Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.729
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000196

RESUMO

The green and sustainable electrocatalytic conversion of nitrogen-containing compounds to ammonia is currently in high demand in order to replace the eco-unfriendly Haber-Bosch process. Model catalysts for the nitrate reduction reaction were obtained by electrodeposition of metal Co, Fe, and bimetallic Fe/Co nanoparticles from aqueous solutions onto a graphite substrate. The samples were characterized by the following methods: SEM, XRD, XPS, UV-vis spectroscopy, cyclic (and linear) voltammetry, chronoamperometry, and electrochemical impedance spectroscopy. In addition, the determination of the electrochemically active surface was also performed for all electrocatalysts. The best electrocatalyst was a sample containing Fe-nanoparticles on the layer of Co-nanoparticles, which showed a Faradaic efficiency of 58.2% (E = -0.785 V vs. RHE) at an ammonia yield rate of 14.6 µmol h-1 cm-2 (at ambient condition). An opinion was expressed to elucidate the mechanism of coordinated electrocatalytic action of a bimetallic electrocatalyst. This work can serve primarily as a starting point for future investigations on electrocatalytic conversion reactions to ammonia using model catalysts of the proposed type.


Assuntos
Amônia , Cobalto , Ferro , Nanopartículas Metálicas , Nitratos , Oxirredução , Amônia/química , Catálise , Ferro/química , Nanopartículas Metálicas/química , Nitratos/química , Cobalto/química , Técnicas Eletroquímicas/métodos
2.
J Environ Manage ; 362: 121346, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38824884

RESUMO

The conversion of NO3--N to N2 is of great significance for zero discharge of industrial wastewater. Pd-Cu hydrogenation catalysis has high application prospects for the reduction of NO3--N to N2, but the existing form of Pd-Cu, the Pd-Cu mass ratio and the H2 evolution rate can affect the coverage of active hydrogen (*H) on the surface of Pd, thereby affecting N2 selectivity. In this work, mesoporous carbon (MC) is used as support to disperse Pd-Cu catalyst and is applied in an in-situ electrocatalytic H2 evolution system for NO3--N removal. The Pd-Cu particles with the average size of 6 nm are uniformly encapsulated in the mesopores of MC. Electrochemical in-situ H2 evolution can not only reduce the amount of H2 used, but the H2 bubbles can also be efficiently dispersed when PPy coated nickel foam (PPy/NF) is used as cathode. Moreover, the mesoporous structure of MC can further split H2 bubbles, reducing the coverage of *H on Pd. The highest 77% N2 selectivity and a relatively faster NO3--N removal rate constant (0.10362 min-1) can be achieved under the optimal conditions, which is superior to most reported Pd-Cu catalytic systems. The prepared catalyst is further applied to the denitrification of actual deplating wastewater. NO3--N with the initial concentration of 650 mg L-1 can be completely removed after 180 min of treatment, and the TN removal can be maintained at 72%.


Assuntos
Carbono , Hidrogênio , Nitratos , Nitrogênio , Águas Residuárias , Nitrogênio/química , Águas Residuárias/química , Hidrogênio/química , Carbono/química , Catálise , Nitratos/química , Cobre/química , Paládio/química , Poluentes Químicos da Água/química
3.
Environ Sci Technol ; 58(24): 10863-10873, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38842426

RESUMO

Electrochemical nitrate reduction (NO3RR) provides a new option to abate nitrate contamination with a low carbon footprint. Restricted by competitive hydrogen evolution, achieving satisfied nitrate reduction performance in neutral media is still a challenge, especially for the regulation of this multielectron multiproton reaction. Herein, facile element doping is adopted to tune the catalytic behavior of IrNi alloy nanobranches with an unconventional hexagonal close-packed (hcp) phase toward NO3RR. In particular, the obtained hcp IrNiCu nanobranches favor the ammonia production and suppress byproduct formation in a neutral electrolyte indicated by in situ differential electrochemical mass spectrometry, with a high Faradaic efficiency (FE) of 85.6% and a large yield rate of 1253 µg cm-2 h-1 at -0.4 and -0.6 V (vs reversible hydrogen electrode (RHE)), respectively. In contrast, the resultant hcp IrNiCo nanobranches promote the formation of nitrite, with a peak FE of 33.1% at -0.1 V (vs RHE). Furthermore, a hybrid electrolysis cell consisting of NO3RR and formaldehyde oxidation is constructed, which are both catalyzed by hcp IrNiCu nanobranches. This electrolyzer exhibits lower overpotential and holds the potential to treat polluted air and wastewater simultaneously, shedding light on green chemical production based on contaminate degradation.


Assuntos
Nitratos , Oxirredução , Nitratos/química , Técnicas Eletroquímicas , Catálise , Metais/química
4.
Water Res ; 259: 121869, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38851113

RESUMO

This work aims to explore the ability of molten salt to solve salt deposition in supercritical water (SCW) related technologies including supercritical water oxidation and supercritical water gasification, with KNO3 and Na2SO4 as examples. In the pure KNO3 solution, the two-phase layering of high-density KNO3 molten salt (settling at the reactor bottom) and low-density saturated KNO3-SCW salt solution (flowing out at the top outlet of the reactor) was formed in a kettle-reactor with about 6.5 ratio of depth to inner diameter, thereby improving the accuracy of measured solubilities. The precipitation macro-characteristics of mixed KNO3 and Na2SO4 in SCW were investigated under different feed concentration conditions. The results showed that Na2SO4 deposition on the reactor sidewall could be reduced by more than 90 % when the mass ratio of KNO3 to Na2SO4 in the feed was only 0.167. No visible salt deposition was observed on the sidewall when the ratio was 0.374. All solid deposited salts were converted into the liquid molten salt as the ratio reached 3.341, and thus could easily flow out of the reactor, without plugging. 'Molten salt dissolution' mechanism may provide a more plausible explanation for mixed KNO3 and Na2SO4 in SCW. In addition, the precipitation micro-mechanisms of mixed KNO3 and Na2SO4, and the critical conditions of avoiding sidewall deposition and reactor plugging were proposed. This work is valuable for overcoming the salt deposition problem in SCW-related technologies.


Assuntos
Precipitação Química , Compostos de Potássio , Sulfatos , Água , Sulfatos/química , Água/química , Compostos de Potássio/química , Nitratos/química , Solubilidade
5.
Environ Geochem Health ; 46(8): 262, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926193

RESUMO

This study explores nitrate reduction in aqueous solutions using carboxymethyl cellulose loaded with zero-valent iron nanoparticles (Fe0-CMC). The structures of this nano-composite were characterized using various techniques. Based on the characterization results, the specific surface area of Fe0-CMC measured by the Brunauer-Emmett-Teller analysis were 39.6 m2/g. In addition, Scanning Electron Microscopy images displayed that spherical nano zero-valent iron particles (nZVI) with an average particle diameter of 80 nm are surrounded by carboxymethyl cellulose and no noticeable aggregates were detected. Batch experiments assessed Fe0-CMC's effectiveness in nitrate removal under diverse conditions including different adsorbent dosages (Cs, 2-10 mg/L), contact time (t, 10-1440 min), initial pH (pHi, 2-10), temperature (T, 10-55 °C), and initial concentration of nitrate (C0, 10-500 mg/L). Results indicated decreased removal with higher initial pHi and C0, while increased Cs and T enhanced removal. The study of nitrate removal mechanism by Fe0-CMC revealed that the redox reaction between immobilized nZVI on the CMC surface and nitrate ions was responsible for nitrate removal, and the main product of this reaction was ammonium, which was subsequently completely removed by the synthesized nanocomposite. In addition, a stable deviation quantum particle swarm optimization algorithm (SD-QPSO) and a least square error method were employed to train the ANFIS parameters. To demonstrate model performance, a quadratic polynomial function was proposed to display the performance of the SD-QPSO algorithm in which the constant parameters were optimized through the SD-QPSO algorithm. Sensitivity analysis was conducted on the proposed quadratic polynomial function by adding a constant deviation and removing each input using two different strategies. According to the sensitivity analysis, the predicted removal efficiency was most sensitive to changes in pHi, followed by Cs, T, C0, and t. The obtained results underscore the potential of the ANFIS model (R2 = 0.99803, RMSE = 0.9888), and polynomial function (R2 = 0.998256, RMSE = 1.7532) as accurate and efficient alternatives to time-consuming laboratory measurements for assessing nitrate removal efficiency. These models can offer rapid insights and predictions regarding the impact of various factors on the process, saving both time and resources.


Assuntos
Inteligência Artificial , Carboximetilcelulose Sódica , Ferro , Nanopartículas Metálicas , Nitratos , Poluentes Químicos da Água , Carboximetilcelulose Sódica/química , Nitratos/química , Ferro/química , Nanopartículas Metálicas/química , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio , Adsorção , Purificação da Água/métodos , Microscopia Eletrônica de Varredura , Oxirredução , Modelos Químicos
6.
Environ Sci Technol ; 58(22): 9804-9814, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38771927

RESUMO

Autotrophic denitrification utilizing iron sulfides as electron donors has been well studied, but the occurrence and mechanism of abiotic nitrate (NO3-) chemodenitrification by iron sulfides have not yet been thoroughly investigated. In this study, NO3- chemodenitrification by three types of iron sulfides (FeS, FeS2, and pyrrhotite) at pH 6.37 and ambient temperature of 30 °C was investigated. FeS chemically reduced NO3- to ammonium (NH4+), with a high reduction efficiency of 97.5% and NH4+ formation selectivity of 82.6%, but FeS2 and pyrrhotite did not reduce NO3- abiotically. Electrochemical Tafel characterization confirmed that the electron release rate from FeS was higher than that from FeS2 and pyrrhotite. Quenching experiments and density functional theory calculations further elucidated the heterogeneous chemodenitrification mechanism of NO3- by FeS. Fe(II) on the FeS surface was the primary site for NO3- reduction. FeS possessing sulfur vacancies can selectively adsorb oxygen atoms from NO3- and water molecules and promote water dissociation to form adsorbed hydrogen, thereby forming NH4+. Collectively, these findings suggest that the NO3- chemodenitrification by iron sulfides cannot be ignored, which has great implications for the nitrogen, sulfur, and iron cycles in soil and water ecosystems.


Assuntos
Compostos de Amônio , Nitratos , Sulfetos , Nitratos/química , Compostos de Amônio/química , Sulfetos/química , Ferro/química , Desnitrificação
7.
Anal Methods ; 16(19): 3131-3141, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38712986

RESUMO

Plastics are ubiquitous in today's lifestyle, and their indiscriminate use has led to the accumulation of plastic waste in landfills and oceans. The waste accumulates and breaks into micro-particles that enter the food chain, causing severe threats to human health, wildlife, and the ecosystem. Environment-friendly and bio-based degradable materials offer a sustainable alternative to the vastly used synthetic materials. Here, a polylactic acid and carbon nanofiber-based membrane and a paper-based colorimetric sensor have been developed. The membrane had a surface area of 3.02 m2 g-1 and a pore size of 18.77 nm. The pores were evenly distributed with a pore volume of 0.0137 cm3 g-1. The membrane was evaluated in accordance with OECD guidelines and was found to be safe for tested aquatic and terrestrial models. The activated PLA-CNF membrane was further used as a bio-based electrode for the electrochemical detection of nitrates (NO3-) in water samples with a detection limit of 0.046 ppm and sensitivity of 1.69 × 10-4 A ppm-1 mm-2, whereas the developed paper-based colorimetric sensor had a detection limit of 156 ppm for NO3-. This study presents an environment-friendly, low-carbon footprint disposable material for sensing applications as a sustainable alternative to plastics.


Assuntos
Carbono , Colorimetria , Nanofibras , Nitratos , Papel , Poliésteres , Nanofibras/química , Colorimetria/métodos , Colorimetria/instrumentação , Nitratos/análise , Nitratos/química , Poliésteres/química , Carbono/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Limite de Detecção , Poluentes Químicos da Água/análise , Condutividade Elétrica , Membranas Artificiais
8.
Water Environ Res ; 96(5): e11040, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38752384

RESUMO

In this study, a pyrite-based autotrophic denitrification (PAD) system, a polycaprolactone (PCL)-supported heterotrophic denitrification (PHD) system, and a pyrite+PCL-based split-mixotrophic denitrification (PPMD) system were constructed. The pyrite particle size was controlled in 1-3, 3-5, or 5-8 mm in both the PAD and PPMD systems to investigate the effect of pyrite particle size on the denitrification performance of autotrophic or split-mixotrophic bioreactors. It was found that the PAD system achieved the best denitrification efficiency with an average removal rate of 98.98% in the treatment of 1- to 3-mm particle size, whereas it was only 19.24% in the treatment of 5- to 8-mm particle size. At different phases of the whole experiment, the nitrate removal rates of both the PHD and PPMD systems remained stable at a high level (>94%). Compared with the PAD or PHD system, the PPMD system reduced the concentrations of sulfate and chemical oxygen demand in the final effluent efficiently. The interconnection network diagram explained the intrinsic metabolic pathways of nitrogen, sulfur, and carbon in the three denitrification systems at different phases. In addition, the microbial community analysis showed that the PPMD system was beneficial for the enrichment of Firmicutes. Finally, the impact mechanism of pyrite particle size on the performance of the PPMD system was proposed. PRACTITIONER POINTS: The reduction of pyrite particle size was beneficial for improving the efficiency of the PAD process. The change in particle size had an effect on NO2 --N accumulation in the PAD system. The accumulation of NH4 +-N in the PPMD system increased with the decrease in particle size. The reduction of pyrite particle size increased the production of SO4 2- in the PAD and PPMD systems. The correlations among the effluent indicators of the PAD and PPMD systems could be well explained.


Assuntos
Reatores Biológicos , Desnitrificação , Ferro , Tamanho da Partícula , Poliésteres , Sulfetos , Sulfetos/química , Sulfetos/metabolismo , Poliésteres/química , Poliésteres/metabolismo , Ferro/química , Ferro/metabolismo , Processos Autotróficos , Nitratos/metabolismo , Nitratos/química
9.
J Environ Manage ; 358: 120950, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38657414

RESUMO

In this work, waste plastics have been used with bentonite clay to produce silica-containing graphene nanosheets (GNs) for adsorption of nitrate and phosphate from synthetic water. The GNs were obtained by the two steps process, namely (1) pyrolysis at 750 °C and (2) ball milling. Then, GNs were characterized by Raman spectroscopy, FTIR, XRD, FESEM, HRTEM and EDX spectroscopy, which provided the details of material's morphology, surface properties, and composition. From Raman spectroscopy, D and G bands were found at 1342 cm-1 and 1594 cm-1, respectively, which confirmed the presence of nanosheets on the graphene surface. Furthermore, the layers of nanosheets were confirmed by the HRTEM analysis and XRD peaks. In analytical study, the batch experiment was conducted to investigate the influence of operational parameters such as pH (03-12), contact time (05-120 min), adsorbent dosage (0.01-0.06 g), and initial concentrations of adsorbates (10-50 mg/L for nitrate and 03-15 mg/L for phosphate) on adsorption process. The removal percentage of nitrate and phosphate at optimum dosage = 0.05 g, pH = 6.5, contact time = 60 min, nitrate concentration = 30 mg/L, and phosphate concentration = 09 mg/L were found to be 85 and 91, respectively. The highest adsorption capacity of nitrate and phosphate was found to be 53 mg/g and 16.4 mg/g, respectively. The adsorption behaviour of both nitrate and phosphate showed chemisorption as the experimental data were well fitted by the pseudo-2nd-order kinetic and Langmuir isotherm model. Life cycle cost analysis (LCCA) of the synthesis process was conducted to evaluate the cost-benefit analysis for commercial feasibility. The estimated price for the synthesis of GNs using 1 kg of waste plastics and bentonite clay as precursor was $4.21, suggesting commercialization.


Assuntos
Grafite , Nitratos , Fosfatos , Plásticos , Grafite/química , Fosfatos/química , Nitratos/química , Adsorção , Plásticos/química , Poluentes Químicos da Água/química , Bentonita/química , Nanoestruturas/química
10.
J Hazard Mater ; 470: 134113, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38565021

RESUMO

Photo-induced degradation of dimethylmercury (DMHg) is considered to be an important source for the generation of methylmercury (MMHg). However, studies on DMHg photodegradation are scarce, and it is even debatable about whether DMHg can be degraded in natural waters. Herein, we found that both DMHg and MMHg could be photodegraded in three natural waters collected from the Yellow River Delta, while in pure water only DMHg photodegradation occurred under visible light irradiation. The effects of different environmental factors on DMHg photodegradation were investigated, and the underlying mechanisms were elucidated by density functional theory calculations and a series of control experiments. Our findings revealed that the DMHg degradation rate was higher in the tidal creek water compared to Yellow River, Yan Lake, and purified water. NO3-, NO2-, and DOM could promote the photodegradation with DOM and NO3- showing particularly strong positive effects. Different light sources were employed, and UV light was found to be more effective in DMHg photodegradation. Moreover, MMHg was detected during the photodegradation of DMHg, confirming that the photochemical demethylation of DMHg is a source of MMHg in sunlit water. This work may provide a novel mechanistic insight into the DMHg photodegradation in natural waters and enrich the study of the global biogeochemical cycle of Hg.


Assuntos
Compostos de Metilmercúrio , Fotólise , Poluentes Químicos da Água , Compostos de Metilmercúrio/química , Compostos de Metilmercúrio/análise , Compostos de Metilmercúrio/efeitos da radiação , Poluentes Químicos da Água/química , Poluentes Químicos da Água/efeitos da radiação , Poluentes Químicos da Água/análise , Luz , Raios Ultravioleta , Nitratos/química , Nitratos/análise , Rios/química
11.
ACS Nano ; 18(18): 11828-11836, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38659192

RESUMO

As essential primary producers, cyanobacteria play a major role in global carbon and nitrogen cycles. Though the influence of nanoplastics on the carbon metabolism of cyanobacteria is well-studied, little is known about how nanoplastics affect their nitrogen metabolism, especially under environmentally relevant nitrogen concentrations. Here, we show that nitrogen forms regulated growth inhibition, nitrogen consumption, and the synthesis and release of microcystin (MC) in Microcystis aeruginosa exposed to 10 µg/mL amino-modified polystyrene nanoplastics (PS-NH2) with a particle size of 50 nm under environmentally relevant nitrogen concentrations of nitrate, ammonium, and urea. We demonstrate that PS-NH2 inhibit M. aeruginosa differently in nitrate, urea, and ammonium, with inhibition rates of 51.87, 39.70, and 36.69%, respectively. It is caused through the differences in impairing cell membrane integrity, disrupting redox homeostasis, and varying nitrogen transport pathways under different nitrogen forms. M. aeruginosa respond to exposure of PS-NH2 by utilizing additional nitrogen to boost the production of amino acids, thereby enhancing the synthesis of MC, extracellular polymeric substances, and membrane phospholipids. Our results found that the threat of nanoplastics on primary producers can be regulated by the nitrogen forms in freshwater ecosystems, contributing to a better understanding of nanoplastic risks under environmentally relevant conditions.


Assuntos
Microcystis , Nitrogênio , Microcystis/efeitos dos fármacos , Microcystis/metabolismo , Microcystis/crescimento & desenvolvimento , Nitrogênio/química , Nitrogênio/metabolismo , Microcistinas/metabolismo , Poliestirenos/química , Tamanho da Partícula , Microplásticos/metabolismo , Nanopartículas/química , Nitratos/metabolismo , Nitratos/química , Ureia/metabolismo , Ureia/química , Ureia/farmacologia
12.
Molecules ; 29(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38675686

RESUMO

Stevia rebaudiana Bertoni is a plant native to South America that has gathered much interest in recent decades thanks to diterpene glycosides, called steviosides, which it produces. These compounds are characterised by their sweetness, which is 250-300 times higher than saccharose, and they contain almost no caloric value. Stevia is currently also grown outside the South American continent, in various countries characterised by warm weather. This research aimed to determine whether it is viable to grow Stevia rebaudiana plants in Poland, a country characterised by a cooler climate than the native regions for stevia plants. Additionally, the impact of adding various dosages and forms of nitrogen fertiliser was analysed. It was determined that Stevia rebaudiana grown in Poland is characterised by a rather low concentration of steviosides, although proper nitrogen fertilisation can improve various characteristics of the grown plants. The addition of 100 kg or 150 kg of nitrogen per hectare of the field in the form of urea or ammonium nitrate increased the yield of the stevia plants. The stevioside content can be increased by applying fertilisation using 100 kg or 150 kg of nitrogen per hectare in the form of ammonium sulfate. The total yield of the stevia plants grown in Poland was lower than the yield typically recorded in warmer countries, and the low concentration of steviosides in the plant suggests that more research about growing Stevia rebaudiana in Poland would be needed to develop profitable methods of stevia cultivation.


Assuntos
Fertilizantes , Nitrogênio , Stevia , Stevia/química , Stevia/crescimento & desenvolvimento , Polônia , Nitrogênio/análise , Fertilizantes/análise , Diterpenos do Tipo Caurano/análise , Diterpenos do Tipo Caurano/química , Glucosídeos/análise , Glucosídeos/química , Nitratos/análise , Nitratos/química
13.
Environ Sci Technol ; 58(17): 7516-7528, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38629947

RESUMO

Field observations of daytime HONO source strengths have not been well explained by laboratory measurements and model predictions up until now. More efforts are urgently needed to fill the knowledge gaps concerning how environmental factors, especially relative humidity (RH), affect particulate nitrate photolysis. In this work, two critical attributes for atmospheric particles, i.e., phase state and bulk-phase acidity, both influenced by ambient RH, were focused to illuminate the key regulators for reactive nitrogen production from typical internally mixed systems, i.e., NaNO3 and dicarboxylic acid (DCA) mixtures. The dissolution of only few oxalic acid (OA) crystals resulted in a remarkable 50-fold increase in HONO production compared to pure nitrate photolysis at 85% RH. Furthermore, the HONO production rates (PHONO) increased by about 1 order of magnitude as RH rose from <5% to 95%, initially exhibiting an almost linear dependence on the amount of surface absorbed water and subsequently showing a substantial increase in PHONO once nitrate deliquescence occurred at approximately 75% RH. NaNO3/malonic acid (MA) and NaNO3/succinic acid (SA) mixtures exhibited similar phase state effects on the photochemical HONO production. These results offer a new perspective on how aerosol physicochemical properties influence particulate nitrate photolysis in the atmosphere.


Assuntos
Nitratos , Fotólise , Nitratos/química , Ácidos Dicarboxílicos/química , Ácido Nitroso/química , Umidade , Malonatos/química , Poluentes Atmosféricos/química
14.
J Inorg Biochem ; 256: 112554, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38613885

RESUMO

Six terpyridine­nickel complexes 1-6 were formed by the coordination of 4'-(4-R-phenyl)-2,2':6',2″-terpyridine (R = hydroxyl (L1), methoxyl (L2), methylsulfonyl (L3), fluoro (L4), bromo (L5), iodo (L6)) derivatives to nickel nitrate. The compositions and structures of these complexes were analyzed by Fourier Transform infrared spectroscopy (FT-IR), elemental analyses, electrospray ionization mass spectra (ESI-MS), solid-state ultraviolet-visible (UV-Vis) spectroscopy, and single crystal X-ray diffraction (1, 2 and 4) studies. In vitro anticancer cell proliferation experiments against SiHa (human cervical squamous cancer cell line) cells, Bel-7402 (human hepatoma cancer cell line), Eca-109 (human esophageal cancer cell line) and HL-7702 (human normal hepatocyte cell line) indicate that they have more excellent anti-proliferation effects than the cis-platin against Siha cells, Bel-7402 cells and Eca-109 cells. Especially, complex 5 showed a rather outstanding inhibitory effect against the SiHa cell line and was less toxic than the other compounds to the HL-7702 cell line, implying an obvious specific inhibitory effect. Therefore, complex 5 has the potential value to be developed as an anticancer cell-specific drug against human cervical squamous carcinoma. Molecular docking simulation, UV-vis absorption spectroscopy and circular dichroism experiments show that they prefer to bind to DNA part in an embedded binding manner.


Assuntos
Antineoplásicos , Complexos de Coordenação , Níquel , Piridinas , Humanos , Níquel/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Piridinas/química , Piridinas/farmacologia , Proliferação de Células/efeitos dos fármacos , Nitratos/química , Nitratos/farmacologia , Cristalografia por Raios X
15.
Chemosphere ; 357: 142070, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38641297

RESUMO

Calcium (Ca2+) and phosphorous (PO43-) significantly influence the form and effectiveness of nitrogen (N), however, the precise mechanisms governing the adsorption of ammonium nitrogen (NH4+-N) and nitrate nitrogen (NO3--N) are still lacking. This study employed batch adsorption experiments, charge distribution and multi-site complexation (CD-MUSIC) models and density functional theory (DFT) calculations to elucidate the mechanism by which Ca2+ and PO43- affect the adsorption of NH4+-N and NO3--N on the goethite (GT) surface. The results showed that the adsorption of NH4+-N on the GT exhibited an initial increase followed by a decrease as pH increased, peaking at a pH of 8.5. Conversely, the adsorption of NO3--N decreased with rising pH. According to the CD-MUSIC model, Ca2+ minimally affected the NH4+-N adsorption on the GT but enhanced NO3--N adsorption via electrostatic interaction, promoting the adsorption of ≡FeOH-NO3- and ≡Fe3O-NO3- species. Similarly, PO43- inhibited the adsorption of ≡FeOH-NO3- and ≡Fe3O-NO3- species. However, PO43- boosted NH4+-N adsorption by facilitating the formation of ≡Fe3O-NH4+ via electrostatic interaction and site competition. DFT calculations indicates that although bidentate phosphate (BP) was beneficial to stabilize NH4+-N than monodentate phosphate (SP), SP-NH4+ was the main adsorption configuration at pH 5.5-9.5 owing the prevalence of SP on the GT surface under site competition of NH4+-N. The results of CD-MUSIC model and DFT calculation were verified mutually, and provide novel insights into the mechanisms underlying N fixation and migration in soil.


Assuntos
Compostos de Amônio , Cálcio , Teoria da Densidade Funcional , Nitratos , Nitrogênio , Fósforo , Adsorção , Cálcio/química , Nitrogênio/química , Fósforo/química , Nitratos/química , Compostos de Amônio/química , Compostos Férricos/química , Modelos Químicos , Concentração de Íons de Hidrogênio
16.
Chemosphere ; 358: 142161, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38685335

RESUMO

A metallic catalyst, Cobalt N-doped Carbon (Co@NC), was obtained from Zeolitic-Imidazolate Framework-67 (ZIF-67) for efficient aqueous nitrate (NO3-) removal. This advanced catalyst indicated remarkable efficiency by generating valuable ammonium (NH3/NH4+) via an environmentally friendly production technique during the nitrate treatment. Among various metals (Cu, Pt, Pd, Sn, Ru, and Ni), 3.6%Pt-Co@NC exhibited an exceptional nitrate removal, demonstrating a complete removal of 60 mg/L NO3--N (265 mg/L NO3-) in 30 min with the fastest removal kinetics (11.4 × 10-2 min-1) and 99.5% NH4+ selectivity. The synergistic effect of bimetallic Pt-Co@NC led to 100% aqueous NO3- removal, outperforming the reactivity by bare ZIF-67 (3.67%). The XPS analysis illustrated Co's promotor role for NO3- reduction to less oxidized nitrogen species and Pt's hydrogenation role for further reduction to NH4+. The durability test revealed a slight decrease in NO3- removal, which started from the third cycle (95%) and slowly proceeded to the sixth cycle (80.2%), while NH4+ selectivity exceeded 82% with no notable Co or Pt leaching throughout seven consecutive cycles. This research shed light on the significance of the impregnated Pt metal and Co exposed on the Co@NC surface for the catalytic nitrate treatment, leading to a sustainable approach for the effective removal of nitrate and economical NH4+ production.


Assuntos
Carbono , Nitratos , Poluentes Químicos da Água , Zeolitas , Zeolitas/química , Catálise , Nitratos/química , Poluentes Químicos da Água/química , Carbono/química , Cobalto/química , Imidazóis/química , Oxirredução , Estruturas Metalorgânicas/química , Compostos de Amônio/química
17.
Anal Sci ; 40(7): 1349-1356, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38683477

RESUMO

Based on the automatic light wave ashing instrument, palladium nitrate was used as an ashing aid for the first time to collect selenium in the process of food ashing pre-treatment, and a method for the determination of selenium in food by ashing method was established with inductively coupled plasma mass spectrometry. At the same time, the effects of magnesium nitrate, rhodium nitrate, and nickel nitrate as ashing aids on selenium collection were investigated using certified plant standard materials. The capture of selenium by magnesium nitrate, rhodium nitrate, and nickel nitrate as ashing aids did not exceed 50%. Using palladium nitrate as an ashing aid, six food standard materials were measured, with selenium recovery rates ranging from 97 to 106%. A complete analysis cycle can be completed within an hour. The method detection limit of selenium was 0.021 µg g-1, and the relative standard deviation of five measurements was less than 7%. The experimental results show that palladium nitrate is an excellent ashing aid for capturing selenium, and it is far superior to the other three aids. In addition, the mechanism of palladium nitrate as an ashing aid for capturing selenium was discussed.


Assuntos
Análise de Alimentos , Espectrometria de Massas , Paládio , Selênio , Selênio/análise , Selênio/química , Paládio/química , Paládio/análise , Análise de Alimentos/métodos , Nitratos/análise , Nitratos/química , Automação , Raios Infravermelhos
18.
J Inorg Biochem ; 256: 112542, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38631103

RESUMO

Cytochrome c nitrite reductase, NrfA, is a soluble, periplasmic pentaheme cytochrome responsible for the reduction of nitrite to ammonium in the Dissimilatory Nitrate Reduction to Ammonium (DNRA) pathway, a vital reaction in the global nitrogen cycle. NrfA catalyzes this six-electron and eight-proton reduction of nitrite at a single active site with the help of its quinol oxidase partners. In this review, we summarize the latest progress in elucidating the reaction mechanism of ammonia production, including new findings about the active site architecture of NrfA, as well as recent results that elucidate electron transfer and storage in the pentaheme scaffold of this enzyme.


Assuntos
Compostos de Amônio , Nitratos , Oxirredução , Nitratos/metabolismo , Nitratos/química , Compostos de Amônio/metabolismo , Citocromos c1/metabolismo , Citocromos c1/química , Nitrato Redutases/metabolismo , Nitrato Redutases/química , Domínio Catalítico , Transporte de Elétrons , Nitritos/metabolismo , Citocromos a1
19.
Environ Res ; 252(Pt 1): 118881, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38582430

RESUMO

Nitrate reduction in bio-electrochemical systems (BESs) has attracted wide attention due to its low sludge yields and cost-efficiency advantages. However, the high resistance of traditional electrodes is considered to limit the denitrification performance of BESs. Herein, a new graphene/polypyrrole (rGO/PPy) modified electrode is fabricated via one-step electrodeposition and used as cathode in BES for improving nitrate removal from wastewater. The formation and morphological results support the successful formation of rGO/PPy nanohybrids and confirm the part covalent bonding of Py into GO honeycomb lattices to form a three-dimensional cross-linked spatial structure. The electrochemical tests indicate that the rGO/PPy electrode outperforms the unmodified electrode due to the 3.9-fold increase in electrochemical active surface area and 6.9-fold decrease in the charge transfer resistance (Rct). Batch denitrification activity tests demonstrate that the BES equipped with modified rGO/PPy biocathode could not only achieve the full denitrification efficiency of 100% with energy recovery (15.9 × 10-2 ± 0.14 A/m2), but also favor microbial attach and growth with improved biocompatible surface. This work provides a feasible electrochemical route to fabricate and design a high-performance bioelectrode to enhance denitrification in BESs.


Assuntos
Desnitrificação , Eletrodos , Grafite , Polímeros , Pirróis , Grafite/química , Polímeros/química , Pirróis/química , Técnicas Eletroquímicas/métodos , Fontes de Energia Bioelétrica , Nitratos/química , Carbono/química , Fibra de Carbono/química
20.
J Mol Graph Model ; 130: 108781, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38678644

RESUMO

Water desalination, which is a reliable method for providing drinking water and a suitable solution, as well as the membrane filtration method in wastewater treatment, has increased significantly in recent years. In this research, the separation of nitrite and nitrate ions from aqueous solutions was done using the MXene membrane of the Ti3C2 type using molecular dynamics simulation. In this study, various parameters, such as pore size MXene structure, characteristics of cavities, applied pressure, and flux were investigated. To investigate the removal of toxic pollutants from water, water flux, potential mean force, distribution of water molecules, and density were investigated. The results showed that the amount of penetration through the membrane increased with the increase in pressure. It was observed that by applying pressure to the system, the number of water molecules accumulated in front of the membrane decreases because they quickly pass through the membrane, which indicates the positive effect of increasing pressure on the separation rate of molecules. The permeability of this membrane was several times higher than the existing membranes in the industry. So that Mexene membranes, which consist of at least two layers, can repel ions with 100 % success.


Assuntos
Membranas Artificiais , Simulação de Dinâmica Molecular , Nitratos , Titânio , Purificação da Água , Nitratos/química , Purificação da Água/métodos , Titânio/química , Água/química , Íons/química , Poluentes Químicos da Água/química , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA