Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.970
Filtrar
1.
Rapid Commun Mass Spectrom ; 38(15): e9770, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38773864

RESUMO

RATIONALE: Chlorothalonil (CHT), a broad-spectrum fungicide, has been employed widely to control foliar diseases, whereas with a major metabolite of polar 4-hydroxychlorothalonil (CHT-4-OH), only an acceptable nonpolar CHT residue is allowed by most countries. This study involves the method development for CHT residue in vegetables/fruits using liquid chromatography-tandem mass spectrometry (LC-MS/MS) with a novel modified discharge-adaptor (DA) interface. METHODS: CHT residue was analyzed using LC-MS/MS with DA interface (LC-DA-MS/MS), developed in our previous works. A DA was placed on the electrospray tip to switch the ionization modes. A modified quick, easy, cheap, effective, rugged, and safe (QuEChERS) method was applied to extract CHT residue of vegetables/fruits efficiently with less sample preparation time and analysis cost. RESULTS: CHT and CHT-4-OH spiked in four different vegetables/fruits were extracted using the modified QuEChERS method. After LC with isocratic elution, CHT and CHT-4-OH were separated within 3 min. Using LC-DA-MS/MS, the ion signals of CHT were improved two to three times, and the limit of quantification of 5 ng/g and linearity (r2 > 0.99) in the range of 5-200 ng/g were achieved using 10 g of vegetables/fruits. The precision and accuracy were within 15% each. The modified QuEChERS and LC-DA-MS/MS were applied to examine eight field-grown vegetables/fruits; 9.5 and 2588.9 ng/g of CHT were detected in two vegetables/fruits. CONCLUSION: LC-DA-MS/MS combined with modified QuEChERS was successfully applied to determine CHT residue <10 ng/g in vegetables/fruits and with satisfied validation results. The developed method could reduce both analysis cost and time, attributing to simplifications in modified QuEChERS, isocratic elution, and DA interface in LC-DA-MS/MS.


Assuntos
Frutas , Fungicidas Industriais , Nitrilas , Resíduos de Praguicidas , Espectrometria de Massas em Tandem , Verduras , Espectrometria de Massas em Tandem/métodos , Verduras/química , Nitrilas/análise , Nitrilas/química , Cromatografia Líquida/métodos , Resíduos de Praguicidas/análise , Frutas/química , Fungicidas Industriais/análise , Limite de Detecção , Reprodutibilidade dos Testes , Contaminação de Alimentos/análise
2.
Chemosphere ; 358: 142158, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38697561

RESUMO

A novel dual Photo-Fenton photocatalyst Fe2O3-Fe-CN with excellent Fe(III)/Fe(II) conversion efficiency and trace metal ion leaching rate has been fabricated by in-situ deposition of α-Fe2O3 quantum dots on ultrathin porous Fe-doped carbon nitride (Fe-CN) nanosheets. The iron species in Fe-CN and α-Fe2O3 QDs constitute a mutually reinforcing dual Photo-Fenton effect. The 4% Fe2O3-Fe-CN showed superior performance with kobs values 8.60 and 4.80 folders greater than pure CN and Fe-CN, respectively. The synergistic effect between α-Fe2O3 QDs and the ultrathin porous structure of Fe-CN is the primary reason for the outstanding catalytic performance exhibited by α-Fe2O3/Fe-CN. On one hand, the ultrathin porous structure of Fe-CN promotes the rapid transfer of photogenerated electrons. On the other hand, the efficient photogenerated charge separation at the α-Fe2O3/Fe-CN interface enables more photogenerated electrons to participate in the Fe3+/Fe2+ conversion and H2O2 activation. The trapping experiments demonstrate that •OH and •O2- are the primary active species in TC degradation. This work presents novel insights into the design of efficient heterogeneous Fenton catalysts for practical applications.


Assuntos
Compostos Férricos , Peróxido de Hidrogênio , Ferro , Pontos Quânticos , Catálise , Compostos Férricos/química , Ferro/química , Peróxido de Hidrogênio/química , Pontos Quânticos/química , Processos Fotoquímicos , Nitrilas/química , Porosidade , Grafite , Compostos de Nitrogênio
3.
Chemosphere ; 358: 142198, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38697566

RESUMO

In the electrical industry, there are many hazardous gases that pollute the environment and even jeopardize human health, so timely detection and effective control of these hazardous gases is of great significance. In this work, the gas-sensitive properties of Pd-modified g-C3N4 interface for each hazardous gas molecule were investigated from a microscopic viewpoint, taking the hazardous gases (CO, NOx) that may be generated in the power industry as the detection target. Then, the performance of Pd-modifiedg-C3N4 was evaluated for practical applications as a gas sensor material. Novelly, an unconventional means was designed to briefly predict the effect of humidity on the adsorption properties of this sensor material. The final results found that Pd-modified g-C3N4 is most suitable as a potential gas-sensitizing material for NO2 gas sensors, followed by CO. Interestingly, Pd-modified g-C3N4 is less suitable as a potential gas-sensitizing material for NO gas sensors, but has the potential to be used as a NO cleaner (adsorbent). Unconventional simulation explorations of humidity effects show that in practical applications Pd-modified g-C3N4 remains a promising material for gas sensing in specific humidity environments. This work reveals the origin of the excellent properties of Pd-modified g-C3N4 as a gas sensor material and provides new ideas for the detection and treatment of these three hazardous gases.


Assuntos
Poluentes Atmosféricos , Paládio , Poluentes Atmosféricos/análise , Paládio/química , Adsorção , Água/química , Monitoramento Ambiental/métodos , Gases/análise , Umidade , Monóxido de Carbono/análise , Nitrilas/química , Nitrilas/análise
4.
Luminescence ; 39(5): e4758, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38712530

RESUMO

The ability of heterogeneous photocatalysis to effectively remove organic pollutants from wastewater has shown great promise as a tool for environmental remediation. Pure zinc ferrites (ZnFe2O4) and magnesium-doped zinc ferrites (Mg@ZnFe2O4) with variable percentages of Mg (0.5, 1, 3, 5, 7, and 9 mol%) were synthesized via hydrothermal route and their photocatalytic activity was checked against methylene blue (MB) taken as a model dye. FTIR, XPS, BET, PL, XRD, TEM, and UV-Vis spectroscopy were used for the identification and morphological characterization of the prepared nanoparticles (NPs) and nanocomposites (NCs). The 7% Mg@ZnFe2O4 NPs demonstrated excellent degradation against MB under sunlight. The 7% Mg@ZnFe2O4 NPs were integrated with diverse contents (10, 50, 30, and 70 wt.%) of S@g-C3N4 to develop NCs with better activity. When the NCs were tested to degrade MB dye, it was revealed that the 7%Mg@ZnFe2O4/S@g-C3N4 NCs were more effective at utilizing solar energy than the other NPs and NCs. The synergistic effect of the interface formed between Mg@ZnFe2O4 and S@g-C3N4 was primarily responsible for the boosted photocatalytic capability of the NCs. The fabricated NCs may function as an effective new photocatalyst to remove organic dyes from wastewater.


Assuntos
Compostos Férricos , Azul de Metileno , Compostos de Nitrogênio , Energia Solar , Poluentes Químicos da Água , Zinco , Catálise , Poluentes Químicos da Água/química , Compostos Férricos/química , Azul de Metileno/química , Zinco/química , Magnésio/química , Fotólise , Processos Fotoquímicos , Corantes/química , Nanocompostos/química , Grafite/química , Águas Residuárias/química , Nitrilas/química
5.
J Am Chem Soc ; 146(19): 13317-13325, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38700457

RESUMO

We describe the synthesis and biological testing of ruthenium-bipyridine ruxolitinib (RuBiRuxo), a photoreleasable form of ruxolitinib, a JAK inhibitor used as an antitumoral agent in cutaneous T-cell lymphomas (CTCL). This novel caged compound is synthesized efficiently, is stable in aqueous solution at room temperature, and is photoreleased rapidly by visible light. Irradiation of RuBiRuxo reduces cell proliferation and induces apoptosis in a light- and time-dependent manner in a CTCL cell line. This effect is specific and is mediated by a decreased phosphorylation of STAT proteins. Our results demonstrate the potential of ruthenium-based photocompounds and light-based therapeutic approaches for the potential treatment of cutaneous lymphomas and other pathologies.


Assuntos
Antineoplásicos , Apoptose , Proliferação de Células , Nitrilas , Pirazóis , Pirimidinas , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Proliferação de Células/efeitos dos fármacos , Nitrilas/química , Nitrilas/farmacologia , Nitrilas/síntese química , Pirimidinas/química , Pirimidinas/farmacologia , Pirimidinas/síntese química , Apoptose/efeitos dos fármacos , Pirazóis/farmacologia , Pirazóis/química , Pirazóis/síntese química , Linhagem Celular Tumoral , Inibidores de Janus Quinases/farmacologia , Inibidores de Janus Quinases/química , Inibidores de Janus Quinases/síntese química , Rutênio/química , Rutênio/farmacologia , Luz , Estrutura Molecular , Janus Quinases/antagonistas & inibidores , Janus Quinases/metabolismo
6.
J Biomol Struct Dyn ; 42(10): 5053-5071, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38764131

RESUMO

The synthesis of two new hexahydroisoquinoline-4-carbonitrile derivatives (3a and 3b) is reported along with spectroscopic data and their crystal structures. In compound 3a, the intramolecular O-H···O hydrogen bond constraints the acetyl and hydroxyl groups to be syn. In the crystal, inversion dimers are generated by C-H···O hydrogen bonds and are connected into layers parallel to (10-1) by additional C-H···O hydrogen bonds. The layers are stacked with Cl···S contacts 0.17 Å less than the sum of the respective van der Waals radii. The conformation of the compound 3b is partially determined by the intramolecular O-H···O hydrogen bond. A puckering analysis of the tetrahydroisoquinoline unit was performed. In the crystal, O-H···O and C-H···O hydrogen bonds together with C-H···π(ring) interactions form layers parallel to (01-1) which pack with normal van der Waals interactions. To understand the binding efficiency and stability of the title molecules, molecular docking, and 100 ns dynamic simulation analyses were performed with CDK5A1. To rationalize their structure-activity relationship(s), a DFT study at the B3LYP/6-311++G** theoretical level was also done. The 3D Hirshfled surfaces were also taken to investigate the crystal packings of both compounds. In addition, their ADMET properties were explored.Communicated by Ramaswamy H. Sarma.


Assuntos
Ligação de Hidrogênio , Simulação de Acoplamento Molecular , Cristalografia por Raios X , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/química , Quinases Ciclina-Dependentes/metabolismo , Tetra-Hidroisoquinolinas/química , Tetra-Hidroisoquinolinas/farmacologia , Conformação Molecular , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Modelos Moleculares , Nitrilas/química , Simulação de Dinâmica Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Humanos
7.
Int J Mol Sci ; 25(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38732166

RESUMO

This current study assessed the impacts of morphology adjustment of perovskite BiFeO3 (BFO) on the construction and photocatalytic activity of P-infused g-C3N4/U-BiFeO3 (U-BFO/PCN) heterostructured composite photocatalysts. Favorable formation of U-BFO/PCN composites was attained via urea-aided morphology-controlled hydrothermal synthesis of BFO followed by solvosonication-mediated fusion with already synthesized P-g-C3N4 to form U-BFO/PCN composites. The prepared bare and composite photocatalysts' morphological, textural, structural, optical, and photocatalytic performance were meticulously examined through various analytical characterization techniques and photodegradation of aqueous rhodamine B (RhB). Ellipsoids and flakes morphological structures were obtained for U-BFO and BFO, and their effects on the successful fabrication of the heterojunctions were also established. The U-BFO/PCN composite exhibits 99.2% efficiency within 20 min of visible-light irradiation, surpassing BFO/PCN (88.5%), PCN (66.8%), and U-BFO (26.1%). The pseudo-first-order kinetics of U-BFO/PCN composites is 2.41 × 10-1 min-1, equivalent to 2.2 times, 57 times, and 4.3 times of BFO/PCN (1.08 × 10-1 min-1), U-BFO, (4.20 × 10-3 min-1), and PCN, (5.60 × 10-2 min-1), respectively. The recyclability test demonstrates an outstanding photostability for U-BFO/PCN after four cyclic runs. This improved photocatalytic activity exhibited by the composites can be attributed to enhanced visible-light utilization and additional accessible active sites due to surface and electronic band modification of CN via P-doping and effective charge separation achieved via successful composites formation.


Assuntos
Bismuto , Fotólise , Rodaminas , Catálise , Bismuto/química , Rodaminas/química , Luz , Compostos Férricos/química , Compostos de Nitrogênio/química , Titânio/química , Processos Fotoquímicos , Nitrilas/química , Cinética , Grafite , Óxidos , Compostos de Cálcio
8.
Anal Chem ; 96(19): 7772-7779, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38698542

RESUMO

There is growing attention focused toward the problems of ecological sustainability and food safety raised from the abuse of herbicides, which underscores the need for the development of a portable and reliable sensor for simple, rapid, and user-friendly on-site analysis of herbicide residues. Herein, a novel multifunctional hydrogel composite is explored to serve as a portable and flexible sensor for the facile and efficient analysis of atrazine (ATZ) residues. The hydrogel electrode is fabricated by doping graphite-phase carbon nitride (g-C3N4) into the aramid nanofiber reinforced poly(vinyl alcohol) hydrogel via a simple solution-casting procedure. Benefiting from the excellent electroactivity and large specific surface area of the solid nanoscale component, the prepared hydrogel sensor is capable of simple, rapid, and sensitive detection of ATZ with a detection limit down to 0.002 ng/mL and per test time less than 1 min. After combination with a smartphone-controlled portable electrochemical analyzer, the flexible sensor exhibited satisfactory analytical performance for the ATZ assay. We further demonstrated the applications of the sensor in the evaluation of the ATZ residues in real water and soil samples as well as the user-friendly on-site point-of-need detection of ATZ residues on various agricultural products. We envision that this flexible and portable sensor will open a new avenue on the development of next-generation analytical tools for herbicide monitoring in the environment and agricultural products.


Assuntos
Atrazina , Técnicas Eletroquímicas , Herbicidas , Hidrogéis , Atrazina/análise , Herbicidas/análise , Hidrogéis/química , Técnicas Eletroquímicas/instrumentação , Grafite/química , Eletrodos , Limite de Detecção , Nitrilas/química , Nitrilas/análise , Nanofibras/química , Poluentes Químicos da Água/análise
9.
Chemosphere ; 358: 142106, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38670512

RESUMO

The copper-modified tubular carbon nitride (CTCN) with higher specific surface area and pore volume was prepared by a simple in-situ hydrolysis and self-assembly. Increased ∼4.7-fold and ∼2.3-fold degradation rate for a representative refractory water pollutant (Ibuprofen, IBP) were achieved with low-energy light source (LED, 420 ± 10 nm), as compared to graphitic carbon nitride (GCN) and tubular carbon nitride (TCN), respectively. The high efficiency of IBP removal was supported by narrow band gap (2.15 eV), high photocurrent intensity (1.10 µA/cm2) and the high surface -OH group (14.75 µg/cm3) of CTCN. According to analysis of the various reactive species in the degradation, the superoxide radical (•O2-) played a dominant role, followed by •OH and h+, responsible for IBP degradation. Furthermore, Fukui functions were employed to predict the active sites of IBP, and combined with the HPLC-MS/MS results, possible mechanisms and pathways for photocatalytic degradation were indicated. This study will lay an important scientific foundation and a possible new approach for the treatment of emerging aromatic organic pollutants in visible-light-driven heterogeneous catalytic oxidation environment.


Assuntos
Cobre , Ibuprofeno , Luz , Nitrilas , Poluentes Químicos da Água , Ibuprofeno/química , Cobre/química , Poluentes Químicos da Água/química , Catálise , Nitrilas/química , Fotólise , Processos Fotoquímicos , Grafite/química , Teoria da Densidade Funcional , Compostos de Nitrogênio
10.
Biosens Bioelectron ; 256: 116276, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38599073

RESUMO

Fat mass and obesity-associated protein (FTO) has gained attention as the first RNA N6-methyladenosine (m6A) modification eraser due to its overexpression being associated with various cancers. In this study, an electrochemiluminescence (ECL) biosensor for the detection of demethylase FTO was developed based on DNAzyme-mediated CRISPR/Cas12a signal cascade amplification system and carboxylated carbon nitride nanosheets/phosphorus-doped nitrogen-vacancy modified carbon nitride nanosheets (C-CN/PCNV) heterojunction as the emitter. The biosensor was constructed by modifying the C-CN/PCNV heterojunction and a ferrocene-tagged probe (ssDNA-Fc) on a glassy carbon electrode. The presence of FTO removes the m6A modification on the catalytic core of DNAzyme, restoring its cleavage activity and generating activator DNA. This activator DNA further activates the trans-cleavage ability of Cas12a, leading to the cleavage of the ssDNA-Fc and the recovery of the ECL signal. The C-CN/PCNV heterojunction prevents electrode passivation and improves the electron-hole recombination, resulting in significantly enhanced ECL signal. The biosensor demonstrates high sensitivity with a low detection limit of 0.63 pM in the range from 1.0 pM to 100 nM. Furthermore, the biosensor was successfully applied to detect FTO in cancer cell lysate and screen FTO inhibitors, showing great potential in early clinical diagnosis and drug discovery.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato , Técnicas Biossensoriais , Sistemas CRISPR-Cas , DNA Catalítico , Técnicas Eletroquímicas , Limite de Detecção , Medições Luminescentes , Metalocenos , Dioxigenase FTO Dependente de alfa-Cetoglutarato/química , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Humanos , DNA Catalítico/química , Técnicas Eletroquímicas/métodos , Nitrilas/química , Endodesoxirribonucleases/química , Endodesoxirribonucleases/metabolismo , Proteínas Associadas a CRISPR/química , Adenosina/análogos & derivados , Adenosina/análise , Adenosina/química , Nanoestruturas/química , Compostos Ferrosos/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética
11.
Molecules ; 29(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38675628

RESUMO

In this study, we present a comprehensive investigation of 2-amino-4,6-diphenylnicotinonitriles (APNs, 1-6), including their synthesis, cytotoxicity against breast cancer cell lines, and photophysical properties. Compound 3 demonstrates exceptional cytotoxicity, surpassing the potency of Doxorubicin. The fluorescence spectra of the synthesized 1-6 in different solvents reveal solvent-dependent shifts in the emission maximum values, highlighting the influence of the solvent environment on their fluorescence properties. A quantum chemical TD-DFT analysis provides insights into the electronic structure and fluorescence behavior of 1-6, elucidating HOMO-LUMO energy gaps, electronegativity values, and dipole moments, contributing to a deeper understanding of their electronic properties and potential reactivity. These findings provide valuable knowledge for the development of APNs (1-6) as fluorescent sensors and potential anticancer agents.


Assuntos
Antineoplásicos , Nitrilas , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Nitrilas/química , Nitrilas/síntese química , Nitrilas/farmacologia , Linhagem Celular Tumoral , Teoria Quântica , Estrutura Molecular , Espectrometria de Fluorescência , Células MCF-7 , Sobrevivência Celular/efeitos dos fármacos
12.
Int J Biol Macromol ; 267(Pt 2): 131533, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608988

RESUMO

As a renewable aromatic compound with enormous production potential, lignin has various potential high-value utilization pathways, but the success achieved in the field of photocatalysis is limited. Herein, this work prepares a new type of photocatalyst by modifying Graphitic Carbon Nitride Nanotubes (CNT) with self-assembled lignin nanospheres for the photocatalytic production of H2O2 and the degradation of azo dyes. Under light conditions, lignin enhances the production of H2O2 through oxygen reduction and collaborates with carbon nitride tubes to generate O2- and 1O2. Furthermore, carbon nitride tubes form electron-rich regions with lignin, promoting the transfer of electrons from adsorbed aromatic pollutants to this region, thereby facilitating their degradation. The experimental results indicate that the addition of 5 % lignin significantly enhances the photocatalytic degradation efficiency of azo dyes, with a degradation rate 1.87 times higher than that of the original carbon nitride tubes. Furthermore, CNL also have excellent degradation ability to pollutants in actual wastewater. This study provides new insights and prospects for the high-value utilization of lignin, enabling it to be used as a photocatalytic co-catalyst to participate in the photocatalytic degradation of environmental pollutants.


Assuntos
Grafite , Peróxido de Hidrogênio , Lignina , Lignina/química , Grafite/química , Catálise , Peróxido de Hidrogênio/química , Nanotubos/química , Nitrilas/química , Compostos Azo/química , Compostos de Boro/química , Poluentes Químicos da Água/química , Processos Fotoquímicos , Nanotubos de Carbono/química , Compostos de Nitrogênio
14.
Bioorg Med Chem Lett ; 106: 129757, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38636718

RESUMO

9-cyanopyronin is a promising scaffold that exploits resonance Raman enhancement to enable sensitive, highly multiplexed biological imaging. Here, we developed cyano-Hydrol Green (CN-HG) derivatives as resonance Raman scaffolds to expand the color palette of 9-cyanopyronins. CN-HG derivatives exhibit sufficiently long wavelength absorption to produce strong resonance Raman enhancement for near-infrared (NIR) excitation, and their nitrile peaks are shifted to a lower frequency than those of 9-cyanopyronins. The fluorescence of CN-HG derivatives is strongly quenched due to the lack of the 10th atom, unlike pyronin derivatives, and this enabled us to detect spontaneous Raman spectra with high signal-to-noise ratios. CN-HG derivatives are powerful candidates for high performance vibrational imaging.


Assuntos
Análise Espectral Raman , Estrutura Molecular , Vibração , Nitrilas/química , Nitrilas/síntese química
15.
ACS Appl Bio Mater ; 7(5): 3179-3189, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38581305

RESUMO

Ruxolitinib (RXL) is a Janus kinase inhibitor used for treating intermediate- or high-risk myelofibrosis. This study presents an electrode modified with electrochemically polymerized taurine on a carbon paste electrode via cyclic voltammetry (CV). The surface characterization of the poly(taurine)-CP electrode was evaluated by using electrochemical (electrochemical impedance spectroscopy─EIS, CV), morphological (scanning electron microscope─SEM), and spectroscopic (Fourier-transform infrared spectroscopy─FT-IR) techniques. Under optimized conditions, RXL exhibited good linearity within the 0.01-1.0 µM concentration range, with a limit of detection (LOD) of 0.005 µM. The proposed electrochemical sensor demonstrated excellent selectivity, accuracy, precision, and repeatability. Furthermore, it effectively detected RXL in human urine and pharmaceutical samples.


Assuntos
Carbono , Técnicas Eletroquímicas , Eletrodos , Teste de Materiais , Nitrilas , Pirazóis , Pirimidinas , Taurina , Nitrilas/química , Nitrilas/farmacologia , Pirimidinas/química , Pirimidinas/farmacologia , Carbono/química , Humanos , Pirazóis/química , Pirazóis/farmacologia , Taurina/química , Taurina/análogos & derivados , Taurina/farmacologia , Tamanho da Partícula , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Inibidores de Janus Quinases/química , Inibidores de Janus Quinases/farmacologia , Polimerização , Estrutura Molecular
16.
ACS Sens ; 9(5): 2429-2439, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38668680

RESUMO

Norovirus (NoV) stands as a significant causative agent of nonbacterial acute gastroenteritis on a global scale, presenting a substantial threat to public health. Hence, the development of simple and rapid analytical techniques for NoV detection holds great importance in preventing and controlling the outbreak of the epidemic. In this work, a self-powered photoelectrochemical (PEC) immunosensor of NoV capsid protein (VP1) was proposed by the π-electron-rich carbon nitride homojunction (ER-CNH) as the photoanode. C4N2 ring derived from π-rich locust bean gum was introduced into the tri-s-triazine structure, creating a large π-delocalized conjugated carbon nitride homojunction. This strategy enhances the C/N atomic ratio, which widens light utilization, narrows the bandgap, and optimizes the electronic band structure of carbon nitride. By introduction of a π-rich conjugated structure, p-type domains were induced within n-type domains to build the internal electric field at the interface, thus forming a p-n homojunction to boost carrier separation and transfer. The ER-CNH photoanode exhibited excellent photoelectric performance and water oxidation capacity. Since VP1 inhibits the water oxidation of the ER-CNH photoanode, the open-circuit potential of the as-prepared PEC immunosensor system was reduced for detecting NoV VP1. The self-powered PEC immunosensor achieved a remarkably low detection limit (∼5 fg mL-1) and displayed high stability and applicability for actual stool samples. This research serves as a foundation concept for constructing immunosensors to detect other viruses and promotes the application of self-powered systems for life safety.


Assuntos
Técnicas Eletroquímicas , Fezes , Norovirus , Norovirus/imunologia , Norovirus/isolamento & purificação , Norovirus/química , Imunoensaio/métodos , Humanos , Fezes/virologia , Fezes/química , Técnicas Eletroquímicas/métodos , Proteínas do Capsídeo/química , Proteínas do Capsídeo/imunologia , Nitrilas/química , Técnicas Biossensoriais/métodos , Limite de Detecção , Elétrons
17.
Int J Biol Macromol ; 268(Pt 2): 131937, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685539

RESUMO

As a cellulose-derived material, nanocellulose possesses unique properties that make it an ideal substrate for various functional composite materials. In this study, we developed a novel composite membrane material capable of adsorbing and photo-catalyzing formaldehyde by immobilizing HKUST-1 (copper open framework composed of 1,3,5-benzenetricarboxylic acid) onto NFC (Nano-fibrillated cellulose) membranes and subsequently loading modified carbon nitride. The synthesized CNx@HN composite membrane (consisting of NFC membrane with anchored HKUST-1 and modified g-C3Nx nanosheets) was thoroughly characterized, and its photocatalytic degradation performance towards low concentrations of formaldehyde (3.0 mg/m3) was investigated. The results demonstrated that HKUST-1's porous nature exhibited a concentrated adsorption capacity for formaldehyde, while the modified CNx (Modified g-C3Nx nanosheets) displayed robust photocatalytic degradation of formaldehyde. The synergistic effect of HKUST-1 and modified CNx on the NFC membrane significantly enhanced the efficiency of formaldehyde degradation. Under xenon lamp irradiation, CNx@HN-5 achieved a total removal efficiency of 86.9 % for formaldehyde, with a photocatalytic degradation efficiency of 48.45 %, showcasing its exceptional ability in both adsorption and photocatalytic degradation of formaldehyde. Furthermore, after 10 cycles of recycling, the composite membrane exhibited excellent stability for the photocatalytic degradation process. Therefore, this study presents a green and facile strategy to fabricate nanocellulose-supported composite membranes with great potential for practical applications in formaldehyde degradation.


Assuntos
Celulose , Formaldeído , Nitrilas , Formaldeído/química , Celulose/química , Nitrilas/química , Catálise , Adsorção , Membranas Artificiais , Fotólise , Estruturas Metalorgânicas
18.
Food Chem ; 449: 139231, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38579654

RESUMO

Pyrethroids are widely used insecticides worldwide, while their on-site and rapid detection still faces technological challenges. Herein, an innovative detection mechanism was designed for deltamethrin, a typical kind of type II pyrethroids, based on a dual-emitting fluoroprobe consisting of NH2-SiQDs and Eu3+. Deltamethrin can rapidly hydrolyze into 3-phenoxybenzaldehyde (3-PBD) and react specifically with fluoroprobe, causing fluorescence quenching of SiQDs while maintaining the fluorescent stability of Eu3+. Building upon the above fluorescence-responsive principle, SiQDs@Eu3+ provided satisfactorily dual-emitting signals, realizing the highly-selective and sensitive detection of deltamethrin. Correlation between the surface structure of SiQDs and their absorption spectra was in-depth unraveled by TD-DFT calculation and FT-IR analysis. As for the analytical performance, the recovery and LOD of deltamethrin in lettuce, provided by SiQDs@Eu3+, were comparable or even superior over conventional chromatographic analysis. Meanwhile, an innovative smartphone-based optical device was developed, which greatly decreased errors caused by the previously reported smartphone-based fluorescence detection.


Assuntos
Contaminação de Alimentos , Inseticidas , Nitrilas , Piretrinas , Smartphone , Piretrinas/química , Piretrinas/análise , Nitrilas/química , Inseticidas/química , Inseticidas/análise , Contaminação de Alimentos/análise , Lactuca/química , Espectrometria de Fluorescência , Fluorescência , Corantes Fluorescentes/química , Limite de Detecção
19.
Chemosphere ; 356: 141780, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38604516

RESUMO

The degradation of three anti-cancer drugs (ADs), Capecitabine (CAP), Bicalutamide (BIC) and Irinotecan (IRI), in ultrapure water by ozonation and UV-irradiation was tested in a bench-scale reactor and AD concentrations were measured through ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). A low-pressure mercury UV (LP-UV) lamp was used and degradation by UV (λ = 254 nm) followed pseudo-first order kinetics. Incident radiation in the reactor was measured via chemical actinometry using uridine. The quantum yields (φ) for the degradation of CAP, BIC and IRI were 0.012, 0.0020 and 0.0045 mol Einstein-1, respectively. Ozone experiments with CAP and IRI were conducted by adding ozone stock solution to the reactor either with or without addition of tert-butanol (t-BuOH) as radical quencher. Using this experimental arrangement, no degradation of BIC was observed, so a semi-batch setup was employed for the ozone degradation experiments of BIC. Without t-BuOH, apparent second order reaction rate constants for the reaction of the ADs with molecular ozone were determined to be 3.5 ± 0.8 ∙ 103 L mol-1 s-1 (CAP), 7.9 ± 2.1 ∙ 10-1 L mol-1 s-1 (BIC) and 1.0 ± 0.3 ∙ 103 L mol-1 s-1 (IRI). When OH-radicals (∙OH) were quenched, rate constants were virtually the same for CAP and IRI. For BIC, a significantly lower constant of 1.0 ± 0.5 ∙ 10-1 L mol-1 s-1 was determined. Of the tested substances, BIC was the most recalcitrant, with the slowest degradation during both ozonation and UV-irradiation. The extent of mineralization was also determined for both processes. UV irradiation was able to fully degrade up to 80% of DOC, ozonation up to 30%. Toxicity tests with Daphnia magna (D. magna) did not find toxicity for fully degraded solutions of the three ADs at environmentally relevant concentrations.


Assuntos
Anilidas , Antineoplásicos , Capecitabina , Irinotecano , Nitrilas , Ozônio , Compostos de Tosil , Raios Ultravioleta , Poluentes Químicos da Água , Ozônio/química , Nitrilas/química , Poluentes Químicos da Água/química , Irinotecano/química , Anilidas/química , Capecitabina/química , Compostos de Tosil/química , Antineoplásicos/química , Cinética , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão
20.
Biochem Biophys Res Commun ; 709: 149822, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38547604

RESUMO

Aromatic nitriles are of considerable environmental concern, because of their hazardous impacts on the health of both humans and wildlife. In the present study, Burkholderia sp. strain BC1 was observed to be capable of utilizing toxic benzonitrile and hydroxybenzonitrile isomers singly, as sole carbon and energy sources. The results of chromatographic and spectrometric analyses in combination with oxygen uptake and enzyme activity studies, revealed the metabolism of benzonitrile as well as 2-, 3-, and 4-hydroxybenzonitriles by nitrile hydratase-amidase to the corresponding carboxylates. These carboxylates were further metabolized via central pathways, namely benzoate-catechol, salicylate-catechol, 3-hydroxybenzoate-gentisate and 4-hydroxybenzoate-protocatechute pathways in strain BC1, ultimately leading to the TCA cycle intermediates. Studies also evaluated substrate specificity profiles of both nitrile hydratase and amidase(s) involved in the denitrification of the nitriles. In addition, a few metabolic crosstalk events due to the induction of multiple operons by central metabolites were appraised in strain BC1. The present study illustrates the broad degradative potential of strain BC1, harboring diverse catabolic machinery of biotechnological importance, elucidating pathways for the assimilation of benzonitrile and that of hydroxybenzonitrile isomers for the first time.


Assuntos
Burkholderia , Humanos , Nitrilas/química , Amidoidrolases/metabolismo , Catecóis , Biodegradação Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA