Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 431
Filtrar
1.
J Virol ; 98(5): e0019724, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38593321

RESUMO

Noroviruses are major causative agents of acute nonbacterial gastroenteritis in humans. There are neither antiviral therapeutic agents nor vaccines for noroviruses at this time. To evaluate the potential usefulness of two previously isolated human monoclonal antibody fragments, CV-1A1 and CV-2F5, we first conducted a single-particle analysis to determine the cryo-electron microscopy structure of virus-like particles (VLPs) from the genogroup I genotype 4 (GI.4) Chiba strain uniformly coated with CV-1A1 fragments. The results revealed that the GI.4-specific CV-1A1 antibody bound to the P2 subdomain, in which amino acids are less conserved and variable. Interestingly, a part of the CV-1A1 intrudes into the histo-blood group antigen-binding site, suggesting that this antibody might exert neutralizing activity. Next, we determined the crystal structure of the protruding (P) domain of the capsid protein in the complex form with the CV-2F5 antibody fragment. Consistent with the cross-reactivity, the CV-2F5 bound to the P1 subdomain, which is rich in amino acids conserved among the GI strains, and moreover induced a disruption of Chiba VLPs. These results suggest that the broadly reactive CV-2F5 antibody can be used as both a universal detection reagent and an antiviral drug for GI noroviruses. IMPORTANCE: We conducted the structural analyses of the VP1 protein from the GI.4 Chiba norovirus to identify the binding sites of the previously isolated human monoclonal antibodies CV-1A1 and CV-2F5. The cryo-electron microscopy of the Chiba virus-like particles (VLPs) complexed with the Fv-clasp forms of GI.4-specific CV-1A1 revealed that this antibody binds to the highly variable P2 subdomain, suggesting that this antibody may have neutralizing ability against the GI.4 strains. X-ray crystallography revealed that the CV-2F5 antibody bound to the P1 subdomain, which is rich in conserved amino acids. This result is consistent with the ability of the CV-2F5 antibody to react with a wide variety of GI norovirus strains. It is also found that the CV-2F5 antibody caused a disruption of VLPs. Our findings, together with previous reports on the structures of VP1 proteins and VLPs, are expected to open a path for the structure-based development of antivirals and vaccines against norovirus disease.


Assuntos
Anticorpos Monoclonais , Anticorpos Antivirais , Proteínas do Capsídeo , Microscopia Crioeletrônica , Norovirus , Norovirus/imunologia , Microscopia Crioeletrônica/métodos , Humanos , Anticorpos Monoclonais/imunologia , Cristalografia por Raios X , Proteínas do Capsídeo/imunologia , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Sítios de Ligação , Anticorpos Antivirais/imunologia , Anticorpos Neutralizantes/imunologia , Modelos Moleculares
2.
ACS Sens ; 9(5): 2429-2439, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38668680

RESUMO

Norovirus (NoV) stands as a significant causative agent of nonbacterial acute gastroenteritis on a global scale, presenting a substantial threat to public health. Hence, the development of simple and rapid analytical techniques for NoV detection holds great importance in preventing and controlling the outbreak of the epidemic. In this work, a self-powered photoelectrochemical (PEC) immunosensor of NoV capsid protein (VP1) was proposed by the π-electron-rich carbon nitride homojunction (ER-CNH) as the photoanode. C4N2 ring derived from π-rich locust bean gum was introduced into the tri-s-triazine structure, creating a large π-delocalized conjugated carbon nitride homojunction. This strategy enhances the C/N atomic ratio, which widens light utilization, narrows the bandgap, and optimizes the electronic band structure of carbon nitride. By introduction of a π-rich conjugated structure, p-type domains were induced within n-type domains to build the internal electric field at the interface, thus forming a p-n homojunction to boost carrier separation and transfer. The ER-CNH photoanode exhibited excellent photoelectric performance and water oxidation capacity. Since VP1 inhibits the water oxidation of the ER-CNH photoanode, the open-circuit potential of the as-prepared PEC immunosensor system was reduced for detecting NoV VP1. The self-powered PEC immunosensor achieved a remarkably low detection limit (∼5 fg mL-1) and displayed high stability and applicability for actual stool samples. This research serves as a foundation concept for constructing immunosensors to detect other viruses and promotes the application of self-powered systems for life safety.


Assuntos
Técnicas Eletroquímicas , Fezes , Norovirus , Norovirus/imunologia , Norovirus/isolamento & purificação , Norovirus/química , Imunoensaio/métodos , Humanos , Fezes/virologia , Fezes/química , Técnicas Eletroquímicas/métodos , Proteínas do Capsídeo/química , Proteínas do Capsídeo/imunologia , Nitrilas/química , Técnicas Biossensoriais/métodos , Limite de Detecção , Elétrons
4.
J Virol ; 97(10): e0093823, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37792003

RESUMO

IMPORTANCE: Human norovirus (HuNoV) is highly infectious and can result in severe illnesses in the elderly and children. So far, there is no effective antiviral drug to treat HuNoV infection, and thus, the development of HuNoV vaccines is urgent. However, NoV evolves rapidly, and currently, at least 10 genogroups with numerous genotypes have been found. The genetic diversity of NoV and the lack of cross-protection between different genotypes pose challenges to the development of broadly protective vaccines. In this study, guided by structural alignment between GI.1 and GII.4 HuNoV VP1 proteins, several chimeric-type virus-like particles (VLPs) were designed through surface-exposed loop grafting. Mouse immunization studies show that two of the designed chimeric VLPs induced cross-immunity against both GI.1 and GII.4 HuNoVs. To our knowledge, this is the first designed chimeric VLPs that can induce cross-immune activities across different genogroups of HuNoV, which provides valuable strategies for the development of cross-reactive HuNoV vaccines.


Assuntos
Infecções por Caliciviridae , Epitopos , Genótipo , Norovirus , Vacinas Virais , Vírion , Animais , Humanos , Camundongos , Infecções por Caliciviridae/imunologia , Infecções por Caliciviridae/prevenção & controle , Infecções por Caliciviridae/virologia , Epitopos/química , Epitopos/genética , Epitopos/imunologia , Imunização , Norovirus/química , Norovirus/classificação , Norovirus/genética , Norovirus/imunologia , Vacinas Virais/química , Vacinas Virais/genética , Vacinas Virais/imunologia , Quimera/genética , Quimera/imunologia , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Vírion/química , Vírion/genética , Vírion/imunologia
5.
Vaccine ; 41(3): 766-777, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36528444

RESUMO

Noroviruses (NoVs) are one of the major causes of acute viral gastroenteritis in humans. Virus-like particles (VLPs) without genomes that mimic the capsid structure of viruses are promising vaccine candidates for the prevention of NoVs infection. To produce large amounts of recombinant protein, including VLPs, the silkworm-expression vector system (silkworm-BEVS) is an efficient and powerful tool. In this study, we constructed a recombinant baculovirus that expresses VP1 protein, the major structural protein of NoV GII.4. Expression analysis showed that the baculovirus-infected silkworm pupae expressed NoV VP1 protein more efficiently than silkworm larval fat bodies. We obtained about 4.9 mg of purified NoV VP1 protein from only five silkworm pupae. The purified VP1 protein was confirmed by dynamic light scattering and electron microscopy to form VLPs of approximately 40 nm in diameter. Antisera from mice immunized with the antigen blocked NoV VLPs binding to histo-blood group antigens of pig gastric mucin and also blocked NoV infection in intestinal epithelial cells derived from human induced pluripotent stem (iPS) cells. Our findings demonstrated that NoV VLP eliciting protective antibodies could be obtained in milligram quantities from a few silkworm pupae using the silkworm-BEVS.


Assuntos
Partículas Artificiais Semelhantes a Vírus , Bombyx , Infecções por Caliciviridae , Gastroenterite , Norovirus , Animais , Humanos , Camundongos , Anticorpos , Anticorpos Antivirais , Bombyx/química , Bombyx/metabolismo , Infecções por Caliciviridae/prevenção & controle , Proteínas do Capsídeo/genética , Norovirus/genética , Norovirus/imunologia , Pupa , Suínos , Partículas Artificiais Semelhantes a Vírus/imunologia
6.
Viruses ; 14(2)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35215766

RESUMO

Few studies have shown the presence of norovirus (NoV) RNA in blood circulation but there is no data on norovirus antigenemia. We examined both antigenemia and RNAemia from the sera of children with NoV infections and studied whether norovirus antigenemia is correlated with the levels of norovirus-specific antibodies and clinical severity of gastroenteritis. Both stool and serum samples were collected from 63 children admitted to Mie National Hospital with acute NoV gastroenteritis. Norovirus antigen and RNA were detected in sera by ELISA and real-time RT-PCR, respectively. NoV antigenemia was found in 54.8% (34/62) and RNAemia in 14.3% (9/63) of sera samples. Antigenemia was more common in the younger age group (0-2 years) than in the older age groups, and most patients were male. There was no correlation between stool viral load and norovirus antigen (NoV-Ag) levels (rs = -0.063; Cl -0.3150 to 0.1967; p = 0.6251). Higher levels of acute norovirus-specific IgG serum antibodies resulted in a lower antigenemia OD value (n = 61; r = -0.4258; CI -0.62 to -0.19; p = 0.0006). Norovirus antigenemia occurred more commonly in children under 2 years of age with NoV-associated acute gastroenteritis. The occurrence of antigenemia was not correlated with stool viral load or disease severity.


Assuntos
Antígenos Virais/sangue , Infecções por Caliciviridae/epidemiologia , Gastroenterite/epidemiologia , Norovirus/imunologia , Adolescente , Infecções por Caliciviridae/virologia , Pré-Escolar , Reações Cruzadas , Ensaio de Imunoadsorção Enzimática , Fezes/virologia , Feminino , Gastroenterite/virologia , Humanos , Lactente , Cinética , Masculino , Epidemiologia Molecular , Norovirus/genética , Filogenia , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real , Carga Viral
7.
Virology ; 566: 89-97, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34894525

RESUMO

Virus-like particles (VLPs) modified through different molecular technologies are employed as delivery vehicles or platforms for heterologous antigen display. We have recently created a norovirus (NoV) VLP platform, where two influenza antigens, the extracellular domain of matrix protein M2 (M2e) or the stem domain of the major envelope glycoprotein hemagglutinin (HA2) are displayed on the surface of the NoV VLPs by SpyTag/SpyCatcher conjugation. To demonstrate the feasibility of the platform to deliver foreign antigens, this study examined potential interference of the conjugation with induction of antibodies against conjugated M2e peptide, HA2, and NoV VLP carrier. High antibody response was induced by HA2 but not M2e decorated VLPs. Furthermore, HA2-elicited antibodies did not neutralize the homologous influenza virus in vitro. Conjugated NoV VLPs retained intact receptor binding capacity and self-immunogenicity. The results demonstrate that NoV VLPs could be simultaneously used as a platform to deliver foreign antigens and a NoV vaccine.


Assuntos
Anticorpos Antivirais/biossíntese , Hemaglutininas Virais/genética , Imunoglobulina G/biossíntese , Vacinas contra Influenza/genética , Influenza Humana/prevenção & controle , Infecções por Orthomyxoviridae/prevenção & controle , Vacinas de Partículas Semelhantes a Vírus/genética , Animais , Antígenos Virais/genética , Antígenos Virais/imunologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Feminino , Hemaglutininas Virais/imunologia , Humanos , Imunoconjugados/genética , Imunoconjugados/imunologia , Imunogenicidade da Vacina , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H1N1/patogenicidade , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/biossíntese , Influenza Humana/imunologia , Influenza Humana/virologia , Camundongos , Camundongos Endogâmicos BALB C , Norovirus/genética , Norovirus/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Vacinação/métodos , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/biossíntese , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/imunologia
8.
Antiviral Res ; 197: 105231, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34965447

RESUMO

Human noroviruses (NoVs) are the most common cause of acute gastroenteritis worldwide. One major obstacle in developing NoV vaccines is the lack of robust cell culture for efficacy evaluation. In this study, we successfully developed a NoV virus-like particle (VLP) entry assay based on split NanoLuc luciferase (LgBiT and HiBiT) complementation. HiBiT-tagged NoV GII.4 VLP (VLP-HiBiT) can be efficiently produced in Pichia pastoris and retain binding activity towards NoV receptor histo-blood group antigens (HBGAs). A 293T-FUT2-LgBiT cell line was established and was shown to stably express cell surface HBGAs and intracellular LgBiT. GII.4 VLP-HiBiT can bind and enter into the 293-FUT2-LgBiT cells, producing strong luminescence signals in live cells. Anti-GII.4 sera can inhibit VLP-HiBiT entry into the 293-FUT2-LgBiT cells in a dose-dependent manner, and neutralizing titers well correlate with their blocking titers measured by HBGAs-binding blockade assay. Moreover, such a surrogate infection/neutralization assay can be applied to other NoV genotypes such as GI.1 and GII.17. Together, the VLP-HiBiT entry assay can mimic both NoV attachment and internalization in live cells and thus facilitate reliable and comprehensive evaluation of NoV vaccine and antibodies.


Assuntos
Anticorpos Antivirais/metabolismo , Anticorpos Antivirais/farmacologia , Luciferases/genética , Norovirus/genética , Norovirus/imunologia , Internalização do Vírus , Anticorpos Antivirais/imunologia , Infecções por Caliciviridae/virologia , Teste de Complementação Genética/métodos , Teste de Complementação Genética/normas , Genótipo , Células HEK293 , Humanos , Luciferases/metabolismo , Medições Luminescentes , Saccharomycetales/genética , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas Virais/imunologia , Ligação Viral
9.
Viruses ; 13(12)2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34960668

RESUMO

Human Norovirus is currently the main viral cause of acute gastroenteritis (AGEs) in most countries worldwide. Nearly 50 years after the discovery of the "Norwalk virus" by Kapikian and colleagues, the scientific and medical community continue to generate new knowledge on the full biological and disease spectrum of Norovirus infection. Nevertheless, several areas remain incompletely understood due to the serious constraints to effectively replicate and propagate the virus. Here, we present a narrated historic perspective and summarize our current knowledge, including insights and reflections on current points of interest for a broad medical community, including clinical and molecular epidemiology, viral-host-microbiota interactions, antivirals, and vaccine prototypes. We also include a reflection on the present and future impacts of the COVID-19 pandemic on Norovirus infection and disease.


Assuntos
Infecções por Caliciviridae/epidemiologia , Infecções por Caliciviridae/prevenção & controle , Gastroenterite/epidemiologia , Gastroenterite/prevenção & controle , Norovirus/fisiologia , Antivirais , COVID-19/epidemiologia , COVID-19/prevenção & controle , Infecções por Caliciviridae/microbiologia , Infecções por Caliciviridae/virologia , Gastroenterite/microbiologia , Gastroenterite/virologia , Microbioma Gastrointestinal , Interações Hospedeiro-Patógeno , Humanos , Norovirus/genética , Norovirus/imunologia , SARS-CoV-2 , Vacinas Virais/imunologia
10.
Int J Mol Sci ; 22(24)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34948268

RESUMO

Rotavirus (RV) and norovirus (NoV) are the leading causes of acute gastroenteritis (AGE) worldwide. Several studies have demonstrated that histo-blood group antigens (HBGAs) have a role in NoV and RV infections since their presence on the gut epithelial surfaces is essential for the susceptibility to many NoV and RV genotypes. Polymorphisms in genes that code for enzymes required for HBGAs synthesis lead to secretor or non-secretor and Lewis positive or Lewis negative individuals. While secretor individuals appear to be more susceptible to RV infections, regarding NoVs infections, there are too many discrepancies that prevent the ability to draw conclusions. A second factor that influences enteric viral infections is the gut microbiota of the host. In vitro and animal studies have determined that the gut microbiota limits, but in some cases enhances enteric viral infection. The ways that microbiota can enhance NoV or RV infection include virion stabilization and promotion of virus attachment to host cells, whereas experiments with microbiota-depleted and germ-free animals point to immunoregulation as the mechanism by which the microbiota restrict infection. Human trials with live, attenuated RV vaccines and analysis of the microbiota in responder and non-responder individuals also allowed the identification of bacterial taxa linked to vaccine efficacy. As more information is gained on the complex relationships that are established between the host (glycobiology and immune system), the gut microbiota and intestinal viruses, new avenues will open for the development of novel anti-NoV and anti-RV therapies.


Assuntos
Infecções por Caliciviridae/microbiologia , Infecções por Rotavirus/microbiologia , Animais , Antígenos de Grupos Sanguíneos/imunologia , Antígenos de Grupos Sanguíneos/metabolismo , Infecções por Caliciviridae/imunologia , Infecções por Caliciviridae/virologia , Gastroenterite/microbiologia , Microbioma Gastrointestinal/fisiologia , Genótipo , Glicômica , Humanos , Imunidade , Norovirus/imunologia , Norovirus/patogenicidade , Rotavirus/imunologia , Rotavirus/patogenicidade , Infecções por Rotavirus/imunologia , Infecções por Rotavirus/virologia , Eficácia de Vacinas , Vacinas Virais
11.
Front Immunol ; 12: 781718, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868056

RESUMO

Norovirus (NoV) is a zoonotic virus that causes diarrhea in humans and animals. Outbreaks in nosocomial settings occur annually worldwide, endangering public health and causing serious social and economic burdens. The latter quarter of 2016 witnessed the emergence of the GII.P16-GII.2 recombinant norovirus throughout Asia. This genotype exhibits strong infectivity and replication characteristics, proposing its potential to initiate a pandemic. There is no vaccine against GII.P16-GII.2 recombinant norovirus, so it is necessary to design a preventive vaccine. In this study, GII.P16-GII.2 type norovirus virus-like particles (VLPs) were constructed using the baculovirus expression system and used to conduct immunizations in mice. After immunization of mice, mice were induced to produce memory T cells and specific antibodies, indicating that the VLPs induced specific cellular and humoral immune responses. Further experiments were then initiated to understand the underlying mechanisms involved in antigen presentation. Towards this, we established co-cultures between dendritic cells (DCs) or macrophages (Mø) and naïve CD4+T cells and simulated the antigen presentation process by incubation with VLPs. Thereafter, we detected changes in cell surface molecules, cytokines and related proteins. The results indicated that VLPs effectively promoted the phenotypic maturation of Mø but not DCs, as indicated by significant changes in the expression of MHC-II, costimulatory factors and related cytokines in Mø. Moreover, we found VLPs caused Mø to polarize to the M1 type and release inflammatory cytokines, thereby inducing naïve CD4+ T cells to perform Th1 immune responses. Therefore, this study reveals the mechanism of antigen presentation involving GII.P16-GII.2 recombinant norovirus VLPs, providing a theoretical basis for both understanding responses to norovirus infection as well as opportunities for vaccine development.


Assuntos
Infecções por Caliciviridae/imunologia , Interações Hospedeiro-Patógeno/imunologia , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Norovirus/imunologia , Células Th1/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais/imunologia , Especificidade de Anticorpos/imunologia , Apresentação de Antígeno , Antígenos Virais/genética , Antígenos Virais/imunologia , Infecções por Caliciviridae/prevenção & controle , Infecções por Caliciviridae/virologia , Modelos Animais de Doenças , Feminino , Humanos , Imunidade Celular , Macrófagos/metabolismo , Camundongos , Norovirus/classificação , Norovirus/genética , Proteínas Recombinantes , Células Th1/metabolismo , Vacinas de Partículas Semelhantes a Vírus/isolamento & purificação , Vacinas de Partículas Semelhantes a Vírus/ultraestrutura
12.
Viruses ; 13(11)2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34834968

RESUMO

Noroviruses are responsible for almost a fifth of all cases of gastroenteritis worldwide. The calicivirus capsid is composed of 180 copies of VP1 with a molecular weight of ~58 kDa. This coat protein is divided into the N-terminus (N), the shell (S) and C-terminal protruding (P) domains. The S domain forms a shell around the viral RNA genome, while the P domains dimerize to form protrusions on the capsid surface. The P domain is subdivided into P1 and P2 subdomains, with the latter containing the binding sites for cellular receptors and neutralizing antibodies. Reviewed here are studies on murine norovirus (MNV) showing that the capsid responds to several physiologically relevant cues; bile, pH, Mg2+, and Ca2+. In the initial site of infection, the intestinal tract, high bile and metal concentrations and low pH cause two significant conformational changes: (1) the P domain contracts onto the shell domain and (2) several conformational changes within the P domain lead to enhanced receptor binding while blocking antibody neutralization. In contrast, the pH is neutral, and the concentrations of bile and metals are low in the serum. Under these conditions, the loops at the tip of the P domain are in the open conformation with the P domain floating on a linker or tether above the shell. This conformational state favors antibody binding but reduces interactions with the receptor. In this way, MNV uses metabolites and environmental cues in the intestine to optimize cellular attachment and escape antibody binding but presents a wholly different structure to the immune system in the serum. To our knowledge, this is the first example of a virus shapeshifting in this manner to escape the immune response.


Assuntos
Gastroenterite/imunologia , Gastroenterite/virologia , Norovirus/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Bile , Sítios de Ligação , Capsídeo/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Microscopia Crioeletrônica , Genoma Viral , Camundongos , Modelos Moleculares , Norovirus/genética , Ligação Proteica , Domínios Proteicos
13.
J Gen Virol ; 102(10)2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34698626

RESUMO

Human noroviruses (HuNoVs) are increasingly becoming the main cause of transmissible gastroenteritis worldwide, with hundreds of thousands of deaths recorded annually. Yet, decades after their discovery, there is still no effective treatment or vaccine. Efforts aimed at developing vaccines or treatment will benefit from a greater understanding of norovirus-host interactions, including the host response to infection. In this review, we provide a concise overview of the evidence establishing the significance of type I and type III interferon (IFN) responses in the restriction of noroviruses. We also critically examine our current understanding of the molecular mechanisms of IFN induction in norovirus-infected cells, and outline the diverse strategies deployed by noroviruses to supress and/or avoid host IFN responses. It is our hope that this review will facilitate further discussion and increase interest in this area.


Assuntos
Infecções por Caliciviridae/imunologia , Infecções por Caliciviridae/virologia , Interferons/fisiologia , Norovirus/imunologia , Norovirus/patogenicidade , Animais , Linhagem Celular , Humanos , Evasão da Resposta Imune , Imunidade Inata , Interferons/biossíntese , Proteínas Virais/metabolismo , Replicação Viral
14.
Viruses ; 13(10)2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34696487

RESUMO

Human noroviruses are a common pathogen causing acute gastroenteritis worldwide. Among all norovirus genotypes, GII.3 is particularly prevalent in the pediatric population. Here we report the identification of two distinct blockade antibody epitopes on the GII.3 capsid. We generated a panel of monoclonal antibodies (mAbs) from mice immunized with virus-like particle (VLP) of a GII.3 cluster 3 strain. Two of these mAbs, namely 8C7 and 8D1, specifically bound the parental GII.3 VLP but not VLPs of GII.4, GII.17, or GI.1. In addition, 8C7 and 8D1 efficiently blocked GII.3 VLP binding with its ligand, histo-blood group antigens (HBGA). These data demonstrate that 8C7 and 8D1 are GII.3-specific blockade antibodies. By using a series of chimeric VLPs, we mapped the epitopes of 8C7 and 8D1 to residues 385-400 and 401-420 of the VP1 capsid protein, respectively. These two blockade antibody epitopes are highly conserved among GII.3 cluster 3 strains. Structural modeling shows that the 8C7 epitope partially overlaps with the HBGA binding site (HBS) while the 8D1 epitope is spatially adjacent to HBS. These findings may enhance our understanding of the immunology and evolution of GII.3 noroviruses.


Assuntos
Norovirus/genética , Norovirus/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Bloqueadores/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Sítios de Ligação/genética , Antígenos de Grupos Sanguíneos/genética , Infecções por Caliciviridae/genética , Capsídeo/imunologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Epitopos/genética , Epitopos/imunologia , Gastroenterite/virologia , Genótipo , Humanos , Camundongos , Ligação Proteica/genética , Ligação Proteica/imunologia , Domínios Proteicos/genética
15.
Microb Cell Fact ; 20(1): 186, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34560881

RESUMO

BACKGROUND: Noroviruses are a major cause of epidemic and sporadic acute non-bacterial gastroenteritis worldwide. Unfortunately, the development of an effective norovirus vaccine has proven difficult and no prophylactic vaccine is currently available. Further research on norovirus vaccine development should be considered an absolute priority and novel vaccine candidates are needed. One of the recent approaches in safe vaccine development is the use of virus-like particles (VLPs). VLP-based vaccines show great immunogenic potential as they mimic the morphology and structure of viral particles without the presence of the virus genome. RESULTS: This study is the first report showing successful production of norovirus VLPs in the protozoan Leishmania tarentolae (L. tarentolae) expression system. Protozoan derived vaccine candidate is highly immunogenic and able to not only induce a strong immune response (antibody titer reached 104) but also stimulate the production of neutralizing antibodies confirmed by receptor blocking assay. Antibody titers able to reduce VLP binding to the receptor by > 50% (BT50) were observed for 1:5-1:320 serum dilutions. CONCLUSIONS: Norovirus VLPs produced in L. tarentolae could be relevant for the development of the norovirus vaccine.


Assuntos
Anticorpos Neutralizantes/sangue , Leishmania/genética , Leishmania/virologia , Norovirus/imunologia , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas Virais/imunologia , Animais , Imunização , Imunoglobulina G/sangue , Leishmania/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Norovirus/genética , Desenvolvimento de Vacinas , Vacinas Virais/administração & dosagem , Vacinas Virais/genética
16.
Emerg Microbes Infect ; 10(1): 1717-1730, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34376124

RESUMO

Norovirus is a major cause of acute gastroenteritis. Human noroviruses present >30 different genotypes, with a single genotype (GII.4) predominating worldwide. Concurrent outbreaks of norovirus are often associated with the emergence of new viruses. While different hypotheses have been presented, the source of new mutations in noroviruses is still unknown. In this study, we applied high-resolution sequencing to determine the intra-host viral diversity presented by noroviruses during the acute and shedding phase of infection in children. Profiling viral intra-host diversification at nearly full genome level indicated that GII.4 viruses presented dynamic intra-host variation, while non-GII.4 viruses presented minimal variation throughout the infection. Notably, the intra-host genetic variation during the shedding phase recapitulates the genetic diversity observed at the global level, particularly those mapping at the VP1 antigenic sites. Thus the intra-host evolution in healthy children explains the source of norovirus mutations that results in diversification at the global scale.


Assuntos
Infecções por Caliciviridae/virologia , Evolução Molecular , Genótipo , Interações entre Hospedeiro e Microrganismos/genética , Imunocompetência , Norovirus/genética , Infecções por Caliciviridae/imunologia , Surtos de Doenças , Gastroenterite/virologia , Variação Genética , Genoma Viral , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Lactente , Mutação , Norovirus/classificação , Norovirus/imunologia , Filogenia , RNA Viral/genética , Estudos Retrospectivos
17.
Viruses ; 13(8)2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34452406

RESUMO

Human noroviruses are recognised as the major global cause of viral gastroenteritis. Here, we provide an overview of notable advances in norovirus research and provide a short recap of the novel model systems to which much of the recent progress is owed. Significant advances include an updated classification system, the description of alternative virus-like protein morphologies and capsid dynamics, and the further elucidation of the functions and roles of various viral proteins. Important milestones include new insights into cell tropism, host and microbial attachment factors and receptors, interactions with the cellular translational apparatus, and viral egress from cells. Noroviruses have been detected in previously unrecognised hosts and detection itself is facilitated by improved analytical techniques. New potential transmission routes and/or viral reservoirs have been proposed. Recent in vivo and in vitro findings have added to the understanding of host immunity in response to norovirus infection, and vaccine development has progressed to preclinical and even clinical trial testing. Ongoing development of therapeutics includes promising direct-acting small molecules and host-factor drugs.


Assuntos
Infecções por Caliciviridae/diagnóstico , Infecções por Caliciviridae/imunologia , Gastroenterite/virologia , Norovirus/genética , Norovirus/fisiologia , Animais , Infecções por Caliciviridae/epidemiologia , Infecções por Caliciviridae/transmissão , Proteínas do Capsídeo/genética , Evolução Molecular , Interações entre Hospedeiro e Microrganismos , Humanos , Camundongos , Norovirus/classificação , Norovirus/imunologia , Desenvolvimento de Vacinas , Tropismo Viral , Replicação Viral
18.
Gut Microbes ; 13(1): 1959839, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34347572

RESUMO

Although cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling has been well recognized in defending DNA viruses, the role of cGAS-STING signaling in regulating infection of RNA viruses remains largely elusive. Noroviruses, as single-stranded RNA viruses, are the main causative agents of acute viral gastroenteritis worldwide. This study comprehensively investigated the role of cGAS-STING in response to murine norovirus (MNV) infection. We found that STING agonists potently inhibited MNV replication in mouse macrophages partially requiring the JAK/STAT pathway that induced transcription of interferon (IFN)-stimulated genes (ISGs). Loss- and gain-function assays revealed that both cGAS and STING were necessary for host defense against MNV propagation. Knocking out cGAS or STING in mouse macrophages led to defects in induction of antiviral ISGs upon MNV infection. Overexpression of cGAS and STING moderately increased ISG transcription but potently inhibited MNV replication in human HEK293T cells ectopically expressing the viral receptor CD300lf. This inhibitory effect was not affected by JAK inhibitor treatment or expression of different MNV viral proteins. Interestingly, STING but not cGAS interacted with mouse RIG-I, and attenuated its N-terminus-mediated anti-MNV effects. Our results implicate an essential role for mouse cGAS and STING in regulating innate immune response and defending MNV infection. This further strengthens the evidence of cGAS-STING signaling in response to RNA virus infection.


Assuntos
Proteína DEAD-box 58/metabolismo , Imunidade Inata/imunologia , Proteínas de Membrana/metabolismo , Norovirus/crescimento & desenvolvimento , Nucleotidiltransferases/metabolismo , Animais , Infecções por Caliciviridae/patologia , Gastroenterite/patologia , Gastroenterite/virologia , Células HEK293 , Humanos , Interferons/imunologia , Janus Quinases/antagonistas & inibidores , Macrófagos/virologia , Proteínas de Membrana/agonistas , Proteínas de Membrana/genética , Camundongos , Norovirus/imunologia , Nucleotidiltransferases/genética , Células RAW 264.7 , Transdução de Sinais , Replicação Viral/fisiologia
19.
Viruses ; 13(6)2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34205050

RESUMO

Acute gastroenteritis (AGE) has a significant disease burden on society. Noroviruses, rotaviruses, and astroviruses are important viral causes of AGE but are relatively understudied enteric pathogens. Recent developments in novel biomimetic human models of enteric disease are opening new possibilities for studying human-specific host-microbe interactions. Human intestinal enteroids (HIE), which are epithelium-only intestinal organoids derived from stem cells isolated from human intestinal biopsy tissues, have been successfully used to culture representative norovirus, rotavirus, and astrovirus strains. Previous studies investigated host-virus interactions at the intestinal epithelial interface by individually profiling the epithelial transcriptional response to a member of each virus family by RNA sequencing (RNA-seq). Despite differences in the tissue origin, enteric virus used, and hours post infection at which RNA was collected in each data set, the uniform analysis of publicly available datasets identified a conserved epithelial response to virus infection focused around "type I interferon production" and interferon-stimulated genes. Additionally, transcriptional changes specific to only one or two of the enteric viruses were also identified. This study can guide future explorations into common and unique aspects of the host response to virus infections in the human intestinal epithelium and demonstrates the promise of comparative RNA-seq analysis, even if performed under different experimental conditions, to discover universal and virus-specific genes and pathways responsible for antiviral host defense.


Assuntos
Bases de Dados de Ácidos Nucleicos , Gastroenterite/virologia , Mucosa Intestinal/virologia , Intestinos/citologia , Organoides/citologia , Organoides/virologia , Análise de Sequência de RNA , Linhagem Celular , Humanos , Imunidade Inata , Mucosa Intestinal/citologia , Mucosa Intestinal/imunologia , Intestinos/imunologia , Intestinos/virologia , Norovirus/genética , Norovirus/imunologia , Rotavirus/genética , Rotavirus/imunologia , Replicação Viral
20.
Nat Commun ; 12(1): 4320, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34262046

RESUMO

The rational development of norovirus vaccine candidates requires a deep understanding of the antigenic diversity and mechanisms of neutralization of the virus. Here, we isolate and characterize a panel of broadly cross-reactive naturally occurring human monoclonal IgMs, IgAs and IgGs reactive with human norovirus (HuNoV) genogroup I or II (GI or GII). We note three binding patterns and identify monoclonal antibodies (mAbs) that neutralize at least one GI or GII HuNoV strain when using a histo-blood group antigen (HBGA) blocking assay. The HBGA blocking assay and a virus neutralization assay using human intestinal enteroids reveal that the GII-specific mAb NORO-320, mediates HBGA blocking and neutralization of multiple GII genotypes. The Fab form of NORO-320 neutralizes GII.4 infection more potently than the mAb, however, does not block HBGA binding. The crystal structure of NORO-320 Fab in complex with GII.4 P-domain shows that the antibody recognizes a highly conserved region in the P-domain distant from the HBGA binding site. Dynamic light scattering analysis of GII.4 virus-like particles with mAb NORO-320 shows severe aggregation, suggesting neutralization is by steric hindrance caused by multivalent cross-linking. Aggregation was not observed with the Fab form of NORO-320, suggesting that this clone also has additional inhibitory features.


Assuntos
Anticorpos Antivirais/imunologia , Anticorpos Amplamente Neutralizantes/imunologia , Reações Cruzadas , Norovirus/imunologia , Sequência de Aminoácidos , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Anticorpos Antivirais/química , Anticorpos Antivirais/metabolismo , Variação Antigênica , Sítios de Ligação , Antígenos de Grupos Sanguíneos/metabolismo , Anticorpos Amplamente Neutralizantes/química , Anticorpos Amplamente Neutralizantes/metabolismo , Infecções por Caliciviridae/imunologia , Infecções por Caliciviridae/virologia , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Proteínas do Capsídeo/metabolismo , Cristalografia por Raios X , Mapeamento de Epitopos , Genótipo , Humanos , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/imunologia , Fragmentos Fab das Imunoglobulinas/metabolismo , Norovirus/genética , Ligação Proteica , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA