Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Int J Mol Sci ; 25(20)2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39456965

RESUMO

Charcot-Marie-Tooth disease type 2N (CMT2N) is an inherited nerve disorder caused by mutations in the alanyl-tRNA synthetase (AlaRS) gene, resulting in muscle weakness and sensory issues. Currently, there is no cure for CMT2N. Here, we found that all five AlaRS mutations in the aminoacylation domain can interact with neuropilin-1 (Nrp1), which is consistent with our previous findings. Interestingly, three of these mutations did not affect alanine activation activity. We then performed a high-throughput screen of 2000 small molecules targeting the prevalent R329H mutant. Using thermal stability assays (TSA), biolayer interferometry (BLI), ATP consumption, and proteolysis assays, we identified Tanshinone I as a compound that binds to and modifies the conformation of the R329H mutant and other CMT-related AlaRS mutants interacting with Nrp1. Molecular docking and dynamic simulation studies further clarified Tanshinone I's binding mode, indicating its potential against various AlaRS mutants. Furthermore, co-immunoprecipitation (Co-IP) and pull-down assays showed that Tanshinone I significantly reduces the binding of AlaRS mutants to Nrp1. Collectively, these findings suggest that Tanshinone I, by altering the conformation of mutant proteins, disrupts the pathological interaction between AlaRS CMT mutants and Nrp1, potentially restoring normal Nrp1 function. This makes Tanshinone I a promising therapeutic candidate for CMT2N.


Assuntos
Abietanos , Doença de Charcot-Marie-Tooth , Simulação de Acoplamento Molecular , Abietanos/farmacologia , Doença de Charcot-Marie-Tooth/metabolismo , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/tratamento farmacológico , Humanos , Mutação , Neuropilina-1/metabolismo , Neuropilina-1/genética , Neuropilina-1/química , Ligação Proteica , Simulação de Dinâmica Molecular
2.
ACS Chem Biol ; 19(8): 1820-1835, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39099090

RESUMO

Neuropilin-1 acts as a coreceptor with vascular endothelial growth factor receptors to facilitate binding of its ligand, vascular endothelial growth factor. Neuropilin-1 also binds to heparan sulfate, but the functional significance of this interaction has not been established. A combinatorial library screening using heparin oligosaccharides followed by molecular dynamics simulations of a heparin tetradecasaccharide suggested a highly conserved binding site composed of amino acid residues extending across the b1 and b2 domains of murine neuropilin-1. Mutagenesis studies established the importance of arginine513 and lysine514 for binding of heparin to a recombinant form of Nrp1 composed of the a1, a2, b1, and b2 domains. Recombinant Nrp1 protein bearing R513A,K514A mutations showed a significant loss of heparin-binding, heparin-induced dimerization, and heparin-dependent thermal stabilization. Isothermal calorimetry experiments suggested a 1:2 complex of heparin tetradecasaccharide:Nrp1. To study the impact of altered heparin binding in vivo, a mutant allele of Nrp1 bearing the R513A,K514A mutations was created in mice (Nrp1D) and crossbred to Nrp1+/- mice to examine the impact of altered heparan sulfate binding. Analysis of tumor formation showed variable effects on tumor growth in Nrp1D/D mice, resulting in a frank reduction in tumor growth in Nrp1D/- mice. Expression of mutant Nrp1D protein was normal in tissues, suggesting that the reduction in tumor growth was due to the altered binding of heparin/heparan sulfate to neuropilin-1. These findings suggest that the interaction of neuropilin-1 with heparan sulfate modulates its stability and its role in tumor formation and growth.


Assuntos
Heparitina Sulfato , Neuropilina-1 , Neuropilina-1/metabolismo , Neuropilina-1/genética , Neuropilina-1/química , Animais , Heparitina Sulfato/metabolismo , Camundongos , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Ligação Proteica , Sítios de Ligação , Camundongos Endogâmicos C57BL , Heparina/metabolismo , Heparina/química , Simulação de Dinâmica Molecular , Mutação
3.
J Phys Chem B ; 128(29): 7141-7147, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39010661

RESUMO

The binding of the virus to host cells is the first step in viral infection. Human cell angiotensin converting enzyme 2 (ACE2) is the most popular receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), while other receptors have recently been observed in experiments. Neuropilin-1 protein (NRP1) is one of them, but the mechanism of its binding to the wild type (WT) and different variants of the virus remain unclear at the atomic level. In this work, all-atom umbrella sampling simulations were performed to clarify the binding mechanism of NRP1 to the spike protein fragments 679-685 of the WT, Delta, and Omicron BA.1 variants. We found that the Delta variant binds most strongly to NRP1, while the affinity for Omicron BA.1 slightly decreases for NRP1 compared to that of WT, and the van der Waals interaction plays a key role in stabilizing the studied complexes. The change in the protonation state of the His amino acid results in different binding free energies between variants. Consistent with the experiment, decreasing the pH was shown to increase the binding affinity of the virus to NRP1. Our results indicate that Delta and Omicron mutations not only affect fusogenicity but also affect NRP1 binding. In addition, we argue that viral evolution does not further improve NRP1 binding affinity which remains in the µM range but may increase immune evasion.


Assuntos
Simulação de Dinâmica Molecular , Neuropilina-1 , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Neuropilina-1/metabolismo , Neuropilina-1/química , Humanos , SARS-CoV-2/química , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , COVID-19/virologia , COVID-19/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/química
4.
Protein Sci ; 32(10): e4773, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37656811

RESUMO

Recent studies have suggested that neuropilin-1 (NRP1) may serve as a potential receptor in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. However, the biophysical characteristics of interactions between NRP1 and SARS-CoV-2 remain unclear. In this study, we examined the interactions between NRP1 and various SARS-CoV-2 spike (S) fragments, including the receptor-binding domain (RBD) and the S protein trimer in a soluble form or expressed on pseudovirions, using atomic force microscopy and structural modeling. Our measurements shows that NRP1 interacts with the RBD and trimer at a higher binding frequency (BF) compared to ACE2. This NRP1-RBD interaction has also been predicted and simulated via AlphaFold2 and molecular dynamics simulations, and the results indicate that their binding patterns are very similar to RBD-ACE2 interactions. Additionally, under similar loading rates, the most probable unbinding forces between NRP1 and S trimer (both soluble form and on pseudovirions) are larger than the forces between NRP1 and RBD and between trimer and ACE2. Further analysis indicates that NRP1 has a stronger binding affinity to the SARS-CoV-2 S trimer with a dissociation rate of 0.87 s-1 , four times lower than the dissociation rate of 3.65 s-1 between NRP1 and RBD. Moreover, additional experiments show that RBD-neutralizing antibodies can significantly reduce the BF for both ACE2 and NRP1. Together, the study suggests that NRP1 can be an alternative receptor for SARS-CoV-2 attachment to human cells, and the neutralizing antibodies targeting SARS-CoV-2 RBD can reduce the binding between SARS-CoV-2 and NRP1.


Assuntos
COVID-19 , Neuropilina-1 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Humanos , Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Neutralizantes/metabolismo , Simulação de Dinâmica Molecular , Neuropilina-1/química , Ligação Proteica , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/química
5.
Bioorg Chem ; 130: 106200, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36332316

RESUMO

Targeting vascular endothelial growth factor receptor (VEFGR) and its co-receptor neuropilin-1 (NRP-1) is an interesting vascular strategy. tLyp-1 is a tumor-homing and penetrating peptide of 7 amino acids (CGNKRTR). It is a truncated form of Lyp-1 (CGNKRTRGC), which is known to target NRP-1 receptor, with high affinity and specificity. It is mediated by endocytosis via C-end rule (CendR) internalization pathway. The aim of this study is to evaluate the importance of each amino acid in the tLyp-1 sequence through alanine-scanning (Ala-scan) technique, during which each of the amino acid in the sequence was systematically replaced by alanine to produce 7 different analogues. In silico approach through molecular docking and molecular dynamics are employed to understand the interaction between the peptide and its analogues with the NRP-1 receptor, followed by in vitro ligand binding assay study. The C-terminal Arg is crucial in the interaction of tLyp-1 with NRP-1 receptor. Substituting this residue dramatically reduces the affinity of this peptide which is clearly seen in this study. Lys-4 is also important in the interaction, which is confirmed via the in vitro study and the MM-PBSA analysis. The finding in this study supports the CendR, in which the presence of R/K-XX-R/K motif is essential in the binding of a ligand with NRP-1 receptor. This presented work will serve as a guide in the future work pertaining the development of active targeting agent towards NRP-1 receptor.


Assuntos
Neuropilina-1 , Fator A de Crescimento do Endotélio Vascular , Alanina , Aminoácidos , Ligantes , Simulação de Acoplamento Molecular , Neuropilina-1/química , Neuropilina-1/metabolismo , Peptídeos/química , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
Int J Mol Sci ; 23(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35955539

RESUMO

Neuropilin 1 (NRP1) represents one of the two homologous neuropilins (NRP, splice variants of neuropilin 2 are the other) found in all vertebrates. It forms a transmembrane glycoprotein distributed in many human body tissues as a (co)receptor for a variety of different ligands. In addition to its physiological role, it is also associated with various pathological conditions. Recently, NRP1 has been discovered as a coreceptor for the SARS-CoV-2 viral entry, along with ACE2, and has thus become one of the COVID-19 research foci. However, in addition to COVID-19, the current review also summarises its other pathological roles and its involvement in clinical diseases like cancer and neuropathic pain. We also discuss the diversity of native NRP ligands and perform a joint analysis. Last but not least, we review the therapeutic roles of NRP1 and introduce a series of NRP1 modulators, which are typical peptidomimetics or other small molecule antagonists, to provide the medicinal chemistry community with a state-of-the-art overview of neuropilin modulator design and NRP1 druggability assessment.


Assuntos
COVID-19 , Neoplasias , Animais , Humanos , Neuropilina-1/química , Neuropilina-1/genética , Neuropilina-2/genética , SARS-CoV-2
7.
Microb Pathog ; 170: 105701, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35963279

RESUMO

Neuropilin-1 (NRP1) is a widely expressed cell surface receptor protein characterized by its pleiotropic function. Recent reports highlighted NRP1 as an additional entry point of the SARS-CoV-2 virus, enhancing viral infectivity by interacting with the S-protein of SARS-CoV-2. The ubiquitous distribution and mechanism of action of NRP1 enable the SARS-CoV-2 virus to attack multiple organs in the body simultaneously. Therefore, blocking NRP1 is a potential therapeutic approach against SARS-CoV-2 infection. The current study screened the South African natural compounds database (SANCDB) for molecules that can disrupt the SARS-CoV-2 S protein-NRP1 interaction as a potential antiviral target for SARS-CoV-2 cellular entry. Following excessive screening and validation analysis 3-O-Methylquercetin and Esculetin were identified as potential compounds to disrupt the S-protein-NRP1 interaction. Furthermore, to understand the conformational stability and dynamic features between NRP1 interaction with the selected natural products, we performed 200 ns molecular dynamics (MD) simulations. In addition, molecular mechanics-generalized Born surface area (MM/GBSA) was utilized to calculate the free binding energies of the natural products interacting with NRP1. 3-O-methylquercetin showed an inhibitory effect with binding energies ΔG of -25.52 ±â€¯0.04 kcal/mol to NRP1, indicating the possible disruption of the NRP1-S-protein interaction. Our analysis demonstrated that 3-O-methylquercetin presents a potential antiviral compound against SARS-CoV-2 infectivity. These results set the path for future functional in-vitro and in-vivo studies in SARS-CoV-2 research.


Assuntos
Produtos Biológicos , Tratamento Farmacológico da COVID-19 , Neuropilina-1/metabolismo , Antivirais/química , Antivirais/farmacologia , Produtos Biológicos/farmacologia , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Neuropilina-1/química , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
8.
Chembiochem ; 23(1): e202100463, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34647407

RESUMO

Vascular endothelial growth factors (VEGFs) regulate significant pathways in angiogenesis, myocardial and neuronal protection, metabolism, and cancer progression. The VEGF-B growth factor is involved in cell survival, anti-apoptotic and antioxidant mechanisms, through binding to VEGF receptor 1 and neuropilin-1 (NRP1). We employed surface plasmon resonance technology and X-ray crystallography to analyse the molecular basis of the interaction between VEGF-B and the b1 domain of NRP1, and developed VEGF-B C-terminus derived peptides to be used as chemical tools for studying VEGF-B - NRP1 related pathways. Peptide lipidation was used as a means to stabilise the peptides. VEGF-B-derived peptides containing a C-terminal arginine show potent binding to NRP1-b1. Peptide lipidation increased binding residence time and improved plasma stability. A crystal structure of a peptide with NRP1 demonstrated that VEGF-B peptides bind at the canonical C-terminal arginine binding site. VEGF-B C-terminus imparts higher affinity for NRP1 than the corresponding VEGF-A165 region. This tight binding may impact on the activity and selectivity of the full-length protein. The VEGF-B167 derived peptides were more effective than VEGF-A165 peptides in blocking functional phosphorylation events. Blockers of VEGF-B function have potential applications in diabetes and non-alcoholic fatty liver disease.


Assuntos
Neuropilina-1/metabolismo , Peptídeos/metabolismo , Fator B de Crescimento do Endotélio Vascular/metabolismo , Humanos , Neuropilina-1/química , Peptídeos/química , Ligação Proteica , Fator B de Crescimento do Endotélio Vascular/química
9.
Mol Med ; 27(1): 162, 2021 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-34961486

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel type b coronavirus responsible for the COVID-19 pandemic. With over 224 million confirmed infections with this virus and more than 4.6 million people dead because of it, it is critically important to define the immunological processes occurring in the human response to this virus and pathogenetic mechanisms of its deadly manifestation. This perspective focuses on the contribution of the recently discovered interaction of SARS-CoV-2 Spike protein with neuropilin 1 (NRP1) receptor, NRP1 as a virus entry receptor for SARS-CoV-2, its role in different physiologic and pathologic conditions, and the potential to target the Spike-NRP1 interaction to combat virus infectivity and severe disease manifestations.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Neuropilina-1/química , Neuropilina-1/metabolismo , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/epidemiologia , COVID-19/etiologia , Comorbidade , Diabetes Mellitus/epidemiologia , Diabetes Mellitus/virologia , Feminino , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/imunologia , Humanos , Lactente , Terapia de Alvo Molecular/métodos , Neuropilina-1/imunologia , Gravidez , Complicações Infecciosas na Gravidez/tratamento farmacológico , Complicações Infecciosas na Gravidez/virologia , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/metabolismo
10.
Mol Syst Biol ; 17(9): e10079, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34519429

RESUMO

We modeled 3D structures of all SARS-CoV-2 proteins, generating 2,060 models that span 69% of the viral proteome and provide details not available elsewhere. We found that ˜6% of the proteome mimicked human proteins, while ˜7% was implicated in hijacking mechanisms that reverse post-translational modifications, block host translation, and disable host defenses; a further ˜29% self-assembled into heteromeric states that provided insight into how the viral replication and translation complex forms. To make these 3D models more accessible, we devised a structural coverage map, a novel visualization method to show what is-and is not-known about the 3D structure of the viral proteome. We integrated the coverage map into an accompanying online resource (https://aquaria.ws/covid) that can be used to find and explore models corresponding to the 79 structural states identified in this work. The resulting Aquaria-COVID resource helps scientists use emerging structural data to understand the mechanisms underlying coronavirus infection and draws attention to the 31% of the viral proteome that remains structurally unknown or dark.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Interações Hospedeiro-Patógeno/genética , Processamento de Proteína Pós-Traducional , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/química , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/genética , Sítios de Ligação , COVID-19/genética , COVID-19/metabolismo , COVID-19/virologia , Biologia Computacional/métodos , Proteínas do Envelope de Coronavírus/química , Proteínas do Envelope de Coronavírus/genética , Proteínas do Envelope de Coronavírus/metabolismo , Proteínas do Nucleocapsídeo de Coronavírus/química , Proteínas do Nucleocapsídeo de Coronavírus/genética , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Humanos , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Modelos Moleculares , Mimetismo Molecular , Neuropilina-1/química , Neuropilina-1/genética , Neuropilina-1/metabolismo , Fosfoproteínas/química , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas/métodos , Multimerização Proteica , SARS-CoV-2/química , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/metabolismo , Proteínas Viroporinas/química , Proteínas Viroporinas/genética , Proteínas Viroporinas/metabolismo , Replicação Viral
11.
Biochim Biophys Acta Proteins Proteom ; 1869(11): 140708, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34343702

RESUMO

Human T-cell leukemia virus type 1 (HTLV-1) infection of host cells is mainly mediated by interactions with the viral envelope glycoprotein surface unit (SU) and three host receptors: heparan sulfate proteoglycan, neuropilin-1 (Nrp1), and glucose transporter type 1. Residues 90-94 of SU are considered as a Nrp1 binding site, and our previous results show that an SU peptide consisting of residues 85-94 can bind directly to the Nrp1 b1 domain with a binding affinity of 7.4 µM. Therefore, the SU peptide is expected to be a good model to investigate the SU-Nrp1 interaction. Recently, the N93D mutation in the Nrp1 b1 binding region of the SU was identified in symptomatic patients with HTLV-1 infections in the Brazilian Amazon. However, it remains unclear how the SU-N93D mutation affects Nrp1 b1 binding. To elucidate the impact of the substituted Asp93 of SU on Nrp1 b1 binding, we analyzed the interaction between the SU-N93D peptide and Nrp1 b1 using isothermal titration calorimetry and nuclear magnetic resonance. The SU-N93D peptide binds directly to Nrp1 b1 with a binding affinity of 3.5 µM, which is approximately two-fold stronger than wild-type. This stronger binding is likely a result of the interaction between the substituted residue Asp93 of the N93D peptide and the four residues Trp301, Lys347, Glu348, and Thr349 of Nrp1 b1. Our results suggest that the interaction of SU Asp93 with the four residues of Nrp1 b1 renders the high affinity of the N93D mutant for Nrp1 b1 binding during HTLV-1 entry.


Assuntos
Infecções por HTLV-I/virologia , Vírus Linfotrópico T Tipo 1 Humano/patogenicidade , Mutação de Sentido Incorreto , Neuropilina-1/metabolismo , Proteínas do Envelope Viral/metabolismo , Sítios de Ligação , Produtos do Gene env , Infecções por HTLV-I/metabolismo , Vírus Linfotrópico T Tipo 1 Humano/isolamento & purificação , Humanos , Neuropilina-1/química , Ligação Proteica , Proteínas Oncogênicas de Retroviridae , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética
12.
Genes (Basel) ; 11(11)2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33212964

RESUMO

Neuropilins are transmembrane coreceptors expressed by endothelial cells and neurons. NRP1 and NRP2 bind a variety of ligands, by which they trigger cell signaling, and are important in the development of lymphatic valves and lymphatic capillaries, respectively. This study focuses on identifying rare variants in the NRP1 and NRP2 genes that could be linked to the development of lymphatic malformations in patients diagnosed with lymphedema. Two hundred and thirty-five Italian lymphedema patients, who tested negative for variants in known lymphedema genes, were screened for variants in NRP1 and NRP2. Two probands carried variants in NRP1 and four in NRP2. The variants of both genes segregated with lymphedema in familial cases. Although further functional and biochemical studies are needed to clarify their involvement with lymphedema and to associate NRP1 and NRP2 with lymphedema, we suggest that it is worthwhile also screening lymphedema patients for these two new candidate genes.


Assuntos
Linfedema/genética , Neuropilina-1/genética , Neuropilina-2/genética , Polimorfismo de Nucleotídeo Único , Idoso , Simulação por Computador , Feminino , Frequência do Gene , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Neuropilina-1/química , Neuropilina-2/química , Linhagem , Conformação Proteica
13.
Science ; 370(6518): 856-860, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33082293

RESUMO

The causative agent of coronavirus disease 2019 (COVID-19) is the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). For many viruses, tissue tropism is determined by the availability of virus receptors and entry cofactors on the surface of host cells. In this study, we found that neuropilin-1 (NRP1), known to bind furin-cleaved substrates, significantly potentiates SARS-CoV-2 infectivity, an effect blocked by a monoclonal blocking antibody against NRP1. A SARS-CoV-2 mutant with an altered furin cleavage site did not depend on NRP1 for infectivity. Pathological analysis of olfactory epithelium obtained from human COVID-19 autopsies revealed that SARS-CoV-2 infected NRP1-positive cells facing the nasal cavity. Our data provide insight into SARS-CoV-2 cell infectivity and define a potential target for antiviral intervention.


Assuntos
Betacoronavirus/fisiologia , Infecções por Coronavirus/virologia , Neuropilina-1/metabolismo , Pneumonia Viral/virologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus , Enzima de Conversão de Angiotensina 2 , Animais , Anticorpos Monoclonais/imunologia , Betacoronavirus/genética , COVID-19 , Células CACO-2 , Feminino , Células HEK293 , Interações entre Hospedeiro e Microrganismos , Humanos , Pulmão/metabolismo , Masculino , Nanopartículas Metálicas , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Neuropilina-1/química , Neuropilina-1/genética , Neuropilina-1/imunologia , Neuropilina-2/metabolismo , Mucosa Olfatória/metabolismo , Mucosa Olfatória/virologia , Pandemias , Fragmentos de Peptídeos/metabolismo , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Ligação Proteica , Domínios Proteicos , Mucosa Respiratória/metabolismo , SARS-CoV-2 , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Glicoproteína da Espícula de Coronavírus/química
14.
Science ; 370(6518): 861-865, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33082294

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), uses the viral spike (S) protein for host cell attachment and entry. The host protease furin cleaves the full-length precursor S glycoprotein into two associated polypeptides: S1 and S2. Cleavage of S generates a polybasic Arg-Arg-Ala-Arg carboxyl-terminal sequence on S1, which conforms to a C-end rule (CendR) motif that binds to cell surface neuropilin-1 (NRP1) and NRP2 receptors. We used x-ray crystallography and biochemical approaches to show that the S1 CendR motif directly bound NRP1. Blocking this interaction by RNA interference or selective inhibitors reduced SARS-CoV-2 entry and infectivity in cell culture. NRP1 thus serves as a host factor for SARS-CoV-2 infection and may potentially provide a therapeutic target for COVID-19.


Assuntos
Betacoronavirus/fisiologia , Neuropilina-1/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus , Motivos de Aminoácidos , Enzima de Conversão de Angiotensina 2 , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , COVID-19 , Células CACO-2 , Infecções por Coronavirus/virologia , Cristalografia por Raios X , Furina/metabolismo , Células HeLa , Humanos , Mutagênese Sítio-Dirigida , Neuropilina-1/antagonistas & inibidores , Neuropilina-1/química , Neuropilina-1/genética , Pandemias , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/virologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Interferência de RNA , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética
15.
Biomolecules ; 10(3)2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32183142

RESUMO

The structure-activity relationship of branched H-Lys(hArg)-Dab-Dhp-Arg-OH sequence analogues, modified with Cys-Asp or Cys at N-terminal amino acids (Lys, hArg), in VEGF-A165/Neuropilin-1 complex inhibition is presented. The addition of Cys residue led to a 100-fold decrease in the IC50 value, compared to the parent peptide. The change occurred regardless of coupling Cys to the free N-terminal amino group present in the main or the side chain. A few analogues extended by the attachment of Cys at the N-terminus of several potent NRP-1 peptide ligands documented in the literature are also presented. In all studied cases, the enhancement of inhibitory properties after the addition of Cys at the N-terminus is observed. It is particularly evident for the tetrapeptide derived from the C-terminus of VEGF-A165 (KPRR), suggesting that extending the K/RXXK/R motif (CendR) with the Cys moiety can significantly improve affinity to NRP-1 of CendR peptides.


Assuntos
Neuropilina-1/química , Peptídeos/química , Motivos de Aminoácidos , Cisteína/química , Humanos , Fator A de Crescimento do Endotélio Vascular/química
16.
Cells ; 9(2)2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-32102436

RESUMO

Konjac ceramide (kCer) is a plant-type ceramide composed of various long-chain bases and a-hydroxyl fatty acids. The presence of d4t,8t-sphingadienine is essential for semaphorin 3A (Sema3A)-like activity. Herein, we examined the three neuropilin 1 (Nrp1) domains (a1a2, b1b2, or c), and found that a1a2 binds to d4t,8t-kCer and possesses Sema3A-like activity. kCer binds to Nrp1 with a weak affinity of mM dissociation constant (Kd). We wondered whether bovine serum albumin could influence the ligand-receptor interaction that a1a2 has with a single high affinity binding site for kCer (Kd in nM range). In the present study we demonstrated the influence of bovine serum albumin. Thermal denaturation indicates that the a1a2 domain may include intrinsically disordered region (IDR)-like flexibility. A potential interaction site on the a1 module was explored by molecular docking, which revealed a possible Nrp1 activation mechanism, in which kCer binds to Site A close to the Sema3A-binding region of the a1a2 domain. The a1 module then accesses a2 as the IDR-like flexibility becomes ordered via kCer-induced protein rigidity of a1a2. This induces intramolecular interaction between a1 and a2 through a slight change in protein secondary structure.


Assuntos
Glucosilceramidas/farmacologia , Neuropilina-1/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Glucosilceramidas/química , Humanos , Imunoprecipitação , Modelos Moleculares , Neuropilina-1/química , Domínios Proteicos , Semaforina-3A/metabolismo
17.
Faraday Discuss ; 222(0): 304-317, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32100767

RESUMO

Developing therapeutic nanoparticles that actively target disease cells or tissues by exploiting the binding specificity of receptors presented on the cell surface has extensively opened up biomedical applications for drug delivery and imaging. An ideal nanoparticle for biomedical applications is required to report confirmation of relevant targeting and the ultimate fate in a physiological environment for further verification, e.g. to adapt dosage or predict response. Herein, we demonstrate tracking of silicon nanoparticles through intrinsic photoluminescence (PL) during the course of cellular targeting and uptake. Time-resolved analysis of PL characteristics in cellular microenvironments provides dynamic information on the physiological conditions where the silicon nanoparticles are exposed. In particular, the PL lifetime of the silicon nanoparticles is in the order of microseconds, which is significantly longer than the nanosecond lifetimes exhibited by fluorescent molecules naturally presented in cells, thus allowing discrimination of the nanoparticles from the cellular background autofluorescence in time-gated imaging. The PL lifetime is a physically intensive property that reports the inherent characteristics of the nanoparticles regardless of surrounding noise. Furthermore, we investigate a unique means to inform the lifespan of the biodegradable silicon nanoparticles responsive to local microenvironment in the course of endocytosis. A multivalent strategy of nanoparticles for enhanced cell targeting is also demonstrated with complementary analysis of time-resolved PL emission imaging and fluorescence correlation spectroscopy. The result presents the promising potential of the photoluminescent silicon nanoparticles toward advanced cell targeting systems that simultaneously enable tracking of cellular trafficking and tissue microenvironment monitoring.


Assuntos
Diagnóstico por Imagem/métodos , Células Epiteliais/ultraestrutura , Nanopartículas/química , Neuropilina-1/metabolismo , Oligopeptídeos/metabolismo , Silício/química , Linhagem Celular Tumoral , Endocitose , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Luminescência , Medições Luminescentes , Nanopartículas/metabolismo , Nanotecnologia/métodos , Neuropilina-1/química , Oligopeptídeos/química , Ligação Proteica , Razão Sinal-Ruído
18.
J Pept Sci ; 26(3): e3241, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31984553

RESUMO

The dual interaction with integrins and neuropilin-1 receptor is the peculiar feature of iRGD peptide. Hence, in the present study, two iRGD peptide analogs were synthesized with DOTAGA and NODAGA as bifunctional chelator and aminohexanoic acid as a spacer for radiometalation with 68 GaCl3 . Negatively charged 68 Ga-DOTAGA-iRGD and neutral 68 Ga-NODAGA-iRGD radiotracers were investigated through in vitro cell uptake studies and in vivo biodistribution studies. Significant internalization of radiotracers in murine melanoma B16F10 cells was observed during in vitro studies. During in vivo studies, tumor uptake was higher for neutral 68 Ga-NODAGA-iRGD, but 68 Ga-DOTAGA-iRGD exhibited better tumor-to-blood ratio due to faster blood clearance. High kidney uptake of the two radiotracers was the limitation, which needs to be resolved through modification either in the peptide backbone or spacer/chelator.


Assuntos
Quelantes/química , Radioisótopos de Gálio/química , Melanoma Experimental/metabolismo , Peptídeos/farmacocinética , Acetatos/química , Administração Intravenosa , Anidridos/química , Animais , Linhagem Celular Tumoral , Compostos Heterocíclicos com 1 Anel/química , Integrinas/química , Camundongos , Neuropilina-1/química , Peptídeos/administração & dosagem , Peptídeos/química
19.
J Clin Lab Anal ; 33(7): e22944, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31219204

RESUMO

BACKGROUND: Neuropilin-1 (NRP1) is a highly interactive molecule that exists as transmembrane and soluble isoforms. Measurement of circulating levels of soluble NRP1 (sNRP1) in human serum and plasma has proven to be difficult due to present matrix interferences and due to the lack of a reliable technique. METHODS: We developed a highly specific and sensitive sandwich ELISA assay for total sNRP1 quantification in peripheral blood, and we validated the test according to ICH guidelines. The linear epitopes of the employed polyclonal and monoclonal anti-human NRP1 antibodies were mapped with microarray technology. We included a sample pre-treatment step with guanidine hydrochloride (GuHCl) to release sNRP1 from existing interferants. RESULTS: The ELISA assay which is calibrated with sNRP1 isoform 2 and covers a calibration range from 0.375 to 12 nmol/L detects sNRP1 in human serum and plasma (heparin, EDTA, and citrate). Multiple linear epitopes recognized by the polyclonal coating antibody are distributed over the whole sNRP1 sequence. The monoclonal detection antibody binds to a linear epitope which is in the N-terminal region of the a1 domain of human sNRP1. Assay parameters like precision (intra-assay: 6%), dilution linearity (95%-115%), specificity (98%), and spike recovery (81%-109%) meet the international standards of acceptance. CONCLUSION: Our novel sandwich ELISA provides a reliable tool for the quantitative determination of total human sNRP1. The assay detects free and previous ligand-bound total NRP1.


Assuntos
Ensaio de Imunoadsorção Enzimática/métodos , Neuropilina-1/sangue , Animais , Anticorpos/metabolismo , Reações Cruzadas/imunologia , Epitopos/metabolismo , Guanidina/farmacologia , Humanos , Interferometria , Ligantes , Camundongos , Modelos Moleculares , Neuropilina-1/química , Ligação Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Proteínas Recombinantes/metabolismo , Sensibilidade e Especificidade , Solubilidade , Fator A de Crescimento do Endotélio Vascular/metabolismo
20.
Cell Commun Signal ; 17(1): 67, 2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-31208428

RESUMO

BACKGROUND: Chlorotoxin (Cltx) isolated from scorpion venom is an established tumor targeting and antiangiogenic peptide. Radiolabeled Cltx therapeutic (131I-TM601) yielded promising results in human glioma clinical studies, and the imaging agent tozuleristide, is under investigation in CNS cancer studies. Several binding targets have previously been proposed for Cltx but none effectively explain its pleiotropic effects; its true target remains ambiguous and is the focus of this study. METHODS: A peptide-drug conjugate (ER-472) composed of Cltx linked to cryptophycin as warhead was developed as a tool to probe the molecular target and mechanism of action of Cltx, using multiple xenograft models. RESULTS: Neuropilin-1 (NRP1), an endocytic receptor on tumor and endothelial cells, was identified as a novel Cltx target, and NRP1 binding by Cltx increased drug uptake into tumor. Metabolism of Cltx to peptide bearing free C-terminal arginine, a prerequisite for NRP1 binding, took place in the tumor microenvironment, while native scorpion Cltx with amidated C-terminal arginine did not bind NRP1, and instead acts as a cryptic peptide. Antitumor activity of ER-472 in xenografts correlated to tumor NRP1 expression. Potency was significantly reduced by treatment with NRP1 blocking antibodies or knockout in tumor cells, confirming a role for NRP1-binding in ER-472 activity. Higher cryptophycin metabolite levels were measured in NRP1-expressing tumors, evidence of NRP1-mediated enhanced drug uptake and presumably responsible for the superior antitumor efficacy. CONCLUSIONS: NRP1 was identified as a novel Cltx target which enhances tumor drug uptake. This finding should facilitate tumor selection for chlorotoxin-based therapeutics and diagnostics.


Assuntos
Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Neuropilina-1/metabolismo , Venenos de Escorpião/metabolismo , Venenos de Escorpião/farmacologia , Sequência de Aminoácidos , Animais , Antineoplásicos/química , Transporte Biológico , Linhagem Celular Tumoral , Depsipeptídeos/química , Humanos , Camundongos , Neuropilina-1/química , Venenos de Escorpião/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA