global investigations, leading researchers to search for more advanced techniques capable of probing the entire neuropeptidome of an organism. With recent technological advances, mass spectrometry (MS) has provided methodology to gain global knowledge of a neuropeptidome on a spatial, temporal, and quantitative level. This review will cover key considerations for the analysis of neuropeptides by MS, including sample preparation strategies, instrumental advances for identification, structural characterization, and imaging; insightful functional studies; and newly developed absolute and relative quantitation strategies. While many discoveries have been made with MS, the methodology is still in its infancy. Many of the current challenges and areas that need development will also be highlighted in this review.


Assuntos
Neuropeptídeos , Espectrometria de Massas/métodos , Neuropeptídeos/análise , Neuropeptídeos/química , Neuropeptídeos/metabolismo
11.
ACS Chem Neurosci ; 13(19): 2888-2896, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36126283

RESUMO

Cell-cell signaling peptides (e.g., peptide hormones, neuropeptides) are among the largest class of cellular transmitters and regulate a variety of physiological processes. To identify and quantify the relative abundances of cell-cell signaling peptides in different physiological states, liquid chromatography-mass spectrometry-based peptidomics workflows are commonly utilized on freshly dissected tissues. In such animal experiments, the administration of general anesthetics is an important step for many research projects. However, acute anesthetic administration may rapidly change the measured abundance of transmitter molecules and metabolites, especially in the brain and endocrine system, which would confound experimental results. The aim of this study was to evaluate the effect of short-term (<5 min) anesthetic administration on the measured abundance of cell-cell signaling peptides, as evaluated by a typical peptidomics workflow. To accomplish this goal, we compared endogenous peptide abundances in the rat pituitary following administration of 5% isoflurane, 200 mg/kg sodium pentobarbital, or no anesthetic administration. Label-free peptidomics analysis demonstrated that acute use of isoflurane changed the levels of a small number of peptides, primarily degradation products of the hormone somatotropin, but did not influence the levels of most other peptide hormones. Acute use of sodium pentobarbital had negligible impact on the relative abundance of all measured peptides. Overall, our results suggest that anesthetics used in pituitary peptidomics studies do not dramatically confound observed results.


Assuntos
Anestésicos Gerais , Isoflurano , Neuropeptídeos , Hormônios Peptídicos , Animais , Hormônio do Crescimento , Neuropeptídeos/análise , Neuropeptídeos/farmacologia , Pentobarbital , Ratos , Sódio
12.
ACS Chem Neurosci ; 13(13): 1992-2005, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35758417

RESUMO

Synaptic dysfunction and loss occur in Alzheimer's disease (AD) brains, which results in cognitive deficits and brain neurodegeneration. Neuropeptides comprise the major group of synaptic neurotransmitters in the nervous system. This study evaluated neuropeptide signatures that are hypothesized to differ in human AD brain compared to age-matched controls, achieved by global neuropeptidomics analysis of human brain cortex synaptosomes. Neuropeptidomics demonstrated distinct profiles of neuropeptides in AD compared to controls consisting of neuropeptides derived from chromogranin A (CHGA) and granins, VGF (nerve growth factor inducible), cholecystokinin, and others. The differential neuropeptide signatures indicated differences in proteolytic processing of their proneuropeptides. Analysis of cleavage sites showed that dibasic residues at the N-termini and C-termini of neuropeptides were the main sites for proneuropeptide processing, and data also showed that the AD group displayed differences in preferred residues adjacent to the cleavage sites. Notably, tau peptide signatures differed in the AD compared to age-matched control human brain cortex synaptosomes. Unique tau peptides were derived from the tau protein through proteolysis using similar and differential cleavage sites in the AD brain cortex compared to the control. Protease profiles differed in the AD compared to control, indicated by proteomics data. Overall, these results demonstrate that dysregulation of neuropeptides and tau peptides occurs in AD brain cortex synaptosomes compared to age-matched controls, involving differential cleavage site properties for proteolytic processing of precursor proteins. These dynamic changes in neuropeptides and tau peptide signatures may be associated with the severe cognitive deficits of AD.


Assuntos
Doença de Alzheimer , Neuropeptídeos , Proteínas tau/análise , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Humanos , Neuropeptídeos/análise , Neuropeptídeos/metabolismo , Peptídeos/metabolismo , Proteólise , Proteínas tau/metabolismo
13.
Pharmacol Rev ; 74(3): 662-679, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35710134

RESUMO

The discovery of insulin in the early 1900s ushered in the era of research related to peptides acting as hormones and neuromodulators, among other regulatory roles. These essential gene products are found in all organisms, from the most primitive to the most evolved, and carry important biologic information that coordinates complex physiology and behavior; their misregulation has been implicated in a variety of diseases. The evolutionary origins of at least 30 neuropeptide signaling systems have been traced to the common ancestor of protostomes and deuterostomes. With the use of relevant animal models and modern technologies, we can gain mechanistic insight into orthologous and paralogous endogenous peptides and translate that knowledge into medically relevant insights and new treatments. Groundbreaking advances in medicine and basic science influence how signaling peptides are defined today. The precise mechanistic pathways for over 100 endogenous peptides in mammals are now known and have laid the foundation for multiple drug development pipelines. Peptide biologics have become valuable drugs due to their unique specificity and biologic activity, lack of toxic metabolites, and minimal undesirable interactions. This review outlines modern technologies that enable neuropeptide discovery and characterization, and highlights lessons from nature made possible by neuropeptide research in relevant animal models that is being adopted by the pharmaceutical industry. We conclude with a brief overview of approaches/strategies for effective development of peptides as drugs. SIGNIFICANCE STATEMENT: Neuropeptides, an important class of cell-cell signaling molecules, are involved in maintaining a range of physiological functions. Since the discovery of insulin's activity, over 100 bioactive peptides and peptide analogs have been used as therapeutics. Because these are complex molecules not easily predicted from a genome and their activity can change with subtle chemical modifications, mass spectrometry (MS) has significantly empowered peptide discovery and characterization. This review highlights contributions of MS-based research towards the development of therapeutic peptides.


Assuntos
Insulinas , Neuropeptídeos , Animais , Humanos , Mamíferos/metabolismo , Espectrometria de Massas/métodos , Neuropeptídeos/análise , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Peptídeos , Poder Psicológico
14.
Annu Rev Anal Chem (Palo Alto Calif) ; 15(1): 83-106, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35324254

RESUMO

Neuropeptides (NPs), a unique class of neuronal signaling molecules, participate in a variety of physiological processes and diseases. Quantitative measurements of NPs provide valuable information regarding how these molecules are differentially regulated in a multitude of neurological, metabolic, and mental disorders. Mass spectrometry (MS) has evolved to become a powerful technique for measuring trace levels of NPs in complex biological tissues and individual cells using both targeted and exploratory approaches. There are inherent challenges to measuring NPs, including their wide endogenous concentration range, transport and postmortem degradation, complex sample matrices, and statistical processing of MS data required for accurate NP quantitation. This review highlights techniques developed to address these challenges and presents an overview of quantitative MS-based measurement approaches for NPs, including the incorporation of separation methods for high-throughput analysis, MS imaging for spatial measurements, and methods for NP quantitation in single neurons.


Assuntos
Neuropeptídeos , Humanos , Espectrometria de Massas/métodos , Neuropeptídeos/análise , Neuropeptídeos/metabolismo
15.
Mol Brain ; 14(1): 149, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34629097

RESUMO

The generation of mature synaptic structures using neurons differentiated from human-induced pluripotent stem cells (hiPSC-neurons) is expected to be applied to physiological studies of synapses in human cells and to pathological studies of diseases that cause abnormal synaptic function. Although it has been reported that synapses themselves change from an immature to a mature state as neurons mature, there are few reports that clearly show when and how human stem cell-derived neurons change to mature synaptic structures. This study was designed to elucidate the synapse formation process of hiPSC-neurons. We propagated hiPSC-derived neural progenitor cells (hiPSC-NPCs) that expressed localized markers of the ventral hindbrain as neurospheres by dual SMAD inhibition and then differentiated them into hiPSC-neurons in vitro. After 49 days of in vitro differentiation, hiPSC-neurons significantly expressed pre- and postsynaptic markers at both the transcript and protein levels. However, the expression of postsynaptic markers was lower than in normal human or normal rat brain tissues, and immunostaining analysis showed that it was relatively modest and was lower than that of presynaptic markers and that its localization in synaptic structures was insufficient. Neurophysiological analysis using a microelectrode array also revealed that no synaptic activity was generated on hiPSC-neurons at 49 days of differentiation. Analysis of subtype markers by immunostaining revealed that most hiPSC-neurons expressed vesicular glutamate transporter 2 (VGLUT2). The presence or absence of NGF, which is required for the survival of cholinergic neurons, had no effect on their cell fractionation. These results suggest that during the synaptogenesis of hiPSC-neurons, the formation of presynaptic structures is not the only requirement for the formation of postsynaptic structures and that the mRNA expression of postsynaptic markers does not correlate with the formation of their mature structures. Technically, we also confirmed a certain level of robustness and reproducibility of our neuronal differentiation method in a multicenter setting, which will be helpful for future research. Synapse formation with mature postsynaptic structures will remain an interesting issue for stem cell-derived neurons, and the present method can be used to obtain early and stable quality neuronal cultures from hiPSC-NPCs.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Neurais/citologia , Neurogênese , Animais , Biomarcadores , Técnicas de Cultura de Células/métodos , Linhagem Celular , Hipocampo/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Fator de Crescimento Neural/farmacologia , Proteínas do Tecido Nervoso/análise , Células-Tronco Neurais/ultraestrutura , Neurônios/química , Neurônios/classificação , Neurônios/citologia , Neuropeptídeos/análise , Terminações Pré-Sinápticas/ultraestrutura , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ratos , Reprodutibilidade dos Testes , Sinapses/fisiologia , Proteína Vesicular 1 de Transporte de Glutamato/análise , Proteína Vesicular 2 de Transporte de Glutamato/análise
16.
Neurosci Lett ; 765: 136274, 2021 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-34592370

RESUMO

Ample evidence indicates that in several mammalian species the pineal body contains neurons. In adult white albino rats neurons are not present in the pineal body; however, in perinatal rats many neurons were described. It was demonstrated that in adult mammalian species the pineal neurons contained some neuropeptides and neurotransmitters such as leu-enkephalin, met-enkephalin, substance-P, somatostatin and γ-aminobutiric acid. Oxytocin, vasopressin mRNAs and peptides were also demonstrated. No data are available on the chemical nature of the neurons in perinatal rats. In the present experiment we used immunohistochemistry to clarify this issue. After paraformaldehyde fixation frozen sections were prepared and stained for immunoreactivities of several neuropeptides and neurotransmitters. Dopamine ß-hydroxylase, neuropeptide-Y, vesicular acetylcholine transporter, vesicular glutamate transporter and calcitonin gene-related peptide antibodies were able to stain fibers. According to previous data these fibers may be sympathetic, parasympathetic or sensory. Vesicular glutamate transporter antibody may stain pinealocytes as well. Some cells were immunoreactive for substance-P, oxytocin, vasopressin, leu-enkefalin and glutamic acid decarboxylase. These immnoreactivities showed colocalization with neuron-specific nuclear protein immunoreactivity indicating that these cells were neurons. Calbindin was observed in oval and elongated cells resembling pinealocytes. Based on the results obtained in adult mammals, the pineal neurons may be analogue to retinal ganglion cells, or they may function as interneurons in the retino-pinealo-retinal neuronal circuit or peptidergic neurons may influence pinealocytes in a paracrine manner.


Assuntos
Neurônios/citologia , Neuropeptídeos/análise , Neurotransmissores/análise , Glândula Pineal/química , Glândula Pineal/citologia , Animais , Animais Recém-Nascidos , Feminino , Masculino , Neurônios/metabolismo , Glândula Pineal/metabolismo , Ratos
17.
J Clin Endocrinol Metab ; 106(12): e5156-e5164, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34255061

RESUMO

INTRODUCTION: Pregnancy is characterized by increased appetitive drive beginning early in gestation, yet the central mechanisms underlying this adaptation are poorly understood in humans. To elucidate central mechanisms underlying appetite regulation in early pregnancy, we examine plasma and cerebrospinal fluid (CSF) leptin and Agouti-related peptide (AgRP) as well as CSF proopiomelanocortin (POMC) as surrogates for brain melanocortin activity. METHODS: Plasma leptin, soluble leptin receptor, AgRP, and CSF leptin, POMC, and AgRP were collected from pregnant women before cerclage placement (16.6 ±â€…1.1 weeks; N = 24), scheduled cesarean section (39.2 ±â€…0.2 weeks; N = 24), and from nonpregnant controls (N = 24), matched for age and body mass index. RESULTS: Plasma leptin was 1.5 times higher in pregnancy vs controls (P = 0.01), but CSF leptin did not differ. CSF/plasma leptin percentage was lower in early pregnancy vs controls (0.8 ±â€…0.1 vs 1.7 ±â€…0.2; P < 0.0001) and remained unchanged at term (0.9 ±â€…0.1), supporting a decrease in leptin transport into CSF in pregnancy. Plasma AgRP, a peripheral biomarker of the orexigenic hypothalamic neuropeptide, was higher in early pregnancy vs controls (95.0 ±â€…7.8 vs 67.5 ±â€…5.3; P = 0.005). In early gestation, CSF AgRP did not differ from controls, but CSF POMC was 25% lower (P = 0.006). In contrast, at term, CSF AgRP was 42% higher vs controls (P = 0.0001), but CSF POMC no longer differed. Overall, the CSF AgRP/POMC ratio was 1.5-fold higher in early pregnancy vs controls, reflecting a decrease in melanocortin tone favoring appetitive drive. CONCLUSIONS: Pregnancy-specific adaptions in the central regulation of energy balance occur early in human gestation and are consistent with decreased leptin transport into brain and resistance to the effects of leptin on target melanocortin neuropeptides.


Assuntos
Adaptação Fisiológica , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Metabolismo Energético , Melanocortinas/análise , Neuropeptídeos/análise , Adulto , Proteína Relacionada com Agouti/sangue , Proteína Relacionada com Agouti/líquido cefalorraquidiano , Estudos de Casos e Controles , Feminino , Seguimentos , Humanos , Leptina/sangue , Leptina/líquido cefalorraquidiano , Melanocortinas/sangue , Melanocortinas/líquido cefalorraquidiano , Neuropeptídeos/sangue , Neuropeptídeos/líquido cefalorraquidiano , Gravidez , Pró-Opiomelanocortina/sangue , Pró-Opiomelanocortina/líquido cefalorraquidiano , Prognóstico , Receptores para Leptina/sangue
18.
Cardiology ; 146(5): 566-574, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34284402

RESUMO

BACKGROUND: Circulating secretoneurin (SN) concentrations, as measured by established radioimmunoassay (RIA), risk stratify patients with cardiovascular disease. We now report data for a recently developed research-use-only SN enzyme-linked immunosorbent assay (ELISA) in patients with suspected acute coronary syndrome (ACS). METHODS: SN ELISA was developed according to industry standards and tested in 401 unselected chest pain patients. Blood samples were drawn <24 h from admission, and we adjudicated all hospitalizations as ACS or non-ACS. The mean follow-up was 6.2 years. RESULTS: SN ELISA with 2 monoclonal sheep anti-SN antibodies has a measuring range of 10-250 pmol/L and demonstrates excellent analytical precision and accuracy across the range of SN concentrations. SN measured by ELISA and RIA correlated in the chest pain patients: rho = 0.39, p < 0.001. SN concentrations were higher in ACS patients (n = 161 [40%]) than in non-ACS patients (n = 240) for both assays, with an area under the curve (AUC) of 0.66 (95% CI: 0.61-0.71) for ELISA and 0.59 (0.54-0.65) for RIA. SN concentrations were also higher in nonsurvivors (n = 65 [16%]) than survivors, with an AUC of 0.72 (0.65-0.79) for ELISA versus 0.64 (0.56-0.72) for RIA, p = 0.007, for difference between assays. Adjusting for age, sex, blood pressure, previous myocardial infarction, atrial fibrillation, and heart failure in multivariable analysis, SN concentrations as measured by ELISA, but not RIA, remained associated with mortality, with a hazard ratio of 1.71 (1.03-2.84), p = 0.038. CONCLUSIONS: The novel SN ELISA has excellent performance, higher AUC for diagnosis, and superior prognostic accuracy compared to the established RIA in chest pain patients.


Assuntos
Síndrome Coronariana Aguda , Ensaio de Imunoadsorção Enzimática , Neuropeptídeos/análise , Secretogranina II/análise , Síndrome Coronariana Aguda/diagnóstico , Humanos , Radioimunoensaio
19.
J Chem Neuroanat ; 117: 102003, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34280488

RESUMO

Hypothalamic magnocellular nuclei with their large secretory neurons are unique and phylogenetically conserved brain structures involved in the continual regulation of important homeostatic and autonomous functions in vertebrate species. Both canonical and newly identified neuropeptides have a broad spectrum of physiological activity at the hypothalamic neuronal circuit level located within the supraoptic (SON) and paraventricular (PVN) nuclei. Magnocellular neurons express a variety of receptors for neuropeptides and neurotransmitters and therefore receive numerous excitatory and inhibitory inputs from important subcortical neural areas such as limbic and brainstem populations. These unique cells are also densely innervated by axons from other hypothalamic nuclei. The vast majority of neurochemical maps pertain to animal models, mainly the rodent hypothalamus, however accumulating preliminary anatomical structural studies have revealed the presence and distribution of several neuropeptides in the human magnocellular nuclei. This review presents a novel and comprehensive evidence based evaluation of neuropeptide expression in the human SON and PVN. Collectively this review aims to cast a new, medically oriented light on hypothalamic neuroanatomy and contribute to a better understanding of the mechanisms responsible for neuropeptide-related physiology and the nature of possible neuroendocrinal interactions between local regulatory pathways.


Assuntos
Núcleo Basal de Meynert/química , Núcleo Basal de Meynert/metabolismo , Hipotálamo/química , Hipotálamo/metabolismo , Neuropeptídeos/análise , Neuropeptídeos/metabolismo , Núcleo Basal de Meynert/citologia , Galanina/análise , Galanina/metabolismo , Humanos , Hipotálamo/citologia , Ocitocina/análise , Ocitocina/metabolismo
20.
J Comp Neurol ; 529(13): 3336-3358, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34041754

RESUMO

Freshwater snails of the genus Biomphalaria serve as intermediate hosts for the digenetic trematode Schistosoma mansoni, the etiological agent for the most widespread form of intestinal schistosomiasis. As neuropeptide signaling in host snails can be altered by trematode infection, a neural transcriptomics approach was undertaken to identify peptide precursors in Biomphalaria glabrata, the major intermediate host for S. mansoni in the Western Hemisphere. Three transcripts that encode peptides belonging to the FMRF-NH2 -related peptide (FaRP) family were identified in B. glabrata. One transcript encoded a precursor polypeptide (Bgl-FaRP1; 292 amino acids) that included eight copies of the tetrapeptide FMRF-NH2 and single copies of FIRF-NH2 , FLRF-NH2 , and pQFYRI-NH2 . The second transcript encoded a precursor (Bgl-FaRP2; 347 amino acids) that comprised 14 copies of the heptapeptide GDPFLRF-NH2 and 1 copy of SKPYMRF-NH2 . The precursor encoded by the third transcript (Bgl-FaRP3; 287 amino acids) recapitulated Bgl-FaRP2 but lacked the full SKPYMRF-NH2 peptide. The three precursors shared a common signal peptide, suggesting a genomic organization described previously in gastropods. Immunohistochemical studies were performed on the nervous systems of B. glabrata and B. alexandrina, a major intermediate host for S. mansoni in Egypt. FMRF-NH2 -like immunoreactive (FMRF-NH2 -li) neurons were located in regions of the central nervous system associated with reproduction, feeding, and cardiorespiration. Antisera raised against non-FMRF-NH2 peptides present in the tetrapeptide and heptapeptide precursors labeled independent subsets of the FMRF-NH2 -li neurons. This study supports the participation of FMRF-NH2 -related neuropeptides in the regulation of vital physiological and behavioral systems that are altered by parasitism in Biomphalaria.


Assuntos
FMRFamida/genética , Neuropeptídeos/genética , Esquistossomose mansoni/genética , Transcriptoma/genética , Sequência de Aminoácidos , Animais , Biomphalaria , FMRFamida/análise , FMRFamida/metabolismo , Neuropeptídeos/análise , Neuropeptídeos/metabolismo , Imagem Óptica/métodos , Schistosoma mansoni/genética , Schistosoma mansoni/isolamento & purificação , Esquistossomose mansoni/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA