Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Biochemistry ; 63(9): 1225-1233, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38682295

RESUMO

As plant photoreceptors, phytochromes are capable of detecting red light and far-red light, thereby governing plant growth. All2699 is a photoreceptor found in Nostoc sp. PCC7120 that specifically responds to red light and far-red light. All2699g1g2 is a truncated protein carrying the first and second GAF (cGMP phosphodiesterase/adenylyl cyclase/FhlA) domains of All2699. In this study, we found that, upon exposure to red light, the protein underwent aggregation, resulting in the formation of protein aggregates. Conversely, under far-red light irradiation, these protein aggregates dissociated. We delved into the factors that impact the aggregation of All2699g1g2, focusing on the protein structure. Our findings showed that the GAF2 domain contains a low-complexity (LC) loop region, which plays a crucial role in mediating protein aggregation. Specifically, phenylalanine at position 239 within the LC loop region was identified as a key site for the aggregation process. Furthermore, our research revealed that various factors, including irradiation time, temperature, concentration, NaCl concentration, and pH value, can impact the aggregation of All2699g1g2. The aggregation led to variations in Pfr concentration depending on temperature, NaCl concentration, and pH value. In contrast, ΔLC did not aggregate and therefore lacked responses to these factors. Consequently, the LC loop region of All2699g1g2 extended and enhanced sensory properties.


Assuntos
Proteínas de Bactérias , Luz , Nostoc , Nostoc/metabolismo , Nostoc/química , Nostoc/efeitos da radiação , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Domínios Proteicos , Agregados Proteicos , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/metabolismo , Pigmentos Biliares/química , Pigmentos Biliares/metabolismo , Concentração de Íons de Hidrogênio , Fitocromo/química , Fitocromo/metabolismo
2.
Protein Pept Lett ; 31(2): 161-167, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38243925

RESUMO

INTRODUCTION: Parvovirus B19 (B19V) is a human pathogen, and the minor capsid protein of B19V possesses a unique N terminus called VP1u that plays a crucial role in the life cycle of the virus. OBJECTIVES: The objective of this study was to develop a method for domain segmentation of B19 VP1u using intein technology, particularly its receptor binding domain (RBD) and phospholipase A2 (PLA2) domain. METHODS: RBD and PLA2 domains of VP1u were each fused to the DnaE split inteins derived from the Nostoc punctiforme. Each of these precursor proteins was expressed in E. coli. Combining the purified precursors in equal molar ratios resulted in the formation of full-length VP1u. Furthermore, Circular Dichroism (CD) spectroscopy and PLA2 assays were used to probe the structure and activity of the newly formed protein. RESULTS: The CD spectrum of the full length VP1u confirmed the secondary structure of protein, while the PLA2 assay indicated minimal disruption in enzymatic activity. CONCLUSION: This method would allow for the selective incorporation of NMR-active isotopes into either of the VP1u domains, which can reduce signal overlap in NMR structural determination studies.


Assuntos
Proteínas do Capsídeo , Escherichia coli , Inteínas , Inteínas/genética , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Domínios Proteicos , Parvovirus B19 Humano/genética , Parvovirus B19 Humano/química , Nostoc/genética , Nostoc/enzimologia , Nostoc/química , Fosfolipases A2/química , Fosfolipases A2/genética , Fosfolipases A2/metabolismo , Dicroísmo Circular , Humanos
3.
Curr Protoc ; 3(10): e901, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37882966

RESUMO

In this work, we describe a novel self-cleaving affinity tag technology based on a highly modified split-intein cleaving element. In this system, which has recently been commercialized by Protein Capture Science, LLC under the name iCapTagTM , the N-terminal segment of an engineered split intein is covalently immobilized onto a capture resin, while the smaller C-terminal intein segment is fused to the N-terminus of the desired target protein. The tagged target can then be expressed in an appropriate expression system, without concern for premature intein cleaving. During the purification, strong binding between the intein segments effectively captures the tagged target onto the capture resin while simultaneously generating a cleaving-competent intein complex. After unwanted impurities are washed from the resin, cleavage of the target protein is initiated by a shift of the buffer pH from 8.5 to 6.2. As a result, the highly purified tagless target protein is released from the column in the elution step. Alternately, the resin beads can be added directly to cell culture broth or lysate, allowing capture, purification and cleavage of the tagless target protein using a column-free format. These methods result in highly pure tagless target protein in a single step, and can thereby accelerate characterization and functional studies. In this work we demonstrate the single step purification of streptokinase, a fibrinolytic agent, and an engineered recombinant human hemoglobin 1.1 (rHb1.1). © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Expression of high-titer protein tagged with the Nostoc punctiforme (Npu) DnaE split-intein on the N-terminus Basic Protocol 2: Purification of high-titer protein using the Nostoc punctiforme (Npu) DnaE split-intein purification platform Alternate Protocol 1: Expression of low-titer protein tagged with the Nostoc punctiforme (Npu) DnaE split-intein on the N-terminus Alternate Protocol 2: Purification of low-titer protein using the Nostoc punctiforme (Npu) DnaE split-intein purification platform.


Assuntos
Inteínas , Nostoc , Humanos , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Processamento de Proteína , Nostoc/genética , Nostoc/química
4.
Mar Drugs ; 21(2)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36827142

RESUMO

Six new nostocyclophanes and four known compounds have been isolated from Nostoc linckia (Nostocaceae) cyanobacterial strain UTEX B1932. The new compounds, nostocyclophanes E-J (1-6), were characterized by NMR and MS techniques. The known compounds were nostocyclophanes B-D, previously isolated from this strain, and dedichloronostocyclophane D. Structural modifications on the new [7.7]paracyclophane analogs 1-5, isolated from the 80% methanol fraction, range from simple changes such as the lack of methylation or halogenation to more unusual modifications such as those seen in nostocyclophane H (4), in which the exocyclic alkyl chains are of different length; this is the first time this modification has been observed in this family of natural products. In addition, nostocyclophane J (6) is a linear analog in which C-20 is chlorinated in preparation for the presumed enzymatic Friedel-Craft cyclization needed to form the final ring structure, analogous to the biosynthesis of the related cylindrocyclophanes. Nostocyclophane D, dedichloronostocyclophane D, and nostocyclophanes E-J demonstrated moderate to weak growth inhibition against MDA-MB-231 breast cancer cells.


Assuntos
Nostoc , Nostoc/química , Espectroscopia de Ressonância Magnética
5.
Arch Razi Inst ; 78(6): 1811-1821, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38828175

RESUMO

The present study was performed to evaluate the effect of phycoerythrin (PE) treatment extracted from Nostoc sp. on the shelf-life extension of the Nile Tilapia (Oreochromis niloticus) fillet at 4°C and 8°C. After extraction and purification of pigment in BG-110 medium, the pigment PE was extracted and purified with 56% ammonium sulfate followed by dialysis. After that, the effect of pigment on Escherichia coli and Staphylococcus aureus were investigated. The fillet samples were immersed in pigment solution, and their physicochemical, microbiological and sensory properties were examined. The results showed that the concentration and purity of the pigments increased after the dialysis. The results from performed chemical tests and total number of living mesophilic bacteria, psychrotrophic bacteria, Staphylococcus aureus coagulase positive, and coliform bacteria of the samples compared to the blank sample showed that sample treated with algae extracts were able to control the increase in these parameters. In these tests, the highest levels belonged to Nile Tilapia fillet sample Nile Tilapia fillet coated with PE solution at a temperature 8°C and the lowest amount was observed with fillet coated with PE solution at a temperature of 4˚C (P≤0.05). The results of sensory evaluation showed that the highest score of taste, texture, color, and total acceptance were observed for Nile Tilapia fillet coated with PE solution at temperature 8°C. In conclusion, the extract pigments from Nostoc sp. has strong antimicrobial activity and can maintain the quality parameters for controlling of spoilage bacteria and extend the shelf-life of Oreochromis niloticus.


Assuntos
Ciclídeos , Ficoeritrina , Animais , Ficoeritrina/farmacologia , Ficoeritrina/química , Ficoeritrina/análise , Staphylococcus aureus/efeitos dos fármacos , Nostoc/química , Refrigeração , Escherichia coli/efeitos dos fármacos , Armazenamento de Alimentos , Conservação de Alimentos/métodos , Alimentos Marinhos/análise , Alimentos Marinhos/microbiologia , Anti-Infecciosos/farmacologia
6.
J Magn Reson ; 338: 107195, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35398651

RESUMO

Protein trans-splicing catalyzed by split inteins has been used for segmental isotopic labeling of proteins for alleviating the complexity of NMR signals. Whereas inteins spontaneously trigger protein splicing upon protein folding, inteins from extremely halophilic organisms require a high salinity condition to induce protein splicing. We designed and created a salt-inducible intein from the widely used DnaE intein from Nostoc punctiforme by introducing 29 mutations, which required a lower salt concentration than naturally occurring halo-obligate inteins. We determined the NMR solution structure of the engineered salt-inducible DnaE intein in 2 M NaCl, showing the essentially identical three-dimensional structure to the original one, albeit it unfolds without salts. The NMR structure of a halo-obligate intein under high salinity suggests that the stabilization of the active folded conformation is not a mere result of various intramolecular interactions but the subtle energy balance from the complex interactions, including the solvation energy, which involve waters, ions, co-solutes, and protein polypeptide chains.


Assuntos
Inteínas , Nostoc , DNA Polimerase III/química , DNA Polimerase III/genética , DNA Polimerase III/metabolismo , Inteínas/genética , Espectroscopia de Ressonância Magnética , Nostoc/química , Nostoc/genética , Nostoc/metabolismo , Processamento de Proteína
7.
J Nat Prod ; 85(3): 540-546, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35100504

RESUMO

The known solid-tumor-selective cytotoxin aulosirazole (1) was identified from bioactive extracts from the culture medium of the cyanobacterium Nostoc sp. UIC 10771. Here, we demonstrate that 1 induces the nuclear accumulation of FOXO3a in OVCAR3 using both Western blot analysis and immunofluorescence confocal microscopy. We also report the discovery of two additional analogues, aulosirazoles B (2) and C (3). Structures for compounds 2 and 3 were determined using HR-ESI-LC-MS/MS and 1D and 2D NMR experiments. Aulosirazoles B (2) and C (3) represent the first natural analogues of the FOXO-activating compound aulosirazole (1) and are the second and third isothiazole-containing metabolites reported from this phylum.


Assuntos
Nostoc , Neoplasias Ovarianas , Apoptose , Carcinoma Epitelial do Ovário , Linhagem Celular Tumoral , Cromatografia Líquida , Feminino , Humanos , Nostoc/química , Neoplasias Ovarianas/tratamento farmacológico , Espectrometria de Massas em Tandem , Fatores de Transcrição
8.
Carbohydr Polym ; 276: 118801, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34823807

RESUMO

Cyanobacteria produce a wide range of metabolites of interest for industrial or medical use. The cultivation of freshwater Nostoc cf. linckia yielded 5.4 g/L of a crude exopolysaccharide (cEPS) with a molecular weight of 1.31 × 105 g/mol. Ion-exchange chromatography of cEPS yielded two dominant fractions, EPS-1 and EPS-2, differing in molecular weight. The lower molecular weight fraction (EPS-1) was subjected to structural studies. Results of chemical and spectroscopic analyses showed that three of the four dominant sugars, glucose, galactose and xylose are 1,4-linked in the backbone in the following order: [→4)-ß-D-Xylp-(1 â†’ 4)-ß-D-Glcp-(1 â†’ 4)-α-D-Galp-(1 â†’ 4)-ß-D-Glcp-(1→]n. Terminal mannose residues were identified as side chains linked at C3 of every third backbone xylose and every second glucose is branched at C6 by 3-O-lactyl-ß-D-glucuronic acid (nosturonic acid). Antioxidant properties of EPS were tested using two in vitro methods. Both assays showed that the cEPS was more active than purified EPS-1 and EPS-2 fractions and deproteinized EPS.


Assuntos
Nostoc/química , Polissacarídeos Bacterianos/química , Antioxidantes/química , Galactose/química , Glucose/química , Ácido Glucurônico/química , Espectroscopia de Ressonância Magnética/métodos , Estrutura Molecular , Peso Molecular , Polissacarídeos Bacterianos/análise , Xilose/química
9.
Biomolecules ; 11(10)2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34680116

RESUMO

Nostocyclopeptides (Ncps) are a small class of bioactive nonribosomal peptides produced solely by cyanobacteria of the genus Nostoc. In the current work, six Ncps were isolated from Nostoc edaphicum strain CCNP1411. The bioactivity of these compounds was tested in vitro against 20S proteasome, a proteolytic complex that plays an important role in maintaining cellular proteostasis. Dysfunction of the complex leads to many pathological disorders. The assays indicated selective activity of specific Ncp variants. For two linear peptide aldehydes, Ncp-A2-L and Ncp-E2-L, the inhibitory effects on chymotrypsin-like activity were revealed, while the cyclic variant, Ncp-A2, inactivated the trypsin-like site of this enzymatic complex. The aldehyde group was confirmed to be an important element of the chymotrypsin-like activity inhibitors. The nostocyclopeptides, as novel inhibitors of 20S proteasome, increased the number of natural products that can be considered potential regulators of cellular processes.


Assuntos
Nostoc/química , Peptídeos Cíclicos/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Humanos , Espectroscopia de Ressonância Magnética
10.
Microbiol Spectr ; 9(2): e0049021, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34523988

RESUMO

Cyanobacteria, capable of oxygenic photosynthesis, play a vital role in nitrogen and carbon cycles. Nostoc sp. PCC 7120 (Nostoc 7120) is a model cyanobacterium commonly used to study cell differentiation and nitrogen metabolism. Although its genome was released in 2002, a high-quality genome annotation remains unavailable for this model cyanobacterium. Therefore, in this study, we performed an in-depth proteogenomic analysis based on high-resolution mass spectrometry (MS) data to refine the genome annotation of Nostoc 7120. We unambiguously identified 5,519 predicted protein-coding genes and revealed 26 novel genes, 75 revised genes, and 27 different kinds of posttranslational modifications in Nostoc 7120. A subset of these novel proteins were further validated at both the mRNA and peptide levels. Functional analysis suggested that many newly annotated proteins may participate in nitrogen or cadmium/mercury metabolism in Nostoc 7120. Moreover, we constructed an updated Nostoc 7120 database based on our proteogenomic results and presented examples of how the updated database could be used to improve the annotation of proteomic data. Our study provides the most comprehensive annotation of the Nostoc 7120 genome thus far and will serve as a valuable resource for the study of nitrogen metabolism in Nostoc 7120. IMPORTANCE Cyanobacteria are a large group of prokaryotes capable of oxygenic photosynthesis and play a vital role in nitrogen and carbon cycles on Earth. Nostoc 7120 is a commonly used model cyanobacterium for studying cell differentiation and nitrogen metabolism. In this study, we presented the first comprehensive draft map of the Nostoc 7120 proteome and a wide range of posttranslational modifications. In addition, we constructed an updated database of Nostoc 7120 based on our proteogenomic results and presented examples of how the updated database could be used for system-level studies of Nostoc 7120. Our study provides the most comprehensive annotation of Nostoc 7120 genome and a valuable resource for the study of nitrogen metabolism in this model cyanobacterium.


Assuntos
Proteínas de Bactérias/genética , Genoma Bacteriano , Nitrogênio/metabolismo , Nostoc/genética , Nostoc/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Espectrometria de Massas , Nostoc/química , Proteogenômica
11.
Molecules ; 26(9)2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-34066679

RESUMO

Microalgae are known to be rich in protein. In this study, we aim to investigate methods of producing and purifying proteins of 98 microalgae including Chlorella vulgaris, Arthrospira platensis, Nostoc sp., Dunaliella salina, and Pleurochrysis carterae (Baltic Sea). Therefore, we studied their amino acid composition and developed a two-stage protein concentrate purification method from the microalgae biomass. After an additional stage of purification, the mass fraction of protein substances with a molecular weight greater than 50 kDa in the protein concentrate isolated from the biomass of the microalga Dunaliella salina increased by 2.58 times as compared with the mass fraction before filtration. In the protein concentrate isolated from the biomass of the microalga Pleurochrysis cartera, the relative content of the fraction with a molecular weight greater than 50.0 kDa reached 82.4%, which was 2.43 times higher than the relative content of the same fractions in the protein concentrate isolated from this culture before the two-stage purification. The possibilities of large-scale industrial production of microalgae biomass and an expanded range of uses determine the need to search for highly productive protein strains of microalgae and to optimize the conditions for isolating amino acids from them.


Assuntos
Proteínas de Algas/química , Aminoácidos/química , Aminoácidos/isolamento & purificação , Chlorella vulgaris/química , Haptófitas/química , Microalgas/química , Nostoc/química , Spirulina/química , Biomassa , Cromatografia Líquida de Alta Pressão , Eletroforese em Gel de Poliacrilamida , Peso Molecular , Ultrafiltração
12.
Biochemistry ; 60(4): 274-288, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33439010

RESUMO

Cyanobacteriochromes (CBCRs) are cyanobacterial photoreceptors that exhibit photochromism between two states: a thermally stable dark-adapted state and a metastable light-adapted state with bound linear tetrapyrrole (bilin) chromophores possessing 15Z and 15E configurations, respectively. The photodynamics of canonical red/green CBCRs have been extensively studied; however, the time scales of their excited-state lifetimes and subsequent ground-state evolution rates widely differ and, at present, remain difficult to predict. Here, we compare the photodynamics of two closely related red/green CBCRs that have substantial sequence identity (∼68%) and similar chromophore environments: AnPixJg2 from Anabaena sp. PCC 7120 and NpR6012g4 from Nostoc punctiforme. Using broadband transient absorption spectroscopy on the primary (125 fs to 7 ns) and secondary (7 ns to 10 ms) time scales together with global analysis modeling, our studies revealed that AnPixJg2 and NpR6012g4 have comparable quantum yields for initiating the forward (15ZPr → 15EPg) and reverse (15EPg → 15ZPr) reactions, which proceed through monotonic and nonmonotonic mechanisms, respectively. In addition to small discrepancies in the kinetics, the secondary reverse dynamics resolved unique features for each domain: intermediate shunts in NpR6012g4 and a Meta-Gf intermediate red-shifted from the 15ZPr photoproduct in AnPixJg2. Overall, this study supports the conclusion that sequence similarity is a useful criterion for predicting pathways of the light-induced evolution and quantum yield of generating primary intermediate Φp within subfamilies of CBCRs, but more studies are still needed to develop a comprehensive molecular level understanding of these processes.


Assuntos
Anabaena/química , Proteínas de Bactérias/química , Luz , Nostoc/química
13.
FEBS J ; 288(4): 1142-1162, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32599651

RESUMO

The PII-like protein CutA is annotated as being involved in Cu2+ tolerance, based on analysis of Escherichia coli mutants. However, the precise cellular function of CutA remains unclear. Our bioinformatic analysis reveals that CutA proteins are universally distributed across all domains of life. Based on sequence-based clustering, we chose representative cyanobacterial CutA proteins for physiological, biochemical, and structural characterization and examined their involvement in heavy metal tolerance, by generating CutA mutants in filamentous Nostoc sp. and in unicellular Synechococcus elongatus. However, we were unable to find any involvement of cyanobacterial CutA in metal tolerance under various conditions. This prompted us to re-examine experimentally the role of CutA in protecting E. coli from Cu2+ . Since we found no effect on copper tolerance, we conclude that CutA plays a different role that is not involved in metal protection. We resolved high-resolution CutA structures from Nostoc and S. elongatus. Similarly to their counterpart from E. coli and to canonical PII proteins, cyanobacterial CutA proteins are trimeric in solution and in crystal structure; however, no binding affinity for small signaling molecules or for Cu2+ could be detected. The clefts between the CutA subunits, corresponding to the binding pockets of PII proteins, are formed by conserved aromatic and charged residues, suggesting a conserved binding/signaling function for CutA. In fact, we find binding of organic Bis-Tris/MES molecules in CutA crystal structures, revealing a strong tendency of these pockets to accommodate cargo. This highlights the need to search for the potential physiological ligands and for their signaling functions upon binding to CutA. DATABASES: Structural data are available in Protein Data Bank (PDB) under the accession numbers 6GDU, 6GDV, 6GDW, 6GDX, 6T76, and 6T7E.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Proteínas de Bactérias/química , Metais Pesados/farmacologia , Nostoc/química , Synechococcus/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Calorimetria/métodos , Cobre/farmacologia , Cristalografia por Raios X , Modelos Moleculares , Mutação , Nostoc/genética , Nostoc/metabolismo , Conformação Proteica , Multimerização Proteica , Homologia de Sequência de Aminoácidos , Transdução de Sinais/efeitos dos fármacos , Synechococcus/genética , Synechococcus/metabolismo
14.
Int J Biol Macromol ; 164: 2284-2292, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32805285

RESUMO

Microalgal biopolymers are studied mainly in terms of physico-chemical characterization, biological effects as well as possible biotechnological applications. Due to the significant antitussive, bronchodilator, anti-inflammatory and immunomodulatory effects of the previously isolated crude extracellular polysaccharide (EPS) produced by the cyanobacterium Nostoc sp., the purified biopolymer and its oligosaccharides, obtained after partial acid hydrolysis, were subjected to an in-depth NMR structural study. Analyses of the data obtained by chemical methods and NMR showed that the EPS backbone is composed of the repeating unit [→4)-ß-D-Xylp-(1 → 4)-ß-D-Glcp-(1 → 4)-α-L-Arap-(1 → 3)-ß-D-Manp-(1→]n, in which about 60% of glucose units are substituted at C6 by uronic acids, in particular by the unusual unsaturated 3-O-lactyl-4-deoxy-α-erythro-hex-4-enopyranuronic acid, and to a lesser extent by ß-D-glucuronic acid and 3-O-lactyl-ß-D-glucuronic acid. These findings, structural features and identified biological effects, suggest the potential use of this biopolymer in the medical-pharmaceutical field.


Assuntos
Cianobactérias/química , Nostoc/química , Polissacarídeos Bacterianos/química , Biopolímeros/química , Glucose/química , Ácido Glucurônico/química , Hidrólise , Espectroscopia de Ressonância Magnética/métodos , Oligossacarídeos/química , Ácidos Urônicos/química
15.
Biochemistry ; 59(22): 2047-2054, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32420731

RESUMO

Phytochromes regulate central responses of plants and microorganisms such as shade avoidance and photosystem synthesis. Canonical phytochromes comprise a photosensory module of three domains. The C-terminal phytochrome-specific (PHY) domain interacts via a tongue element with the bilin chromophore in the central GAF (cGMP phosphodiesterase/adenylate cyclase/FhlA) domain. The bilin isomerizes upon illumination with red light, transforming the receptor from the Pr state to the Pfr state. The "knotless" phytochrome All2699 from the cyanobacterium Nostoc sp. PCC7120 comprises three GAF domains as a sensory module and a histidine kinase as an effector. GAF1 and GAF3 both bind a bilin, and GAF2 contains a tongue-like element. We studied the response of All2699, GAF1-GAF2, and GAF1 to red light by Fourier transform infrared difference spectroscopy, including a 13C-labeled protein moiety for assignment. In GAF1-GAF2, a refolding of the tongue from ß-sheet to α-helix and an upshift of the ring D carbonyl stretch from 1700 to 1712 cm-1 were observed. Therefore, GAF1-GAF2 is regarded as the smallest model system available to study the tongue response and interaction with the chromophore. Replacement of an arginine in the tongue with proline (R387P) did not affect the unfolding of the ß-sheet to Pfr but strongly impaired α-helix formation. In contrast, the Y55H mutation close to bilin ring D did not interfere with conversion to Pfr. Strikingly, the presence of GAF3 in the full-length All2699 diminished the response of the tongue and generated the signal pattern found for GAF1 alone. These results point to a regulatory or integrative role of GAF3 in All2699 that is absent in canonical phytochromes.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Nostoc/química , Fitocromo/química , Fitocromo/metabolismo , Redobramento de Proteína , Proteínas de Bactérias/isolamento & purificação , Modelos Moleculares , Nostoc/metabolismo , Fitocromo/isolamento & purificação
16.
Proteins ; 88(9): 1143-1153, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32092202

RESUMO

Nostoc sp. PCC 7120 are filamentous cyanobacteria capable of both oxygenic photosynthesis and nitrogen fixation, with the latter taking place in specialized cells known as heterocysts that terminally differentiate from vegetative cells under conditions of nitrogen starvation. Cyanobacteria have existed on earth for more than 2 billion years and are thought to be responsible for oxygenation of the earth's atmosphere. Filamentous cyanobacteria such as Nostoc sp. PCC 7120 may also represent the oldest multicellular organisms on earth that undergo cell differentiation. Pentapeptide repeat proteins (PRPs), which occur most abundantly in cyanobacteria, adopt a right-handed quadrilateral ß-helical structure, also referred to as a repeat five residue (Rfr) fold, with four-consecutive pentapeptide repeats constituting a single coil in the ß-helical structure. PRPs are predicted to exist in all compartments within cyanobacteria including the thylakoid and cell-wall membranes as well as the cytoplasm and thylakoid periplasmic space. Despite their intriguing structure and importance to understanding ancient cyanobacteria, the biochemical function of PRPs in cyanobacteria remains largely unknown. Here we report the crystal structure of Alr1298, a PRP from Nostoc sp. PCC 7120 predicted to reside in the cytoplasm. The structure displays the typical right-handed quadrilateral ß-helical structure and includes a four-α-helix cluster capping the N-terminus and a single α-helix capping the C-terminus. A gene cluster analysis indicated that Alr1298 may belong to an operon linked to cell proliferation and/or thylakoid biogenesis. Elevated alr1298 gene expression following nitrogen starvation indicates that Alr1298 may play a role in response to nitrogen starvation and/or heterocyst differentiation.


Assuntos
Proteínas de Bactérias/química , Nostoc/química , Oligopeptídeos/química , Oxigênio/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Parede Celular/química , Parede Celular/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Modelos Moleculares , Fixação de Nitrogênio/fisiologia , Nostoc/metabolismo , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Oxirredução , Oxigênio/metabolismo , Fotossíntese/fisiologia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Termodinâmica
17.
J Nat Prod ; 83(2): 392-400, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31977209

RESUMO

Cyanobacteria are an interesting source of biologically active natural products, especially chemically diverse and potent protease inhibitors. On our search for inhibitors of the trypanosomal cysteine protease rhodesain, we identified the homodimeric cyclopentenedione (CPD) nostotrebin 6 (1) and new related monomeric, dimeric, and higher oligomeric compounds as the active substances in the medium extract of Nostoc sp. CBT1153. The oligomeric compounds are composed of two core monomeric structures, a trisubstituted CPD or a trisubstituted unsaturated δ-lactone. Nostotrebin 6 thus far has been the only known cyanobacterial CPD. It has been found to be active in a broad variety of assays, indicating that it might be a pan-assay interference compound (PAIN). Thus, we compared the antibacterial and cytotoxic activities as well as the rhodesain inhibition of selected compounds. Because a compound with a δ-lactone instead of a CPD core structure was equally active as nostotrebin 6, the bioactivities of these compounds seem to be based on the phenolic substructures rather than the CPD moiety. While the dimers were roughly equally potent, the monomer displayed slightly weaker activity, suggesting that the compounds show unspecific activity depending upon the number of free phenolic hydroxy groups per molecule.


Assuntos
Antibacterianos/química , Ciclopentanos/química , Lactonas/química , Fenóis/química , Antibacterianos/isolamento & purificação , Meios de Cultura , Ciclopentanos/isolamento & purificação , Estrutura Molecular , Nostoc/química
18.
Appl Biochem Biotechnol ; 191(1): 284-298, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31808100

RESUMO

Nostoc microscopicum an effective extracellular polymers (EPs) synthesizer among cyanobacteria was isolated, and its elementary morphological features were defined with the aid of light microscope and CLSM. Bioseparation of EPs from 44 days-aged culture gave 0.90 g/L of the dry powdered extract. Chemical quantification of EPs showed the presence of 550 mg/g of carbohydrate and 395 mg/g of protein. HPLC results depicted the presence of mannose (monomer sugar), fucose (hexose deoxy sugar), mannitol (sugar alcohol) and N- acetylglucosamine (glycoprotein) in the EPs. The vibration-based spectrum produced by FT-IR proves the ß-Sheet structure of EPs glycoprotein and the size as 45 kDa by performing SDS-PAGE. Bactericidal activity evaluation of EPs on Pseudomonas aeruginosa and Staphylococcus aureus co-expressed the MIC value as 125 µg/mL, while zone of inhibition was 12 mm for Gram-negative and 8 mm for Gram-positive bacteria. Biofilm inhibition assay was effective in 1.0 mg/mL concentration of EPs in both bacterial strains with a mean rate of 60 percentages which was further confirmed using confocal laser scanning microscopic imaging. This natural polymeric extract of Nostoc microscopicum indicates its possible applications in bactericidal and biofilm inhibition.


Assuntos
Antibacterianos , Proteínas de Bactérias , Biofilmes , Glicoproteínas , Nostoc/química , Pseudomonas aeruginosa/fisiologia , Staphylococcus aureus/fisiologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/farmacologia , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Glicoproteínas/química , Glicoproteínas/isolamento & purificação , Glicoproteínas/farmacologia
19.
Mar Drugs ; 17(10)2019 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-31569531

RESUMO

Cyanobacteria of the genus Nostoc are widespread in all kinds of habitats. They occur in a free-living state or in association with other organisms. Members of this genus belong to prolific producers of bioactive metabolites, some of which have been recognized as potential therapeutic agents. Of these, peptides and peptide-like structures show the most promising properties and are of a particular interest for both research laboratories and pharmaceutical companies. Nostoc is a sole source of some lead compounds such as cytotoxic cryptophycins, antiviral cyanovirin-N, or the antitoxic nostocyclopeptides. Nostoc also produces the same bioactive peptides as other cyanobacterial genera, but they frequently have some unique modifications in the structure. This includes hepatotoxic microcystins and potent proteases inhibitors such as cyanopeptolins, anabaenopeptins, and microginins. In this review, we described the most studied peptides produced by Nostoc, focusing especially on the structure, the activity, and a potential application of the compounds.


Assuntos
Produtos Biológicos/química , Nostoc/metabolismo , Peptídeos Cíclicos/química , Produtos Biológicos/metabolismo , Estrutura Molecular , Nostoc/química , Peptídeos Cíclicos/biossíntese , Relação Estrutura-Atividade
20.
Int J Mol Sci ; 20(15)2019 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-31357417

RESUMO

Unlike canonical phytochromes, the GAF domain of cyanobacteriochromes (CBCRs) can bind bilins autonomously and is sufficient for functional photocycles. Despite the astonishing spectral diversity of CBCRs, the GAF1 domain of the three-GAF-domain photoreceptor all2699 from the cyanobacterium Nostoc 7120 is the only CBCR-GAF known that converts from a red-absorbing (Pr) dark state to a far-red-absorbing (Pfr) photoproduct, analogous to the more conservative phytochromes. Here we report a solid-state NMR spectroscopic study of all2699g1 in its Pr state. Conclusive NMR evidence unveils a particular stereochemical heterogeneity at the tetrahedral C31 atom, whereas the crystal structure shows exclusively the R-stereochemistry at this chiral center. Additional NMR experiments were performed on a construct comprising the GAF1 and GAF2 domains of all2699, showing a greater precision in the chromophore-protein interactions in the GAF1-2 construct. A 3D Pr structural model of the all2699g1-2 construct predicts a tongue-like region extending from the GAF2 domain (akin to canonical phytochromes) in the direction of the chromophore, shielding it from the solvent. In addition, this stabilizing element allows exclusively the R-stereochemistry for the chromophore-protein linkage. Site-directed mutagenesis performed on three conserved motifs in the hairpin-like tip confirms the interaction of the tongue region with the GAF1-bound chromophore.


Assuntos
Espectroscopia de Ressonância Magnética , Nostoc/química , Fitocromo/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biomarcadores , Espectroscopia de Ressonância Magnética/métodos , Modelos Moleculares , Conformação Molecular , Nostoc/genética , Fitocromo/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA