Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
1.
Br J Clin Pharmacol ; 90(10): 2517-2528, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38880932

RESUMO

AIMS: Phosphodiesterase 2 (PDE2) regulates intracellular cyclic adenosine monophosphate and guanosine monophosphate (cAMP/cGMP) levels, which contribute to processes crucial for learning and memory. BI 474121, a potent and selective PDE2 inhibitor, is in development for treating cognitive impairment associated with schizophrenia. METHODS: The effects of BI 474121 on cGMP concentrations were first assessed in rat cerebrospinal fluid (CSF) to demonstrate central nervous system (CNS) and functional target engagement. Next, a Phase I study in healthy participants assessed the pharmacokinetics of BI 474121 in CSF vs. plasma, the pharmacodynamics of BI 474121 by measuring cGMP concentrations in the CSF, and the safety of BI 474121. RESULTS: In rats, BI 474121 was associated with a dose-dependent increase (71% at the highest dose tested [3.0 mg kg-1]) in cGMP levels in the CSF relative to vehicle (P < 0.001). In healthy participants, the maximum-measured concentration CSF-to-plasma ratio for BI 474121 exposure was similar following single oral doses of BI 474121 2.5, 10, 20 and 40 mg (dose-adjusted geometric mean: 8.96% overall). BI 474121 2.5-40 mg administration in healthy participants also increased cGMP levels in CSF (maximum exposure-related change from baseline ratio, BI 474121: 1.44-2.20 vs. placebo: 1.26). The most common treatment-emergent adverse event (AE) was mild-to-moderate post-lumbar puncture syndrome, which resolved with standard treatment. No AEs of special interest were observed. CONCLUSIONS: BI 474121 crosses the blood-brain barrier to inhibit PDE2, supporting cGMP as a translational marker to monitor CNS target engagement. These findings promote further clinical development of BI 474121. CLINICALTRIALS: gov number (NCT04672954).


Assuntos
GMP Cíclico , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2 , Relação Dose-Resposta a Droga , Humanos , GMP Cíclico/líquido cefalorraquidiano , GMP Cíclico/metabolismo , GMP Cíclico/sangue , Masculino , Adulto , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/antagonistas & inibidores , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/metabolismo , Ratos , Feminino , Adulto Jovem , Inibidores de Fosfodiesterase/farmacocinética , Inibidores de Fosfodiesterase/farmacologia , Inibidores de Fosfodiesterase/efeitos adversos , Inibidores de Fosfodiesterase/administração & dosagem , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/metabolismo , Pessoa de Meia-Idade , Pesquisa Translacional Biomédica , Método Duplo-Cego , Ratos Sprague-Dawley , Voluntários Saudáveis
2.
Cardiovasc Res ; 120(9): 1011-1023, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-38776406

RESUMO

AIMS: Gene therapy with cardiac phosphodiesterases (PDEs), such as phosphodiesterase 4B (PDE4B), has recently been described to effectively prevent heart failure (HF) in mice. However, exact molecular mechanisms of its beneficial effects, apart from general lowering of cardiomyocyte cyclic adenosine monophosphate (cAMP) levels, have not been elucidated. Here, we studied whether gene therapy with two types of PDEs, namely PDE2A and PDE4B, can prevent pressure-overload-induced HF in mice by acting on and restoring altered cAMP compartmentation in distinct subcellular microdomains. METHODS AND RESULTS: HF was induced by transverse aortic constriction followed by tail-vein injection of adeno-associated-virus type 9 vectors to overexpress PDE2A3, PDE4B3, or luciferase for 8 weeks. Heart morphology and function was assessed by echocardiography and histology which showed that PDE2A and especially PDE4B gene therapy could attenuate cardiac hypertrophy, fibrosis, and decline of contractile function. Live cell imaging using targeted cAMP biosensors showed that PDE overexpression restored altered cAMP compartmentation in microdomains associated with ryanodine receptor type 2 (RyR2) and caveolin-rich plasma membrane. This was accompanied by ameliorated caveolin-3 decline after PDE2A3 overexpression, reduced RyR2 phosphorylation in PDE4B3 overexpressing hearts, and antiarrhythmic effects of both PDEs measured under isoproterenol stimulation in single cells. Strong association of overexpressed PDE4B but not PDE2A with RyR2 microdomain could prevent calcium leak and arrhythmias in human-induced pluripotent stem-derived cardiomyocytes with the A2254V mutation in RyR2 causing catecholaminergic polymorphic ventricular tachycardia. CONCLUSION: Our data indicate that gene therapy with phosphodiesterases can prevent HF including associated cardiac remodelling and arrhythmias by restoring altered cAMP compartmentation in functionally relevant subcellular microdomains.


Assuntos
AMP Cíclico , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2 , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 , Modelos Animais de Doenças , Terapia Genética , Insuficiência Cardíaca , Miócitos Cardíacos , Canal de Liberação de Cálcio do Receptor de Rianodina , Animais , AMP Cíclico/metabolismo , Insuficiência Cardíaca/enzimologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/terapia , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/genética , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Humanos , Camundongos Endogâmicos C57BL , Masculino , Arritmias Cardíacas/enzimologia , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Arritmias Cardíacas/prevenção & controle , Remodelação Ventricular , Células-Tronco Pluripotentes Induzidas/enzimologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Sistemas do Segundo Mensageiro/efeitos dos fármacos , Função Ventricular Esquerda , Sinalização do Cálcio , Fosforilação , Frequência Cardíaca
3.
Cell Death Dis ; 15(2): 169, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395995

RESUMO

Phosphodiesterase 2A (Pde2A) is a dual-specific PDE that breaks down both cAMP and cGMP cyclic nucleotides. We recently highlighted a direct relationship between Pde2A impairment, a consequent increase of cAMP, and the appearance of mouse congenital heart defects (CHDs). Here we aimed to characterize the pathways involved in the development of CHDs and in their prevention by pharmacological approaches targeting cAMP and cGMP signaling. Transcriptome analysis revealed a modulation of more than 500 genes affecting biological processes involved in the immune system, cardiomyocyte development and contractility, angiogenesis, transcription, and oxidative stress in hearts from Pde2A-/- embryos. Metoprolol and H89 pharmacological administration prevented heart dilatation and hypertabeculation in Pde2A-/- embryos. Metoprolol was also able to partially impede heart septum defect and oxidative stress at tissue and molecular levels. Amelioration of cardiac defects was also observed by using the antioxidant NAC, indicating oxidative stress as one of the molecular mechanisms underpinning the CHDs. In addition, Sildenafil treatment recovered cardiac defects suggesting the requirement of cAMP/cGMP nucleotides balance for the correct heart development.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 2 , Cardiopatias Congênitas , Camundongos , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/metabolismo , Metoprolol , Transdução de Sinais , GMP Cíclico/metabolismo , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/prevenção & controle , Estresse Oxidativo
4.
Dev Cell ; 59(3): 308-325.e11, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38159569

RESUMO

The molecular mechanisms by which lymphatic vessels induce cell contact inhibition are not understood. Here, we identify the cGMP-dependent phosphodiesterase 2A (PDE2A) as a selective regulator of lymphatic but not of blood endothelial contact inhibition. Conditional deletion of Pde2a in mouse embryos reveals severe lymphatic dysplasia, whereas blood vessel architecture remains unaltered. In the absence of PDE2A, human lymphatic endothelial cells fail to induce mature junctions and cell cycle arrest, whereas cGMP levels, but not cAMP levels, are increased. Loss of PDE2A-mediated cGMP hydrolysis leads to the activation of p38 signaling and downregulation of NOTCH signaling. However, DLL4-induced NOTCH activation restores junctional maturation and contact inhibition in PDE2A-deficient human lymphatic endothelial cells. In postnatal mouse mesenteries, PDE2A is specifically enriched in collecting lymphatic valves, and loss of Pde2a results in the formation of abnormal valves. Our data demonstrate that PDE2A selectively finetunes a crosstalk of cGMP, p38, and NOTCH signaling during lymphatic vessel maturation.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 2 , Vasos Linfáticos , Animais , Humanos , Camundongos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/metabolismo , Regulação para Baixo , Células Endoteliais/metabolismo , Vasos Linfáticos/metabolismo , Transdução de Sinais
5.
Cells ; 12(11)2023 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-37296663

RESUMO

Cyclic nucleotide phosphodiesterases 2A (PDE2A) and PDE3A play an important role in the regulation of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP)-to-cAMP crosstalk. Each of these PDEs has up to three distinct isoforms. However, their specific contributions to cAMP dynamics are difficult to explore because it has been challenging to generate isoform-specific knock-out mice or cells using conventional methods. Here, we studied whether the CRISPR/Cas9 approach for precise genome editing can be used to knock out Pde2a and Pde3a genes and their distinct isoforms using adenoviral gene transfer in neonatal and adult rat cardiomyocytes. Cas9 and several specific gRNA constructs were cloned and introduced into adenoviral vectors. Primary adult and neonatal rat ventricular cardiomyocytes were transduced with different amounts of Cas9 adenovirus in combination with PDE2A or PDE3A gRNA constructs and cultured for up to 6 (adult) or 14 (neonatal) days to analyze PDE expression and live cell cAMP dynamics. A decline in mRNA expression for PDE2A (~80%) and PDE3A (~45%) was detected as soon as 3 days post transduction, with both PDEs being reduced at the protein level by >50-60% in neonatal cardiomyocytes (after 14 days) and >95% in adult cardiomyocytes (after 6 days). This correlated with the abrogated effects of selective PDE inhibitors in the live cell imaging experiments based on using cAMP biosensor measurements. Reverse transcription PCR analysis revealed that only the PDE2A2 isoform was expressed in neonatal myocytes, while adult cardiomyocytes expressed all three PDE2A isoforms (A1, A2, and A3) which contributed to the regulation of cAMP dynamics as detected by live cell imaging. In conclusion, CRISPR/Cas9 is an effective tool for the in vitro knock-out of PDEs and their specific isoforms in primary somatic cells. This novel approach suggests distinct regulation of live cell cAMP dynamics by various PDE2A and PDE3A isoforms in neonatal vs. adult cardiomyocytes.


Assuntos
Sistemas CRISPR-Cas , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2 , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3 , Miócitos Cardíacos , Animais , Camundongos , Ratos , Sistemas CRISPR-Cas/genética , AMP Cíclico/metabolismo , Dietilestilbestrol , Miócitos Cardíacos/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Isoformas de Proteínas/metabolismo
6.
Int J Neuropsychopharmacol ; 25(11): 936-945, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36124735

RESUMO

BACKGROUND: Post-traumatic stress disorder (PTSD) is the prevalent psychiatric disorder that induces alcohol use disorders (AUD) such as abnormal alcohol intake and anxiety. However, little is known about whether phosphodiesterase 2 (PDE2)-cAMP/cGMP signaling is involved in PTSD-induced AUD. METHODS: The present study used single-prolonged stress (SPS) to mimic PTSD that induced increases in ethanol intake and preference (2-bottle choice test) and anxiety-like behavior (elevated-plus maze test and novelty suppressed feeding test). PDE2 inhibitor Bay 60-7550 (Bay) was administered to the mice and protein kinase A (PKA) inhibitor H89 and PKG inhibitor KT5823 were micro-injected into dorsolateral striatum (DLS) and central amygdala (CA) of mice to determine whether the effects of Bay on anxiety-like behavior in SPS mice are brain region dependent. RESULTS: PDE2 inhibitor Bay rescued SPS-induced decreases in open arm entries and open arm time exposure in elevated-plus maze test and reversed increased latency to feed in the novelty suppressed feeding test. Moreover, SPS-induced ethanol use disorder was reversed by Bay as evidenced by decreased ethanol intake and preference without changing total fluid intake in the SPS mice after treatment with Bay. However, Bay did not change the ethanol metabolism or sucrose or quinine intake and preference. The locomotor activity was not affected after treatment with Bay. Interestingly, microinjection of PKA or PKG inhibitor H89 or KT5823 into DLS prevented the effects of Bay on alcohol intake and preference and cAMP-response element binding proteins phosphorylation and brain derived neurotrophic factor expression in DLS but not on the anxiety-like behavior in SPS mice. Microinjection of these inhibitors into CA prevented Bay-induced anxiolytic-like effects and cAMP-response element binding proteins phosphorylation and brain derived neurotrophic factor levels in CA but did not affect ethanol intake in SPS mice, indicating that the effects of Bay on different behaviors are brain region dependent. CONCLUSIONS: These findings support the hypothesis that PDE2-cAMP/cGMP signaling may differentially mediate PTSD-induced AUD and anxiety-like behavior.


Assuntos
Alcoolismo , Ansiolíticos , Transtornos de Estresse Pós-Traumáticos , Animais , Camundongos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/metabolismo , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Fator Neurotrófico Derivado do Encéfalo , Diester Fosfórico Hidrolases , GMP Cíclico/metabolismo , Consumo de Bebidas Alcoólicas/tratamento farmacológico , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Etanol , Modelos Animais de Doenças
7.
Hypertension ; 79(7): 1374-1384, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35506379

RESUMO

BACKGROUND: Disruption of cyclic nucleotide signaling in sympathetic postganglionic neurons contributes to impaired intracellular calcium handling (Ca2+) and the development of dysautonomia during the early stages of hypertension, although how this occurs is poorly understood. Emerging evidence supports the uncoupling of signalosomes in distinct cellular compartments involving cyclic nucleotide-sensitive PDEs (phosphodiesterases), which may underpin the autonomic phenotype in stellate neurons. METHODS: Using a combination of single-cell RNA sequencing together with Forster resonance energy transfer-based sensors to monitor cyclic adenosine 3',5'-monophosphate, PKA (protein kinase A)-dependent phosphorylation and cGMP (cyclic guanosine 3',5'-monophosphate), we tested the hypothesis that dysregulation occurs in a sub-family of PDEs in the cytosol and outer mitochondrial membrane of neurons from the stellate ganglion. RESULTS: PDE2A, 6D, 7A, 9A genes were highly expressed in young Wistar neurons and also conserved in neurons from spontaneously hypertensive rats (SHRs). In stellate neurons from prehypertensive SHRs, we found the levels of cyclic adenosine 3',5'-monophosphate and cGMP at the outer mitochondrial membrane were decreased compared with normal neurons. The reduced cyclic adenosine 3',5'-monophosphate response was due to the hydrolytic activity of overexpressed PDE2A2 located at the mitochondria. Normal cyclic adenosine 3',5'-monophosphate levels were re-established by inhibition of PDE2A. There was also a greater PKA-dependent phosphorylation in the cytosol and at the outer mitochondrial membrane in spontaneously hypertensive rat neurons, where this response was regulated by protein phosphatases. The cGMP response was only restored by inhibition of PDE6. CONCLUSIONS: When taken together, these results suggest that site-specific inhibition of PDE2A and PDE6D at the outer mitochondrial membrane may provide a therapeutic target to ameliorate cardiac sympathetic impairment during the onset of hypertension.


Assuntos
Hipertensão , Membranas Mitocondriais , Adenosina , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/metabolismo , Membranas Mitocondriais/metabolismo , Neurônios/metabolismo , Nucleotídeos Cíclicos , Ratos , Ratos Endogâmicos SHR , Ratos Wistar
8.
Transl Psychiatry ; 12(1): 119, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35338117

RESUMO

Pharmacological inhibition of phosphodiesterase 2A (PDE2A), which catalyzes the hydrolysis of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), has recently been proposed as a novel therapeutic tool for Fragile X Syndrome (FXS), the leading monogenic cause of Autism Spectrum Disorder (ASD). Here, we investigated the role of PDE2A in ASD pathogenesis using two rat models that reflect one of either the genetic or environmental factors involved in the human disease: the genetic Fmr1-Δexon 8 rat model and the environmental rat model based on prenatal exposure to valproic acid (VPA, 500 mg/kg). Prior to behavioral testing, the offspring was treated with the PDE2A inhibitor BAY607550 (0.05 mg/kg at infancy, 0.1 mg/kg at adolescence and adulthood). Socio-communicative symptoms were assessed in both models through the ultrasonic vocalization test at infancy and three-chamber test at adolescence and adulthood, while cognitive impairments were assessed by the novel object recognition test in Fmr1-Δexon 8 rats (adolescence and adulthood) and by the inhibitory avoidance test in VPA-exposed rats (adulthood). PDE2A enzymatic activity in VPA-exposed infant rats was also assessed. In line with the increased PDE2A enzymatic activity previously observed in the brain of Fmr1-KO animals, we found an altered upstream regulation of PDE2A activity in the brain of VPA-exposed rats at an early developmental age (p < 0.05). Pharmacological inhibition of PDE2A normalized the communicative (p < 0.01, p < 0.05), social (p < 0.001, p < 0.05), and cognitive impairment (p < 0.001) displayed by both Fmr1-Δexon 8 and VPA-exposed rats. Altogether, these data highlight a key role of PDE2A in brain development and point to PDE2A inhibition as a promising pharmacological approach for the deficits common to both FXS and ASD.


Assuntos
Transtorno do Espectro Autista , Síndrome do Cromossomo X Frágil , Animais , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/metabolismo , Feminino , Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil/genética , Gravidez , Ratos , Ácido Valproico/farmacologia
9.
Cells ; 12(1)2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36611861

RESUMO

Phosphodiesterase 2 (PDE2A) modulates the levels of cAMP/cGMP and was recently found to be involved in mitochondria function regulation, closely related to multiple types of tumor progression. This study aimed to estimate the prognostic significance and biological effects of PDE2A on hepatocellular carcinoma (HCC). We comprehensively analyzed the PDE2A mRNA expression in HCC based on The Cancer Genome Atlas (TCGA) database and investigated the effects of PDE2A on the proliferation and metastatic capacity of HCC cells. PDE2A was downregulated in 25 cancer types, including HCC. Lower PDE2A expression was a protective factor in HCC and was negatively associated with serum AFP levels, tumor status, vascular invasion, histologic grade, and pathologic stage of HCC. Moreover, tumors with low PDE2A expression displayed a decreased immune function. Then, the ROC curve was used to assess the diagnostic ability of PDE2A in HCC (AUC = 0.823 in TCGA and AUC = 0.901 in GSE76427). Patients with low PDE2A expression exhibited worse outcomes compared with those with high PDE2A expression. Additionally, GO functional annotations demonstrated the involvement of PDE2A in the ECM organization, systems development, and ERK-related pathways, indicating that PDE2A might regulate HCC growth and metastasis. The in vitro experiments confirmed that overexpression of PDE2A inhibited proliferation, colony formation, migration, and invasion in two HCC cell lines (HLF and SNU-368), while inhibition of PDE2A has the opposite results. The mechanism of PDE2A's effect on HCC cells is attributed to the change of mitochondrial morphology and ATP content. These data demonstrated that PDE2A closely participated in the regulation of HCC proliferation and metastasis and can be used as a predictive marker candidate and a potential therapeutic target for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Linhagem Celular , Sistema de Sinalização das MAP Quinases , Trifosfato de Adenosina/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/metabolismo
10.
Int J Biol Sci ; 17(13): 3508-3521, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512162

RESUMO

Rationale: The malignant phenotypes of glioblastomas (GBMs) are primarily attributed to glioma stem cells (GSCs). Our previous study and other reports have suggested that both miR-139 and its host gene PDE2A are putative antitumor genes in various cancers. The aim of this study was to investigate the roles and mechanisms of miR-139/PDE2A in GSC modulation. Methods: Clinical samples were used to determine miR-139/PDE2A expression. Patient-derived glioma stem-like cells (PD-GSCs) were stimulated for immunofluorescent staining, sphere formation assays and orthotopic GBM xenograft models. Bioinformatic analysis and further in vitro experiments demonstrated the downstream molecular mechanisms of miR-139 and PDE2A. OX26/CTX-conjugated PEGylated liposome (OCP) was constructed to deliver miR-139 or PDE2A into glioma tissue specifically. Results: We demonstrated that miR-139 was concomitantly transcribed with its host gene PDE2A. Both PDE2A and miR-139 indicated better prognosis of gliomas and were inversely correlated with GSC stemness. PDE2A or miR-139 overexpression suppressed the stemness of PD-GSCs. FZD3 and ß-catenin, which induced Wnt/ß-catenin signaling activation, were identified as targets of miR-139 and mediated the effects of miR-139 on GSCs. Meanwhile, PDE2A suppressed Wnt/ß-catenin signaling by inhibiting cAMP accumulation and GSK-3ß phosphorylation, thereby modulating the self-renewal of PD-GSCs. Notably, Notch1, which is also a target of miR-139, suppressed PDE2A/miR-139 expression directly via downstream Hes1, indicating that miR-139 promoted its own expression by the miR-139-Notch1/Hes1 feedback circuit. Expectedly, targeted overexpression miR-139 or PDE2A in glioma with OCP system significantly repressed the stemness and decelerated glioma progression. Conclusions: Our findings elaborate on the inhibitory functions of PDE2A and miR-139 on GSC stemness and tumorigenesis, which may provide new prognostic markers and therapeutic targets for GBMs.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/metabolismo , Glioma/metabolismo , MicroRNAs/metabolismo , Células-Tronco Neoplásicas , Via de Sinalização Wnt , Animais , AMP Cíclico/metabolismo , Glioma/patologia , Humanos , Camundongos Nus , Receptor Notch1/metabolismo , beta Catenina/metabolismo
11.
Microbiologyopen ; 10(4): e1203, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34459556

RESUMO

Streptococcus mitis is a commensal bacterial species of the oral cavity, with the potential for opportunistic pathogenesis. For successful colonization, S. mitis must be able to adhere to surfaces of the oral cavity and survive and adapt to frequently changing environmental conditions. Cyclic-di-AMP (c-di-AMP) is a nucleotide second messenger, involved in the regulation of stress responses and biofilm formation in several bacterial species. Cyclic-di-AMP is produced by diadenylate cyclases and degraded by phosphodiesterases. We have previously shown that in S. mitis, one diadenylate cyclase (CdaA) and at least two phosphodiesterases (Pde1 and Pde2) regulate the intracellular concentration of c-di-AMP. In this study, we utilized S. mitis deletion mutants of cdaA, pde1, and pde2 to analyze the role of c-di-AMP signaling in various stress responses, biofilm formation, and adhesion to eukaryotic cells. Here, we demonstrate that the Δpde1 mutant displayed a tendency toward increased susceptibility to acetic acid at pH 4.0. Deletion of cdaA increases auto-aggregation of S. mitis but reduces biofilm formation on an abiotic surface. These phenotypes are more pronounced under acidic extracellular conditions. Inactivation of pde1 or pde2 reduced the tolerance to ciprofloxacin, and UV radiation and the Δpde1 mutant was more susceptible to Triton X-100, indicating a role for c-di-AMP signaling in responses to DNA damage and cell membrane perturbation. Finally, the Δpde2 mutant displayed a tendency toward a reduced ability to adhere to oral keratinocytes. Taken together, our results indicate an important role for c-di-AMP signaling in cellular processes important for colonization of the mouth.


Assuntos
Adaptação Fisiológica/fisiologia , Aderência Bacteriana/fisiologia , Biofilmes/crescimento & desenvolvimento , AMP Cíclico/metabolismo , Sistemas do Segundo Mensageiro/fisiologia , Streptococcus mitis/metabolismo , Ácido Acético/farmacologia , Linhagem Celular Tumoral , Ciprofloxacina/farmacologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 1/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 1/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/metabolismo , Deleção de Genes , Regulação Bacteriana da Expressão Gênica/genética , Humanos , Queratinócitos/microbiologia , Boca/microbiologia , Octoxinol/farmacologia , Fósforo-Oxigênio Liases/genética , Fósforo-Oxigênio Liases/metabolismo , Streptococcus mitis/crescimento & desenvolvimento , Estresse Fisiológico/fisiologia
12.
Bioorg Med Chem Lett ; 44: 128082, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33991626

RESUMO

A focused SAR study was conducted on a series of N1-substituted pyrazolopyrimidinone PDE2 inhibitors to reveal compounds with excellent potency and selectivity. The series was derived from previously identified internal leads and designed to enhance steric interactions with key amino acids in the PDE2 binding pocket. Compound 26 was identified as a lead compound with excellent PDE2 selectivity and good physicochemical properties.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/antagonistas & inibidores , Descoberta de Drogas , Inibidores de Fosfodiesterase/farmacologia , Pirazóis/farmacologia , Pirimidinonas/farmacologia , Cristalografia por Raios X , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/metabolismo , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Inibidores de Fosfodiesterase/síntese química , Inibidores de Fosfodiesterase/química , Pirazóis/síntese química , Pirazóis/química , Pirimidinonas/síntese química , Pirimidinonas/química , Relação Estrutura-Atividade
13.
Naunyn Schmiedebergs Arch Pharmacol ; 394(6): 1215-1229, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33576869

RESUMO

Histamine exerts cAMP-dependent positive inotropic effects (PIE) and positive chronotropic effects (PCE) on isolated left and right atria, respectively, of transgenic mice which overexpress the human H2-receptor in the heart (=H2-TG). To determine whether these effects are antagonized by phosphodiesterases (PDEs), contractile studies were done in isolated left and right atrial preparations of H2-TG. The contractile effects of histamine were tested in the additional presence of the PDE-inhibitorserythro-9-(2-hydroxy-3-nonyl)adenine hydrochloride (EHNA, 1 µM, PDE2-inhibitor) or cilostamide (1 µM, PDE3-inhibitor), rolipram (10 µM, a PDE4-inhibitor), and their combinations. Cilostamide (1 µM) and EHNA (1 µM), rolipram (1 µM), and EHNA (1 µM) and the combination of rolipram (0.1 µM) and cilostamide (1 µM) each increased the potency of histamine to elevate the force of contraction (FOC) in H2-TG. Cilostamide (1 µM) and rolipram (10 µM) alone increased and EHNA (1 µM) decreased alone, and their combination increased the potency of histamine to increase the FOC in H2-TG indicating that PDE3 and PDE4 regulate the inotropic effects of histamine in H2-TG. The PDE inhibitors (EHNA, cilostamide, rolipram) alone did not alter the potency of histamine to increase the heart beat in H2-TG whereas a combination of rolipram, cilostamide, and EHNA, or of rolipram and EHNA increased the potency of histamine to act on the beating rate. In summary, the data suggest that the PCE of histamine in H2-TG atrium involves PDE 2 and 4 activities, whereas the PIE of histamine are diminished by activity of PDE 3 and 4.


Assuntos
Átrios do Coração/metabolismo , Histamina/metabolismo , Receptores Histamínicos H2/metabolismo , Adenina/administração & dosagem , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/antagonistas & inibidores , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/efeitos dos fármacos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/efeitos dos fármacos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Feminino , Átrios do Coração/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Frequência Cardíaca/fisiologia , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Inibidores de Fosfodiesterase/administração & dosagem , Inibidores de Fosfodiesterase/farmacologia , Quinolonas/administração & dosagem , Quinolonas/farmacologia , Rolipram/administração & dosagem , Rolipram/farmacologia
14.
Endocr Relat Cancer ; 28(1): 1-13, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33112806

RESUMO

Familial primary aldosteronism (PA) is rare and mostly diagnosed in early-onset hypertension (HT). However, 'sporadic' bilateral adrenal hyperplasia (BAH) is the most frequent cause of PA and remains without genetic etiology in most cases. Our aim was to investigate new genetic defects associated with BAH and PA. We performed whole-exome sequencing (paired blood and adrenal tissue) in six patients with PA caused by BAH that underwent unilateral adrenalectomy. Additionally, we conducted functional studies in adrenal hyperplastic tissue and transfected cells to confirm the pathogenicity of the identified genetic variants. Rare germline variants in phosphodiesterase 2A (PDE2A) and 3B (PDE3B) genes were identified in three patients. The PDE2A heterozygous variant (p.Ile629Val) was identified in a patient with BAH and early-onset HT at 13 years of age. Two PDE3B heterozygous variants (p.Arg217Gln and p.Gly392Val) were identified in patients with BAH and HT diagnosed at 18 and 33 years of age, respectively. A strong PDE2A staining was found in all cases of BAH in zona glomerulosa and/or micronodules (that were also positive for CYP11B2). PKA activity in frozen tissue was significantly higher in BAH from patients harboring PDE2A and PDE3B variants. PDE2A and PDE3B variants significantly reduced protein expression in mutant transfected cells compared to WT. Interestingly, PDE2A and PDE3B variants increased SGK1 and SCNN1G/ENaCg at mRNA or protein levels. In conclusion, PDE2A and PDE3B variants were associated with PA caused by BAH. These novel genetic findings expand the spectrum of genetic etiologies of PA.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Hiperaldosteronismo/enzimologia , Adolescente , Adulto , Idoso , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/genética , Feminino , Humanos , Hiperaldosteronismo/genética , Masculino , Pessoa de Meia-Idade
15.
Neuropharmacology ; 184: 108414, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33249120

RESUMO

Phosphodiesterases (PDE) are the only enzymes that degrade cAMP and cGMP which are second messengers crucial to memory consolidation. Different PDE inhibitors have been developed and tested for their memory-enhancing potential, but the occurrence of side effects has hampered clinical progression. As separate inhibition of the PDE2 and PDE4 enzyme family has been shown to enhance memory, we investigated whether concurrent treatment with a PDE2 and PDE4 inhibitor can have synergistic effects on memory consolidation processes. We found that combined administration of PF-999 (PDE2 inhibitor) and roflumilast (PDE4 inhibitor) increases the phosphorylation of the AMPA receptor subunit GluR1 and induces CRE-mediated gene expression. Moreover, when combined sub-effective and effective doses of PF-999 and roflumilast were administered after learning, time-dependent forgetting was abolished in an object location memory task. Pharmacokinetic assessment indicated that combined treatment does not alter exposure of the individual compounds. Taken together, these findings suggest that combined PDE2 and PDE4 inhibition has synergistic effects on memory consolidation processes at sub-effective doses, which could therefore provide a therapeutic strategy with an improved safety profile.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/antagonistas & inibidores , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Consolidação da Memória/fisiologia , Inibidores da Fosfodiesterase 4/administração & dosagem , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Masculino , Consolidação da Memória/efeitos dos fármacos , Camundongos , Ratos Sprague-Dawley , Ratos Wistar
16.
Eur J Pharmacol ; 891: 173768, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33271150

RESUMO

Phosphodiesterase 2 is one of the phosphodiesterase (PDEs) family members that regulate cyclic nucleotide (namely cAMP and cGMP) concentrations. The present study determined whether PDE2 inhibition could rescue post-traumatic stress disorder (PTSD)-like symptoms. Mice were subjected to single prolonged stress (SPS) and treated with selective PDE2 inhibitor Bay 60-7550 (0.3, 1, or 3 mg/kg, i.p.). The behavioral tests such as forced swimming, sucrose preference test, open field, elevated plus maze, and contextual fear paradigm were conducted to determine the effects of Bay 60-7550 on SPS-induced depression- and anxiety-like behavior and fear memory deficits. The results suggested that Bay 60-7550 reversed SPS-induced depression- and anxiety-like behavior and fear memory deficits. Moreover, Bay 60-7550 prevented SPS-induced changes in the adrenal gland index, synaptic proteins synaptophysin and PSD95 expression, PKA, PKG, pCREB, and BDNF levels in the hippocampus and amygdala. These effects were completely prevented by PKG inhibitor KT5823. While PKA inhibitor H89 also prevented Bay 60-7550-induced pCREB and BDNF expression, but only partially prevented the effects on PSD95 expression in the hippocampus. These findings suggest that Bay 60-7550 protects mice against PTSD-like stress induced traumatic injury by activation of cGMP- or cAMP-related neuroprotective molecules, such as synaptic proteins, pCREB and BDNF.


Assuntos
Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/antagonistas & inibidores , Medo , Imidazóis/farmacologia , Transtornos da Memória/tratamento farmacológico , Memória/efeitos dos fármacos , Inibidores de Fosfodiesterase/farmacologia , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Triazinas/farmacologia , Glândulas Suprarrenais/efeitos dos fármacos , Glândulas Suprarrenais/enzimologia , Animais , Encéfalo/enzimologia , Encéfalo/fisiopatologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/metabolismo , Modelos Animais de Doenças , Teste de Labirinto em Cruz Elevado , Preferências Alimentares/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Masculino , Transtornos da Memória/enzimologia , Transtornos da Memória/fisiopatologia , Transtornos da Memória/psicologia , Camundongos Endogâmicos ICR , Plasticidade Neuronal/efeitos dos fármacos , Sistemas do Segundo Mensageiro , Transtornos de Estresse Pós-Traumáticos/enzimologia , Transtornos de Estresse Pós-Traumáticos/fisiopatologia , Transtornos de Estresse Pós-Traumáticos/psicologia
17.
Commun Biol ; 3(1): 596, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33087821

RESUMO

Programmed degradation of mitochondria by mitophagy, an essential process to maintain mitochondrial homeostasis, is not completely understood. Here we uncover a regulatory process that controls mitophagy and involves the cAMP-degrading enzyme phosphodiesterase 2A2 (PDE2A2). We find that PDE2A2 is part of a mitochondrial signalosome at the mitochondrial inner membrane where it interacts with the mitochondrial contact site and organizing system (MICOS). As part of this compartmentalised signalling system PDE2A2 regulates PKA-mediated phosphorylation of the MICOS component MIC60, resulting in modulation of Parkin recruitment to the mitochondria and mitophagy. Inhibition of PDE2A2 is sufficient to regulate mitophagy in the absence of other triggers, highlighting the physiological relevance of PDE2A2 in this process. Pharmacological inhibition of PDE2 promotes a 'fat-burning' phenotype to retain thermogenic beige adipocytes, indicating that PDE2A2 may serve as a novel target with potential for developing therapies for metabolic disorders.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/metabolismo , Mitocôndrias/metabolismo , Mitofagia , Ubiquitina-Proteína Ligases/metabolismo , Animais , Linhagem Celular , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/química , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/genética , Imunofluorescência , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Camundongos , Mitocôndrias/genética , Proteínas Mitocondriais/metabolismo , Mitofagia/genética , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética
18.
Cells ; 9(10)2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-33053822

RESUMO

The ability to differentiate induced-pluripotent stem cells into cardiomyocytes (iPSC-CMs) has opened up novel avenues for potential cardiac therapies. However, iPSC-CMs exhibit a range of somewhat immature functional properties. This study explored the development of the beta-adrenergic receptor (ßAR) pathway, which is crucial in regulating contraction and signifying the health and maturity of myocytes. We explored the compartmentation of ß2AR-signalling and phosphodiesterases (PDEs) in caveolae, as functional nanodomains supporting the mature phenotype. Förster Resonance Energy Transfer (FRET) microscopy was used to study the cyclic adenosine monophosphate (cAMP) levels in iPSC-CMs at day 30, 60, and 90 following ßAR subtype-specific stimulation. Subsequently, the PDE2, PDE3, and PDE4 activity was investigated using specific inhibitors. Cells were treated with methyl-ß-cyclodextrin (MßCD) to remove cholesterol as a method of decompartmentalising ß2AR. As iPSC-CMs mature with a prolonged culture time, the caveolae density is increased, leading to a reduction in the overall cytoplasmic cAMP signal stimulated through ß2AR (but not ß1AR). Pan-phosphodiesterase inhibition or caveolae depletion leads to an increase in the ß2AR-stimulated cytoplasmic cAMP. Moreover, with time in culture, the increase in the ßAR-dependent cytoplasmic cAMP becomes more sensitive to cholesterol removal. The regulation of the ß2AR response by PDE2 and 4 is similarly increased with the time in culture. We conclude that both the ß2AR and PDEs are restricted to the caveolae nanodomains, and thereby exhibit a tighter spatial restriction over the cAMP signal in late-stage compared to early iPSC-CMs.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Cavéolas/metabolismo , Diferenciação Celular/fisiologia , Linhagem Celular , AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Insuficiência Cardíaca/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Miócitos Cardíacos/fisiologia , Diester Fosfórico Hidrolases/metabolismo , Receptores Adrenérgicos beta/metabolismo , Transdução de Sinais
19.
Int J Mol Sci ; 21(20)2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-33050419

RESUMO

Phosphodiesterases (PDEs) are the principal superfamily of enzymes responsible for degrading the secondary messengers 3',5'-cyclic nucleotides cAMP and cGMP. Their refined subcellular localization and substrate specificity contribute to finely regulate cAMP/cGMP gradients in various cellular microdomains. Redistribution of multiple signal compartmentalization components is often perceived under pathological conditions. Thereby PDEs have long been pursued as therapeutic targets in diverse disease conditions including neurological, metabolic, cancer and autoimmune disorders in addition to numerous cardiovascular diseases (CVDs). PDE2 is a unique member of the broad family of PDEs. In addition to its capability to hydrolyze both cAMP and cGMP, PDE2 is the sole isoform that may be allosterically activated by cGMP increasing its cAMP hydrolyzing activity. Within the cardiovascular system, PDE2 serves as an integral regulator for the crosstalk between cAMP/cGMP pathways and thereby may couple chronically adverse augmented cAMP signaling with cardioprotective cGMP signaling. This review provides a comprehensive overview of PDE2 regulatory functions in multiple cellular components within the cardiovascular system and also within various subcellular microdomains. Implications for PDE2- mediated crosstalk mechanisms in diverse cardiovascular pathologies are discussed highlighting the prospective use of PDE2 as a potential therapeutic target in cardiovascular disorders.


Assuntos
Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/metabolismo , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/metabolismo , Transdução de Sinais , Animais , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/terapia , Sistema Cardiovascular/metabolismo , Fibroblastos , Humanos , Miócitos Cardíacos/metabolismo , Neurônios , Óxido Nítrico/metabolismo , Sistemas do Segundo Mensageiro
20.
J Med Chem ; 63(21): 12887-12910, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33105987

RESUMO

We describe the hit-to-lead exploration of a [1,2,4]triazolo[1,5-a]pyrimidine phosphodiesterase 2A (PDE2A) inhibitor arising from high-throughput screening. X-ray crystallography enabled structure-guided design, leading to the identification of preferred substructural components. Further rounds of optimization used relative binding free-energy calculations to prioritize different substituents from the large accessible chemical space. The free-energy perturbation (FEP) calculations were performed for 265 putative PDE2A inhibitors, and 100 compounds were synthesized representing a relatively large prospective application providing unexpectedly active molecules with IC50's from 2340 to 0.89 nM. Lead compound 46 originating from the FEP calculations showed PDE2A inhibition IC50 of 1.3 ± 0.39 nM, ∼100-fold selectivity versus other PDE enzymes, clean cytochrome P450 profile, in vivo target occupancy, and promise for further lead optimization.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/antagonistas & inibidores , Inibidores de Fosfodiesterase/química , Pirimidinas/química , Triazóis/química , Animais , Sítios de Ligação , Encéfalo/metabolismo , Cristalografia por Raios X , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/metabolismo , Desenho de Fármacos , Meia-Vida , Humanos , Concentração Inibidora 50 , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Masculino , Microssomos Hepáticos/metabolismo , Simulação de Acoplamento Molecular , Inibidores de Fosfodiesterase/metabolismo , Inibidores de Fosfodiesterase/farmacocinética , Pirimidinas/metabolismo , Pirimidinas/farmacocinética , Ratos , Ratos Wistar , Estereoisomerismo , Relação Estrutura-Atividade , Termodinâmica , Triazóis/metabolismo , Triazóis/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA