Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.791
Filtrar
1.
Sci Rep ; 14(1): 17808, 2024 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090195

RESUMO

Antimicrobial peptides, such as nisin, are proposed as promising agents for cancer treatment. While glycation has been recognized as an effective method for enhancing various physicochemical properties of nisin, its anticancer effects remain unexplored. Therefore, we aimed to assess the anticancer potential of glycated nisin against MDA-MB-231 cells. The MDA-MB cells were treated with increasing concentrations of nisin and glycated nisin for 24, 48, and 72 h. The IC50 values for nisin were higher than those for glycated nisin. Glycated nisin at concentrations of 20 and 40 µg/mL decreased cell viability more than nisin at the same concentrations. The rate of apoptosis in the group treated with 20 µg/mL of nisin was lower compared to other treatment groups, and no significant difference in apoptosis rates was observed at different time points (p > 0.05). However, in the glycated nisin groups with concentrations of 10, 20, and 40 µg/mL, the level of apoptosis was very high after 24 h (73-81% of cells undergoing apoptosis). Overall, our study suggests that glycated nisin exhibits stronger cytotoxic effects on MDA-MB-231 cells, primarily involving the induction of apoptosis. This indicates its potential utilization as an alternative approach to address the issue of drug resistance in cancer cells.


Assuntos
Apoptose , Neoplasias da Mama , Sobrevivência Celular , Nisina , Nisina/farmacologia , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Glicosilação/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Antineoplásicos/farmacologia , Antineoplásicos/química
2.
Food Res Int ; 192: 114765, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39147557

RESUMO

In this study, Listeria monocytogenes from minced pork was evaluated for changes in resistance to thermal treatment and gastric fluid following environmental stresses during food processing. Bacteria were exposed to cold stress, followed by successive exposures to different stressors (lactic acid (LA), NaCl, or Nisin), followed by thermal treatments, and finally, their gastrointestinal tolerance was determined. Adaptation to NaCl stress reduced the tolerance of L. monocytogenes to subsequent LA and Nisin stress. Adaptation to LA stress increased bacterial survival in NaCl and Nisin-stressed environments. Bacteria adapted to Nisin stress showed no change in tolerance to subsequent stress conditions. In addition, treatment with NaCl and LA enhanced the thermal tolerance of L. monocytogenes, but treatment with Nisin decreased the thermal tolerance of the bacteria. Almost all of the sequential stresses reduced the effect of a single stress on bacterial thermal tolerance. The addition of LA and Nisin as a second step of stress reduced the tolerance of L. monocytogenes to gastric fluid, whereas the addition of NaCl enhanced its tolerance. The results of this study are expected to inform processing conditions and sequences for meat preservation and processing and reduce uncertainty in risk assessment of foodborne pathogens due to stress adaptation.


Assuntos
Manipulação de Alimentos , Microbiologia de Alimentos , Listeria monocytogenes , Produtos da Carne , Nisina , Listeria monocytogenes/efeitos dos fármacos , Listeria monocytogenes/fisiologia , Nisina/farmacologia , Produtos da Carne/microbiologia , Animais , Manipulação de Alimentos/métodos , Temperatura Alta , Cloreto de Sódio , Suínos , Estresse Fisiológico , Conservação de Alimentos/métodos , Adaptação Fisiológica
3.
Open Vet J ; 14(6): 1370-1383, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39055763

RESUMO

Background: Antibiotic resistance is a global health problem related to the transmission of bacteria and genes between humans and animals. The development of new drugs with antimicrobial activity research is an urgent task of modern science. Aim: The article presents data of in vitro and in vivo experiments on new pharmaceutical composition based on nisin. Methods: The antimicrobial activity was studied on the mastitis pathogens. To identify microorganisms the Matrix-Assisted Lazer Desorption/Ionization Time-of-Flight (MALDI-TOF) (mass spectrometry) method was performed using. To determine sensitivity, the serial dilution method and the diffusion method were used. On laboratory animals, biochemical, hematological, and histological research methods were used. Female nonlinear white laboratory rats were used, which were divided into one control group and three experimental ones. Results: "Duration" factor was statistically significant for the following indicators: hemoglobin, hematocrit, leukocytes, lymphocytes, erythrocyte sedimentation rate, and eosinophils. The "Dose" factor did not show significance for any indicator, which means that the effect was similar regardless of the dose chosen. When analyzing the biochemical indicators, significant differences were found in the "Duration" and "Dose" factors, in the direction of a decrease in the indicators of total protein, globulins, urea, and an increase in the concentration of alkaline phosphatase. When conducting histological studies in the first experimental group, it was established that there were no changes in the structural and functional units of the organs. In animals of the second experimental group, the presence of reversible pathological processes of a compensatory nature was noted. More profound changes in the structure of the studied organs were recorded in the third experimental group. Conclusion: An in vitro study on cell cultures showed that the pharmacological composition has high antimicrobial activity against isolates from the mammary gland secretion of cows with mastitis. An in vivo study on laboratory animals showed that the developed composition belongs to the IV class of substances "low-hazard substances". Histological examination made it possible to select the safest dose of the pharmacological composition of no more than 500 mg/kg.


Assuntos
Antibacterianos , Nisina , Animais , Feminino , Ratos , Antibacterianos/farmacologia , Nisina/farmacologia , Bovinos , Mastite Bovina/microbiologia , Mastite Bovina/tratamento farmacológico , Testes de Sensibilidade Microbiana/veterinária , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/veterinária
4.
BMC Oral Health ; 24(1): 822, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39033294

RESUMO

OBJECTIVES: The aim of this study was to evaluate the effect of in-vivo produced Nisin which is an antimicrobial peptide (AMP) added to adhesive resin on shear bond strength (SBS) and the adhesive remnant index (ARI) of orthodontic brackets. METHODS: Bacterial AMP was produced by fermentation and the ideal AMP/Bond concentration and antimicrobial efficacy of the mixture were tested. To evaluate the SBS and ARI scores of AMP-added adhesive resins, 80 maxillary premolar teeth extracted for orthodontic purposes were used and randomly assigned into 2 groups (n = 40). Group 1: Control Group (teeth bonded with standard adhesive resin); Group 2: Experimental Group (teeth bonded with AMP-added adhesive resin). Statistical analysis was performed using the SPSS package program and applying the Mann-Whitney U and Fisher's exact tests. P < 0.05 was considered as statistically significant. RESULTS: Nisin synthesized in-vivo from Lactococcus lactis (L. lactis) (ATCC 7962) bacteria was provided to form a homogenous solution at an ideal concentration To find the minimum AMP/Bond mixture ratio that showed maximum antimicrobial activity, AMP and Bond mixtures were tested at various concentration levels between 1/160 and 1/2 (AMP/Bond). As a result, the optimum ratio was determined as 1/40. The antimicrobial efficacy of Nisin-added adhesive resin was tested against Streptococcus mutans (S. mutans) (ATCC 35,688) and Lactobacillus strains (cariogenic microorganisms). AMP formed a 2.7 cm diameter zone alone, while 1/40 AMP-bond mixture formed a 1.2 cm diameter zone. SBS values of the teeth bonded with Nisin added adhesive (17.49 ± 5.31) were significantly higher than the control group (14.54 ± 4.96) (P = 0.004). According to the four point scale, Nisin added adhesive provided a higher ARI score in favour of the adhesive and tooth compared to the control group (ARI = 3, n = 20). CONCLUSIONS: Nisin produced from L. lactis (ATCC 7962) had greater antimicrobial effects after mixing with adhesive bond against cariogenic microorganisms S. mutans (ATCC 35,688) and Lactobacillus strains. Nisin added adhesive increased shear bond strength (SBS) of orthodontic brackets and ARI scores in favor of adhesive & teeth. CLINICAL RELEVANCE: Clinicians should take into account that using Nisin-added adhesive resin in orthodontic treatments can provide prophylaxis against tooth decay, especially in patients with poor oral hygiene.


Assuntos
Colagem Dentária , Nisina , Braquetes Ortodônticos , Cimentos de Resina , Resistência ao Cisalhamento , Nisina/farmacologia , Humanos , Cimentos de Resina/farmacologia , Cimentos de Resina/química , Colagem Dentária/métodos , Lactococcus lactis , Análise do Estresse Dentário , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/química , Streptococcus mutans/efeitos dos fármacos , Dente Pré-Molar
5.
J Appl Microbiol ; 135(8)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39066499

RESUMO

AIMS: This study evaluates the antibacterial characteristics and mechanisms of combined tea polyphenols (TPs), Nisin, and ε-polylysine (PL) against Streptococcus canis, Streptococcus minor, Streptococcus mutans, and Actinomyces oris, common zoonotic pathogens in companion animals. METHODS AND RESULTS: Pathogenic strains were isolated from feline oral cavities and assessed using minimum inhibitory concentration (MIC) tests, inhibition zone assays, growth kinetics, and biofilm inhibition studies. Among single agents, PL exhibited the lowest MIC values against all four pathogens. TP showed significant resistance against S. minor, and Nisin against S. mutans. The combination treatment (Comb) of TP, Nisin, and PL in a ratio of 13:5:1 demonstrated broad-spectrum antibacterial activity, maintaining low MIC values, forming large inhibition zones, prolonging the bacterial lag phase, reducing growth rates, and inhibiting biofilm formation. RNA sequencing and metabolomic analysis indicated that TP, Nisin, and PL inhibited various membrane-bound carbohydrate-specific transferases through the phosphoenolpyruvate-dependent phosphotransferase system in S. canis, disrupting carbohydrate uptake. They also downregulated glycolysis and the citric acid cycle, inhibiting cellular energy metabolism. Additionally, they modulated the activities of peptidoglycan glycosyltransferases and d-alanyl-d-alanine carboxypeptidase, interfering with peptidoglycan cross-linking and bacterial cell wall stability. CONCLUSIONS: The Comb therapy significantly enhances antibacterial efficacy by targeting multiple bacterial pathways, offering potential applications in food and pharmaceutical antimicrobials.


Assuntos
Antibacterianos , Biofilmes , Testes de Sensibilidade Microbiana , Nisina , Polilisina , Polifenóis , Chá , Animais , Nisina/farmacologia , Antibacterianos/farmacologia , Polilisina/farmacologia , Polifenóis/farmacologia , Gatos , Chá/química , Biofilmes/efeitos dos fármacos , Streptococcus/efeitos dos fármacos , Streptococcus/genética , Transcriptoma , Boca/microbiologia , Metabolômica
6.
Biomed Mater ; 19(5)2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39079550

RESUMO

Nisin is a bacteriocin produced by Gram-positive lactic acid bacterium,Lactococcus lactisand currently recognized in the Generally Recognized as Safe (GRAS) category due to its non-toxicity. Herein, nisin has been grafted to chitosan structure to obtain natural bio-active films with enhanced antibacterial activity. Grafting was performed using ethyl ester lysine diisocyanate and dimer fatty acid-based diisocyanate (DDI); two different close to fully bio-based diisocyanates and Disuccinimidyl suberate; a homo-bifunctional molecule acting as a crosslinker between amino groups. The grafting process allowed the chemical immobilization of nisin to chitosan structure. Physicochemical characterization studies showed the successful grafting of nisin. The antibacterial activity againstStaphylococcus aureuswas evident for all nisin modified chitosan films and best pronounced when DDI was used as a crosslinker with a maximum zone of inhibition of ∼13 mm. All nisin grafted chitosan films were cytocompatible and the cell viability of L929 fibroblasts were >80% pointing out the non-toxic structure. Considering the results of the presented study, bio-based diisocyanates and homo-bifunctional crosslinkers are effective molecules in synthesis of nisin grafted chitosan structures and the new chitosan based antibacterial biopolymers obtained after nisin modification come forward as promising non-toxic and bioactive candidates to be applied in medical devices, implants, and various food coating products.


Assuntos
Antibacterianos , Quitosana , Nisina , Staphylococcus aureus , Nisina/química , Nisina/farmacologia , Quitosana/química , Antibacterianos/química , Antibacterianos/farmacologia , Camundongos , Animais , Staphylococcus aureus/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Teste de Materiais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Testes de Sensibilidade Microbiana , Reagentes de Ligações Cruzadas/química , Linhagem Celular
7.
Lett Appl Microbiol ; 77(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38970380

RESUMO

Alternative strategies for controlling Staphylococcus aureus and other pathogens have been continuously investigated, with nisin, a bacteriocin widely used in the food industry as a biopreservative, gaining increasing attention. In addition to its antimicrobial properties, bacteriocins have significant effects on genome functionality even at inhibitory concentrations. This study investigated the impact of subinhibitory concentrations of nisin on S. aureus. Culturing in the presence of 0.625 µmol l-1 nisin, led to the increased relative expression of hla, saeR, and sarA, genes associated with virulence while expression of the sea gene, encoding staphylococcal enterotoxin A (SEA), decreased. In an in vivo experiment, Galleria mellonella larvae inoculated with S. aureus cultured in the presence of nisin exhibited 97% mortality at 72 h post-infection, compared to over 40% of larvae mortality in larvae infected with S. aureus. A comprehensive understanding of the effect of nisin on the transcriptional response of virulence genes and the impact of these changes on the virulence of S. aureus can contribute to assessing the application of this bacteriocin in food and medical contexts.


Assuntos
Antibacterianos , Larva , Mariposas , Nisina , Staphylococcus aureus , Nisina/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidade , Animais , Virulência/genética , Larva/microbiologia , Larva/efeitos dos fármacos , Antibacterianos/farmacologia , Mariposas/microbiologia , Infecções Estafilocócicas/microbiologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fatores de Virulência/genética , Testes de Sensibilidade Microbiana
8.
Food Res Int ; 191: 114685, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39059942

RESUMO

This study focused on the isolation and characterization of bacteriophages with specific activity against toxin-producing and multidrug-resistant strains of Bacillus cereus sensu stricto (B. cereus s. s.). Ten different samples yielded six bacteriophages by utilizing the double-layer agar technique. The most promising phage, vB_BceS-M2, was selected based on its broad host range and robust lytic activity against various B. cereus s. s. strains. The phage vB_BceS-M2 had a circular double-stranded DNA genome of 56,482 bp. This phage exhibited stability over a wide range of temperatures and pH values, which is crucial for its potential application in food matrices. The combined effect of phage vB_BceS-M2 and nisin, a widely used antimicrobial peptide, was investigated to enhance antimicrobial efficacy against B. cereus in food. The results suggested that nisin showed synergy and combined effect with the phage, potentially overcoming the growth of phage-resistant bacteria in the broth. Furthermore, practical applications were conducted in various liquid and solid food matrices, including whole and skimmed milk, boiled rice, cheese, and frozen meatballs, both at 4 and 25 °C. Phage vB_BceS-M2, either alone or in combination with nisin, reduced the growth rate of B. cereus in foods other than whole milk. The combination of bacteriophage and nisin showed promise for the development of effective antimicrobial interventions to counteract toxigenic and antibiotic-resistant B. cereus in food.


Assuntos
Antibacterianos , Bacillus cereus , Farmacorresistência Bacteriana Múltipla , Microbiologia de Alimentos , Nisina , Antibacterianos/farmacologia , Bacillus cereus/virologia , Bacillus cereus/efeitos dos fármacos , Fagos Bacilares/genética , Bacteriófagos , Queijo/microbiologia , Concentração de Íons de Hidrogênio , Leite/microbiologia , Nisina/farmacologia , Oryza/microbiologia , Temperatura
9.
Methods Mol Biol ; 2839: 99-110, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39008250

RESUMO

Metal ion homeostasis in mitochondria is essential to maintaining proper cellular physiology. However, the ability of metals to bind off target or form complexes with multiple metabolites presents major challenges to understanding the mechanisms that govern this homeostasis. Adding further to the complexity, some of the major mitochondrial transporters have shown substrate promiscuity. In many cases, mitochondrial metals are found in the matrix compartment that is surrounded by the impermeable inner membrane. Four major classes of transporters facilitate the movement of solute across the inner membrane. These are mitochondrial carrier family, ATP-binding cassette transporters, mitochondrial pyruvate carriers, and sideroflexins. For iron, the matrix is the site of iron-sulfur clusters and heme synthesis and therefore transport must occur in a coordinated fashion with the cellular needs for these critical cofactors. Iron could be transported in numerous forms as it has been shown to form complexes with abundant metabolites such as citrate, nucleotides, or glutathione. Here, we describe assays to study iron (or any metal) transport by mitochondrial carrier family proteins expressed in Lactococcus lactis using a nisin-controlled expression system.


Assuntos
Ferro , Lactococcus lactis , Lactococcus lactis/metabolismo , Lactococcus lactis/genética , Ferro/metabolismo , Metais/metabolismo , Mitocôndrias/metabolismo , Transporte Biológico , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Nisina/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética
10.
BMC Microbiol ; 24(1): 257, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997643

RESUMO

BACKGROUND: The increase in the resistance of bacterial strains to antibiotics has led to research into the bactericidal potential of non-antibiotic compounds. This study aimed to evaluate in vitro antibacterial/ antibiofilm properties of nisin and selenium encapsulated in thiolated chitosan nanoparticles (N/Se@TCsNPs) against prevalent enteric pathogens including standard isolates of Vibrio (V.) cholerae O1 El Tor ATCC 14,035, Campylobacter (C.) jejuni ATCC 29,428, Salmonella (S.) enterica subsp. enterica ATCC 19,430, Shigella (S.) dysenteriae PTCC 1188, Escherichia (E.) coli O157:H7 ATCC 25,922, Listeria (L.) monocytogenes ATCC 19,115, and Staphylococcus (S.) aureus ATCC 29,733. METHODS: The synthesis and comprehensive analysis of N/Se@TCsNPs have been completed. Antibacterial and antibiofilm capabilities of N/Se@TCsNPs were evaluated through broth microdilution and crystal violet assays. Furthermore, the study included examining the cytotoxic effects on Caco-2 cells and exploring the immunomodulatory effects of N/Se@TCsNPs. This included assessing the levels of both pro-inflammatory (IL-6 and TNFα) and anti-inflammatory (IL-10 and TGFß) cytokines and determining the gene expression of TLR2 and TLR4. RESULTS: The N/Se@TCsNPs showed an average diameter of 136.26 ± 43.17 nm and a zeta potential of 0.27 ± 0.07 mV. FTIR spectroscopy validated the structural features of N/Se@TCsNPs. Scanning electron microscopy (SEM) images confirmed their spherical shape and uniform distribution. Thermogravimetric Analysis (TGA)/Differential Scanning Calorimetry (DSC) tests demonstrated the thermal stability of N/Se@TCsNPs, showing minimal weight loss of 0.03%±0.06 up to 80 °C. The prepared N/Se@TCsNPs showed a thiol content of 512.66 ± 7.33 µmol/g (p < 0.05), an encapsulation efficiency (EE) of 69.83%±0.04 (p ≤ 0.001), and a drug release rate of 74.32%±3.45 at pH = 7.2 (p ≤ 0.004). The synthesized nanostructure demonstrated potent antibacterial activity against various isolates, with effective concentrations ranging from 1.5 ± 0.08 to 25 ± 4.04 mg/mL. The ability of N/Se@TCsNPs to reduce bacterial adhesion and internalization in Caco-2 cells underscored their antibiofilm properties (p ≤ 0.0001). Immunological studies indicated that treatment with N/Se@TCsNPs led to decreased levels of inflammatory cytokines IL-6 (14.33 ± 2.33 pg/mL) and TNFα (25 ± 0.5 pg/mL) (p ≤ 0.0001), alongside increased levels of anti-inflammatory cytokines IL-10 (46.00 ± 0.57 pg/mL) and TGFß (42.58 ± 2.10 pg/mL) in infected Caco-2 cells (p ≤ 0.0001). Moreover, N/Se@TCsNPs significantly reduced the expression of TLR2 (0.22 ± 0.09) and TLR4 (0.16 ± 0.05) (p < 0.0001). CONCLUSION: In conclusion, N/Se@TCsNPs exhibited significant antibacterial/antibiofilm/anti-attachment/immunomodulatory effectiveness against selected Gram-positive and Gram-negative enteric pathogens. However, additional ex-vivo and in-vivo investigations are needed to fully assess the performance of nanostructured N/Se@TCsNPs.


Assuntos
Antibacterianos , Biofilmes , Quitosana , Testes de Sensibilidade Microbiana , Nanopartículas , Nisina , Selênio , Nisina/farmacologia , Nisina/química , Quitosana/química , Quitosana/farmacologia , Biofilmes/efeitos dos fármacos , Humanos , Células CACO-2 , Nanopartículas/química , Selênio/química , Selênio/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias/efeitos dos fármacos , Receptor 2 Toll-Like/metabolismo , Fatores Imunológicos/farmacologia , Fatores Imunológicos/química , Aderência Bacteriana/efeitos dos fármacos , Citocinas/metabolismo , Receptor 4 Toll-Like/metabolismo
11.
Food Chem ; 457: 140185, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38936128

RESUMO

The encapsulation efficiency (EE%) reflects the amount of bioactive components that can be loaded into nanoliposomes. Obtaining a suitable nanoliposome stabiliser may be the key to improving their EE%. In this study, three polyphenols were screened as stabilisers of nanoliposomes with high nisin EE%, with curcumin nanoliposomes (Cu-NLs) exhibiting the best performance (EE% = 95.94%). Characterizations of particle size, PDI and zeta potential indicate that the Cu-NLs had good uniformity and stability. TEM found that nisin accumulated at the edges of the Cu-NLs' phospholipid layer. DSC and FT-IR revealed that curcumin was involved in the formation of the phospholipid layer and altered its structure. FT-IR and molecular docking simulations indicate that the interactions between curcumin and nisin are mainly hydrogen bonding and hydrophobic. In whole milk, Cu-NLs effectively protected nisin activity. This study provides an effective strategy for improving the EE% of nanoliposomes loaded with nisin and other bacteriocins.


Assuntos
Lipossomos , Nanopartículas , Nisina , Tamanho da Partícula , Nisina/química , Lipossomos/química , Nanopartículas/química , Simulação de Acoplamento Molecular , Antibacterianos/química , Antibacterianos/farmacologia , Animais , Curcumina/química , Polifenóis/química , Leite/química , Composição de Medicamentos , Estabilidade de Medicamentos , Interações Hidrofóbicas e Hidrofílicas
12.
Anal Chem ; 96(28): 11247-11254, 2024 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-38941069

RESUMO

Evaluating the dynamic interaction of microorganisms and mammalian cells is challenging due to the lack of suitable platforms for examining interspecies interactions in biologically relevant coculture conditions. In this work, we demonstrate the interaction between probiotic bacteria (Lactococcus lactis and Escherichia coli) and A498 human cancer cells in vitro, utilizing a hydrogel-based platform in a label-free manner by infrared spectroscopy. The L. lactis strain recapitulated in the compartment system secretes polypeptide molecules such as nisin, which has been reported to trigger cell apoptosis. We propose a mid-infrared (IR) spectroscopic imaging approach to monitor the variation of biological components utilizing kidney cells (A498) as a model system cocultured with bacteria. We characterized the biochemical composition (i.e., nucleic acids, protein secondary structures, and lipid conformations) label-free using an unbiased measurement. Several IR spectral features, including unsaturated fatty acids, ß-turns in protein, and nucleic acids, were utilized to predict cellular response. These features were then applied to establish a quantitative relationship through a multivariate regression model to predict cellular dynamics in the coculture system to assess the effect of nisin on A498 kidney cancer cells cocultured with bacteria. Overall, our study sheds light on the potential of using IR spectroscopic imaging as a label-free tool to monitor complex microbe-host cell interactions in biological systems. This integration will enable mechanistic studies of interspecies interactions with insights into their underlying physiological processes.


Assuntos
Técnicas de Cocultura , Escherichia coli , Probióticos , Humanos , Escherichia coli/metabolismo , Probióticos/metabolismo , Nisina/farmacologia , Nisina/química , Nisina/metabolismo , Lactococcus lactis/metabolismo , Espectrofotometria Infravermelho , Linhagem Celular Tumoral
13.
BMC Vet Res ; 20(1): 257, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867200

RESUMO

BACKGROUND: Antimicrobial resistance (AMR) is nowadays a major emerging challenge for public health worldwide. The over- and misuse of antibiotics, including those for cell culture, are promoting AMR while also encouraging the research and employment of alternative drugs. The addition of antibiotics to the cell media is strongly recommended in sperm preservation, being gentamicin the most used for boar semen. Because of its continued use, several bacterial strains present in boar semen have developed resistance to this antibiotic. Antimicrobial peptides and proteins (AMPPs) are promising candidates as alternative antibiotics because their mechanism of action is less likely to promote AMR. In the present study, we tested two AMPPs (lysozyme and nisin; 50 and 500 µg/mL) as possible substitutes of gentamicin for boar semen preservation up to 48 h of storage. RESULTS: We found that both AMPPs improved sperm plasma membrane and acrosome integrity during semen storage. The highest concentration tested for lysozyme also kept the remaining sperm parameters unaltered, at 48 h of semen storage, and reduced the bacterial load at comparable levels of the samples supplemented with gentamicin (p > 0.05). On the other hand, while nisin (500 µg/mL) reduced the total Enterobacteriaceae counts, it also decreased the rapid and progressive sperm population and the seminal oxidation-reduction potential (p < 0.05). CONCLUSIONS: The protective effect of lysozyme on sperm function together with its antimicrobial activity and inborn presence in body fluids, including semen and cervical mucus, makes this enzyme a promising antimicrobial agent for boar semen preservation.


Assuntos
Antibacterianos , Muramidase , Nisina , Preservação do Sêmen , Animais , Preservação do Sêmen/veterinária , Preservação do Sêmen/métodos , Masculino , Antibacterianos/farmacologia , Suínos , Muramidase/farmacologia , Nisina/farmacologia , Sêmen/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Peptídeos Antimicrobianos/farmacologia , Membrana Celular/efeitos dos fármacos , Gentamicinas/farmacologia , Acrossomo/efeitos dos fármacos
14.
J Nat Prod ; 87(6): 1548-1555, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38888620

RESUMO

Antimicrobial peptides (AMPs) have raised significant interest, forming a potential new class of antibiotics in the fight against multi-drug-resistant bacteria. Various AMPs are ribosomally synthesized and post-translationally modified peptides (RiPPs). One post-translational modification found in AMPs is the halogenation of Trp residues. This modification has, for example, been shown to be critical for the activity of the potent AMP NAI-107 from Actinoallomurus. Due to the importance of organohalogens, establishing methods for facile and selective halogen atom installation into AMPs is highly desirable. In this study, we introduce an expression system utilizing the food-grade strain Lactococcus lactis, facilitating the efficient incorporation of bromo-Trp (BrTrp) into (modified) peptides, exemplified by the lantibiotic nisin with a single Trp residue or analogue incorporated at position 1. This provides an alternative to the challenges posed by halogenase enzymes, such as poor substrate selectivity. Our method yields expression levels comparable to that of wild-type nisin, while BrTrp incorporation does not interfere with the post-translational modifications of nisin (dehydration and cyclization). One brominated nisin variant exhibits a 2-fold improvement in antimicrobial activity against two tested pathogens, including a WHO priority pathogen, while maintaining the same lipid II binding and bactericidal activity as wild-type nisin. The work presented here demonstrates the potential of this methodology for peptide halogenation, offering a new avenue for the development of diverse antimicrobial products labeled with BrTrp.


Assuntos
Antibacterianos , Peptídeos Antimicrobianos , Halogenação , Testes de Sensibilidade Microbiana , Nisina , Nisina/farmacologia , Nisina/química , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/química , Antibacterianos/farmacologia , Antibacterianos/química , Triptofano/química , Lactococcus lactis , Estrutura Molecular
15.
Int J Pharm ; 660: 124371, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38908809

RESUMO

This work aimed to develop amphiphilic nanocarriers such as polymersome based diblock copolymer of Kollicoat ® IR -block-poly(ε-caprolactone) (Kollicoat ® IR-b-PCL) for potential co-delivery of Nisin (Ni) and Curcumin (CUR) for treatment of breast cancer. To generate multi-layered nanocarriers of uniform size and morphology, microfluidics was used as a new technology. In order to characterise and optimize polymersome, design of experiments (Design-Expert) software with three levels full factorial design (3-FFD) method was used. Finally, the optimized polymersome was produced with a spherical morphology, small particle size (dH < 200 nm), uniform size distribution (PDI < 0.2), and high drug loading efficiency (Ni 78 % and CUR 93 %). Furthermore, the maximum release of Ni and CUR was found to be roughly 60 % and 80 % in PBS, respectively. Cytotoxicity assays showed a slight cytotoxicity of Ni and CUR -loaded polymersome (N- Ni /CUR) towards normal cells while demonstrating inhibitory activity against cancer cells compared to the free drugs. Also, the apoptosis assays and cellular uptake confirmed the obtained results from cytotoxic analysis. In general, this study demonstrated a microfluidic approach for preparation and optimization of polymersome for co-delivery of two drugs into cancer cells.


Assuntos
Neoplasias da Mama , Curcumina , Portadores de Fármacos , Liberação Controlada de Fármacos , Nisina , Poliésteres , Curcumina/administração & dosagem , Curcumina/química , Curcumina/farmacocinética , Curcumina/farmacologia , Nisina/administração & dosagem , Nisina/química , Nisina/farmacologia , Humanos , Neoplasias da Mama/tratamento farmacológico , Feminino , Poliésteres/química , Portadores de Fármacos/química , Apoptose/efeitos dos fármacos , Tamanho da Partícula , Sobrevivência Celular/efeitos dos fármacos , Células MCF-7 , Linhagem Celular Tumoral , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Sistemas de Liberação de Medicamentos , Microfluídica/métodos , Polivinil/química
16.
Arch Microbiol ; 206(6): 272, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38772980

RESUMO

Phage-encoded endolysins have emerged as a potential substitute to conventional antibiotics due to their exceptional benefits including host specificity, rapid host killing, least risk of resistance. In addition to their antibacterial potency and biofilm eradication properties, endolysins are reported to exhibit synergism with other antimicrobial agents. In this study, the synergistic potency of endolysins was dissected with antimicrobial peptides to enhance their therapeutic effectiveness. Recombinantly expressed and purified bacteriophage endolysin [T7 endolysin (T7L); and T4 endolysin (T4L)] proteins have been used to evaluate the broad-spectrum antibacterial efficacy using different bacterial strains. Antibacterial/biofilm eradication studies were performed in combination with different antimicrobial peptides (AMPs) such as colistin, nisin, and polymyxin B (PMB) to assess the endolysin's antimicrobial efficacy and their synergy with AMPs. In combination with T7L, polymyxin B and colistin effectively eradicated the biofilm of Pseudomonas aeruginosa and exhibited a synergistic effect. Further, a combination of T4L and nisin displayed a synergistic effect against Staphylococcus aureus biofilms. In summary, the obtained results endorse the theme of combinational therapy consisting of endolysins and AMPs as an effective remedy against the drug-resistant bacterial biofilms that are a serious concern in healthcare settings.


Assuntos
Antibacterianos , Peptídeos Antimicrobianos , Biofilmes , Sinergismo Farmacológico , Endopeptidases , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa , Staphylococcus aureus , Biofilmes/efeitos dos fármacos , Endopeptidases/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/química , Nisina/farmacologia , Nisina/química , Polimixina B/farmacologia , Bacteriófagos , Colistina/farmacologia , Bacteriófago T4/efeitos dos fármacos , Bacteriófago T4/fisiologia , Bacteriófago T7/efeitos dos fármacos , Bacteriófago T7/genética
17.
J Hazard Mater ; 473: 134536, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38759406

RESUMO

With the widespread use of antibiotics and increasing environmental concerns regarding antibiotic abuse, the detection and degradation of antibiotic residues in various samples has become a pressing issue. Transcriptional factor (TF)-based whole-cell biosensors are low-cost, easy-to-use, and flexible tools for detecting chemicals and controlling bioprocesses. However, because of cytotoxicity caused by antibiotics, the application of such biosensors is limited in the presence of antibiotics. In this study, we used antibiotic-tolerant mutants obtained via adaptive laboratory evolution (ALE) to develop TF-based whole-cell biosensors for antibiotic monitoring and degradation. The biosensors had high performance and stability in detecting relatively high concentrations of tetracycline (Tc) and nisin. The ALE mutant-based Tc biosensor exhibited a 10-fold larger linear detection range than the wild-type strain-based biosensor. Then, the Tc biosensor was employed to detect residual amounts of Tc in mouse stool, serum, and urine samples and facilitate Tc biodegradation in mouse stool, demonstrating its high utility. Considering that ALE has been demonstrated to enhance cell tolerance to various toxic chemicals, our strategy might facilitate the development of whole-cell biosensors for most antibiotics and other toxic ligands.


Assuntos
Antibacterianos , Técnicas Biossensoriais , Mutação , Tetraciclina , Fatores de Transcrição , Técnicas Biossensoriais/métodos , Antibacterianos/toxicidade , Animais , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Camundongos , Nisina , Escherichia coli/genética , Escherichia coli/metabolismo , Biodegradação Ambiental , Fezes/química , Evolução Molecular Direcionada
18.
J Phys Chem B ; 128(19): 4741-4750, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38696215

RESUMO

Resistance to available antibiotics poses a growing challenge to modern medicine, as this often disallows infections to be controlled. This problem can only be alleviated by the development of new drugs. Nisin, a natural lantibiotic with broad antimicrobial activity, has shown promise as a potential candidate for combating antibiotic-resistant bacteria. However, nisin is poorly soluble and barely stable at physiological pH, which despite attempts to address these issues through mutant design has restricted its use as an antibacterial drug. Therefore, gaining a deeper understanding of the antimicrobial effectiveness, which relies in part on its ability to form pores, is crucial for finding innovative ways to manage infections caused by resistant bacteria. Using large-scale molecular dynamics simulations, we find that the bacterial membrane-specific lipid II increases the stability of pores formed by nisin and that the interplay of nisin and lipid II reduces the overall integrity of bacterial membranes by changing the local thickness and viscosity.


Assuntos
Simulação de Dinâmica Molecular , Nisina , Uridina Difosfato Ácido N-Acetilmurâmico , Antibacterianos/farmacologia , Antibacterianos/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/química , Membrana Celular/metabolismo , Nisina/química , Nisina/farmacologia , Uridina Difosfato Ácido N-Acetilmurâmico/análogos & derivados , Uridina Difosfato Ácido N-Acetilmurâmico/química , Uridina Difosfato Ácido N-Acetilmurâmico/metabolismo
19.
Gut Microbes ; 16(1): 2342583, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38722061

RESUMO

Vancomycin and metronidazole are commonly used treatments for Clostridioides difficile infection (CDI). However, these antibiotics have been associated with high levels of relapse in patients. Fidaxomicin is a new treatment for CDI that is described as a narrow spectrum antibiotic that is minimally active on the commensal bacteria of the gut microbiome. The aim of this study was to compare the effect of fidaxomicin on the human gut microbiome with a number of narrow (thuricin CD) and broad spectrum (vancomycin and nisin) antimicrobials. The spectrum of activity of each antimicrobial was tested against 47 bacterial strains by well-diffusion assay. Minimum inhibitory concentrations (MICs) were calculated against a select number of these strains. Further, a pooled fecal slurry of 6 donors was prepared and incubated for 24 h with 100 µM of each antimicrobial in a mini-fermentation system together with a no-treatment control. Fidaxomicin, vancomycin, and nisin were active against most gram positive bacteria tested in vitro, although fidaxomicin and vancomycin produced larger zones of inhibition compared to nisin. In contrast, the antimicrobial activity of thuricin CD was specific to C. difficile and some Bacillus spp. The MICs showed similar results. Thuricin CD exhibited low MICs (<3.1 µg/mL) for C. difficile and Bacillus firmus, whereas fidaxomicin, vancomycin, and nisin demonstrated lower MICs for all other strains tested when compared to thuricin CD. The narrow spectrum of thuricin CD was also observed in the gut model system. We conclude that the spectrum of activity of fidaxomicin is comparable to that of the broad-spectrum antibiotic vancomycin in vitro and the broad spectrum bacteriocin nisin in a complex community.


Assuntos
Antibacterianos , Fezes , Fidaxomicina , Microbioma Gastrointestinal , Testes de Sensibilidade Microbiana , Nisina , Vancomicina , Nisina/farmacologia , Antibacterianos/farmacologia , Humanos , Fidaxomicina/farmacologia , Vancomicina/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Fezes/microbiologia , Bactérias/efeitos dos fármacos , Bactérias/classificação , Clostridioides difficile/efeitos dos fármacos , Infecções por Clostridium/tratamento farmacológico , Infecções por Clostridium/microbiologia , Bacteriocinas/farmacologia
20.
J Dairy Sci ; 107(9): 6576-6591, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38762103

RESUMO

Lactococcus lactis, widely used in the manufacture of dairy products, encounters various environmental stresses both in natural habitats and during industrial processes. It has evolved intricate machinery of stress sensing and defense to survive harsh stress conditions. Here, we identified a novel TetR/AcrR family transcription regulator, designated AcrR1, to be a repressor for acid and antibiotic tolerance that was derepressed in the presence of vancomycin or under acid stress. The survival rates of acrR1 deletion strain ΔAcrR1 under acid and vancomycin stresses were about 28.7-fold (pH 3.0, HCl), 8.57-fold (pH 4.0, lactic acid) and 2.73-fold (300 ng/mL vancomycin) greater than that of original strain F44. We also demonstrated that ΔAcrR1 was better able to maintain intracellular pH homeostasis and had a lower affinity to vancomycin. No evident effects of AcrR1 deletion on the growth and morphology of strain F44 were observed. Subsequently, we characterized that the transcription level of genes associated with amino acids biosynthesis, carbohydrate transport and metabolism, multidrug resistance, and DNA repair proteins significantly upregulated in ΔAcrR1 using transcriptome analysis and quantitative reverse transcription-PCR assays. Additionally, AcrR1 could repress the transcription of the nisin post-translational modification gene, nisC, leading to a 16.3% increase in nisin yield after AcrR1 deletion. Our results not only refined the knowledge of the regulatory mechanism of TetR/AcrR family regulator in L. lactis, but presented a potential strategy to enhance industrial production of nisin.


Assuntos
Antibacterianos , Lactococcus lactis , Nisina , Lactococcus lactis/metabolismo , Lactococcus lactis/genética , Nisina/biossíntese , Nisina/farmacologia , Antibacterianos/farmacologia , Antibacterianos/biossíntese , Resistência Microbiana a Medicamentos/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA