Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.879
Filtrar
1.
J Morphol ; 285(1): e21659, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38100746

RESUMO

Freshwater gastrotrichs have a biphasic lifecycle that reputedly involves the production of three types of eggs: apomictic and fast hatching (tachyblastic ova), apomictic and delayed hatching (opsiblastic ova), and plaque-bearing eggs (potentially derived from mixis). While some details of oogenesis and eggshell structure are known for tachyblastic ova, there are few details on other egg types. Here, we provide the first ultrastructural description of the oviposited opsiblastic eggs of the freshwater gastrotrich, Lepidodermella squamata. Scanning electron microscopy revealed the eggshell surface to be ornamented with long flattened pillar-like structures centered on polygonal plates that are pitted along their periphery. Transmission electron microscopy showed the pits to lead to a vast labyrinth of tubular spaces and larger cavities throughout the thick apical layer of the shell. The basal layer of the shell is amorphous and connected to a network of fine fibers that traverse an extra-oocyte space and forms a protective sheet around the uncleaved oocyte. The uncleaved oocyte has a dense layer of peripheral ooplasm surrounding a core of organelles including mitochondria, membrane-bound secretion granules, endoplasmic reticulum, and a single nucleus in a granular, ribosome-rich cytoplasm. Secretion granules are the most abundant organelles and presumably contain lipid-rich yolk that will be used as energy for delayed cleavage, thus functioning in temporal dispersal. These data are compared to the fine structure of invertebrate resting eggs across the phylogenetic spectrum to determine the novelty of opsiblastic egg structure in L. squamata.


Assuntos
Oócitos , Oogênese , Animais , Filogenia , Oócitos/ultraestrutura , Retículo Endoplasmático , Água Doce
2.
F S Sci ; 4(4): 267-278, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37730013

RESUMO

OBJECTIVE: To investigate the structural bases of human oocytes' cytoplasmic abnormalities and the causative mechanism of their emergence. Knowledge of an abnormal oocyte's intracellular organization is vital to establishing reliable criteria for clinical evaluation of oocyte morphology. DESIGN: Laboratory-based study on experimental material provided by a private assisted reproduction clinic. SETTING: University laboratory and imaging center. PATIENTS: A total of 105 women undergoing hormonal stimulation for in vitro fertilization (IVF) donated their spare oocytes for this study. INTERVENTIONS: Transmission electron microscopy (TEM) was used to analyze the fine morphology of 22 dysmorphic IVF oocytes exhibiting different types of cytoplasmic irregularities, namely, refractile bodies; centrally located cytoplasmic granularity (CLCG); smooth endoplasmic reticulum (SER) disc; and vacuoles. A total of 133 immature oocytes were exposed to cytoskeleton-targeting compounds or matured in control conditions, and their morphology was examined using fluorescent and electron microscopy. MAIN OUTCOME MEASURES: The ultrastructural morphology of dysmorphic oocytes was analyzed. Drug-treated oocytes had their maturation efficiency, chromosome-microtubule configurations, and fine intracellular morphology examined. RESULTS: TEM revealed ultrastructural characteristics of common oocyte aberrations and indicated that excessive organelle clustering was the underlying cause of 2 of the studied morphotypes. Inhibition experiments showed that disruption of actin, not microtubules, allows for inordinate aggregation of subcellular structures, resembling the ultrastructural pattern seen in morphologically abnormal oocytes retrieved in IVF cycles. These results imply that actin serves as a regulator of organelle distribution during human oocyte maturation. CONCLUSION: The ultrastructural analogy between dysmorphic oocytes and oocytes, in which actin network integrity was perturbed, suggests that dysfunction of the actin cytoskeleton might be implicated in generating common cytoplasmic aberrations. Knowledge of human oocytes' inner workings and the origin of morphological abnormalities is a step forward to a more objective oocyte quality assessment in IVF practice.


Assuntos
Actinas , Oócitos , Humanos , Feminino , Oócitos/ultraestrutura , Citoplasma , Citoesqueleto , Microtúbulos
3.
J Morphol ; 284(9): e21625, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37585226

RESUMO

Reproduction is a key step for propagation of any species. Consequently, gametogenesis is crucial, as it links one generation to the other. Oogenesis is influenced by different factors, but it is usually related to the quality and quantity of the food and the capacity of the female to convert these resources into egg production. In Demospongiae (Porifera), oocytes vary in several aspects (e.g., origin, size, and vitellogenic pathways). However, data on oocyte morphology is still fragmentary, and the ultrastructural organization of reproductive cells has been investigated only in a few species, mainly of viviparous sponges. Here, we aimed to comprehend the oogenesis of two tropical oviparous demosponges (Cinachyrella apion and Tethya maza) using light and electron microscopy. In both species, oocytes seemed to originate from archaeocytes. Oocytes of C. apion were surrounded by a collagenous matrix and nurse cells containing many lipid vesicles. The increase of biosynthetic organelles, concomitantly with the presence of yolk vesicle in the ooplasm, indicated that the vitellogenesis was carried out through the mixed pathway. The oocytes of T. maza were surrounded by a follicle cell membrane and nurse cells containing yolk vesicles. The absence of characteristic biosynthetic organelles in the egg of this species indicated that vitellogenesis occured through the heterosynthetic pathway. The oogenesis of C. apion is similar to other species of the genus, while the follicle membrane and nurse cells surrounding the oocytes of T. maza are not observed in any other species of Tethya. These accessory cells were considered to have a trophic role during the oogenesis of the studied species. Moreover, the presence of these accessory cells may have ecological significance, as they accelerate the egg's production through trophic support of the growing oocyte.


Assuntos
Oviparidade , Poríferos , Feminino , Animais , Oogênese , Oócitos/ultraestrutura , Folículo Ovariano
4.
Cells ; 12(9)2023 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-37174735

RESUMO

Centrosome formation during early development in mice and rats occurs due to the appearance of centrioles de novo. In contrast, in humans and other non-rodent mammals, centrioles are thought to be derived from spermatozoa. Ultrastructural study of zygotes and early embryos of cattle at full series of ultrathin sections show that the proximal centriole of the spermatozoon disappears by the end of the first cleavage division. Centrioles appear in two to four cell embryos in fertilized oocytes and in parthenogenetic embryos. Centriole formation includes the appearance of atypical centrioles with randomly arranged triplets and centrioles with microtubule triplets of various lengths. After the third cleavage, four centriolar cylinders appear for the first time in the blastomeres while each embryo still has two atypical centrioles. Our results showed that the mechanisms of centriole formation in different groups of mammals are universal, differing only in the stage of development in which they occur.


Assuntos
Centrossomo , Oócitos , Humanos , Masculino , Bovinos , Animais , Camundongos , Ratos , Oócitos/ultraestrutura , Centrossomo/ultraestrutura , Centríolos/ultraestrutura , Espermatozoides/ultraestrutura , Mamíferos
5.
Biol Reprod ; 107(5): 1254-1263, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36136741

RESUMO

Oocytes from many invertebrate and vertebrate species exhibit unique endoplasmic reticulum (ER) specializations (cortical ER clusters), which are thought to be essential for egg activation. In examination of cortical ER clusters, we observed that they were tethered to previously unreported fenestrae within the cortical actin layer. Furthermore, studies demonstrated that sperm preferentially bind to the plasma membrane overlying the fenestrae, establishing close proximity to underlying ER clusters. Moreover, following sperm-oocyte fusion, cortical ER clusters undergo a previously unrecognized global change in volume and shape that persists through sperm incorporation, before dispersing at the pronuclear stage. These changes did not occur in oocytes from females mated with Izumo1 -/- males. In addition to these global changes, highly localized ER modifications were noted at the sperm binding site as cortical ER clusters surround the sperm head during incorporation, then form a diffuse cloud surrounding the decondensing sperm nucleus. This study provides the first evidence that cortical ER clusters interact with the fertilizing sperm, indirectly through a previous unknown lattice work of actin fenestrae, and then directly during sperm incorporation. These observations raise the possibility that oocyte ER cluster-sperm interactions provide a competitive advantage to the oocyte, which may not occur during assisted reproductive technologies such as intracytoplasmic sperm injection.


Assuntos
Retículo Endoplasmático , Oócitos , Interações Espermatozoide-Óvulo , Animais , Feminino , Masculino , Camundongos , Actinas/metabolismo , Retículo Endoplasmático/ultraestrutura , Oócitos/ultraestrutura , Interações Espermatozoide-Óvulo/fisiologia , Espermatozoides/fisiologia
6.
Nat Rev Mol Cell Biol ; 23(11): 698, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35798851
7.
Micron ; 160: 103318, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35759902

RESUMO

The ovaries of Sander lucioperca (Actinopterygii, Perciformes) are made up of the germinal epithelium and ovarian follicles, in which primary oocytes grow. Each follicle is composed of an oocyte surrounded by flattened follicular cells, the basal lamina, and thecal cells. The early stages of oocyte development (primary growth = previtellogenesis) are not fully explained in this species. The results of research with the use of stereoscopic, light, fluorescence, and transmission electron microscopes on ovarian follicles containing developing primary oocytes of S. lucioperca are presented. The polarization and ultrastructure of oocytes are described and discussed. The deposition of egg envelopes during the primary growth and the ultrastructure of the eggshell in maturing follicles of S. lucioperca are also presented. Nuclei in primary oocytes comprise lampbrush chromosomes, nuclear bodies, and nucleoli. Numerous additional nucleoli arise in the nucleoplasm during primary growth and locate close to the nuclear envelope. The Balbiani body in the cytoplasm of oocytes (ooplasm) is composed of nuage aggregations of nuclear origin and mitochondria, endoplasmic reticulum (ER), and Golgi apparatus. The presence of the Balbiani body was reported in oocytes of numerous species of Actinopterygii; however, its ultrastructure was investigated in a limited number of species. In primary oocytes of S. lucioperca, the Balbiani body is initially located in the perinuclear ooplasm on one side of the nucleus. Next, it surrounds the nucleus, expands toward the plasma membrane of oocytes (oolemma), and becomes fragmented. Within the Balbiani body, the granular nuage condenses in the form of threads, locates near the oolemma, at the vegetal oocyte pole, and then dissolves. Mitochondria and cisternae of the rough endoplasmic reticulum (RER) are present between the threads. During primary growth micropylar cells differentiate in the follicular epithelium. They contain cisternae and vesicles of the RER and Golgi apparatus as well as numerous dense vesicles suggesting high synthetic and secretory activity. During the final step of primary growth several follicular cells delaminate from the follicular epithelium, migrate toward the oocyte and submerge in the most external egg envelope. In the ooplasm, three regions are distinguished: perinuclear, endoplasm, and periplasm. Cortical alveoli arise in the perinuclear ooplasm and in the endoplasm as a result of the fusion of RER vesicles with Golgi ones. They are evenly distributed. Lamellar bodies in the periplasm store the plasma membrane and release it into a space between the follicular cells and the oocyte. The developing eggshell in this space is made up of two egg envelopes (the internal one and the external) that are pierced by canals formed around the microvilli of oocytes and the processes of follicular cells. In the deposition of egg envelopes the oocyte itself and follicular cells are engaged. In maturing ovarian follicles the eggshell is solid and the internal egg envelope is covered with protuberances.


Assuntos
Percas , Perciformes , Animais , Núcleo Celular/ultraestrutura , Feminino , Oócitos/ultraestrutura , Folículo Ovariano/ultraestrutura
8.
J Fish Biol ; 100(5): 1223-1232, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35244939

RESUMO

The Balbiani body (Bb) was examined in primary growth phase oocytes for the first time in two clupeoid fish species, the Mediterranean sardine, Sardina pilchardus, and the European anchovy, Engraulis encrasicolus, which belong to different families, Clupeidae and Engraulidae, respectively. Cytoplasmic morphological changes of early secondary growth oocytes were also investigated using confocal laser scanning microscopy, light and transmission electron microscopy. The ultrastructural observations showed that the two species develop a distinct spherical Bb. However, differences in the cytoplasm, mainly in the perinuclear area, were observed. Briefly, in sardine the Bb coexists with a thick perinuclear ring containing mitochondria, nuage, endoplasmic reticulum and small vesicles, while in anchovy this perinuclear ring is thinner, consisting of complexes of nuage and mitochondria. After the disassembly of the Bb, a prominent cytoplasmic zonation develops in the secondary growth oocytes of sardine and anchovy, although with different organelle distribution between the two species. Sardine oocytes exhibit a thick zone of endoplasmic reticulum around the nucleus, whereas in those of anchovy, a thick mitochondria-rich ring surrounding the nucleus was observed. The cytoplasmic characteristics, such as the perinuclear ring in primary oocytes in sardine and the mitochondria-rich ring of early secondary oocytes in anchovy, are also discernible in histological sections by standard procedures and could thus be used as indicators of maturity or imminent spawning period in routine light microscopy observations, providing a valuable tool for applied fisheries biology.


Assuntos
Peixes , Oogênese , Animais , Núcleo Celular , Citoplasma , Oócitos/ultraestrutura
9.
Science ; 375(6581): eabj3944, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35143306

RESUMO

Human oocytes are prone to assembling meiotic spindles with unstable poles, which can favor aneuploidy in human eggs. The underlying causes of spindle instability are unknown. We found that NUMA (nuclear mitotic apparatus protein)-mediated clustering of microtubule minus ends focused the spindle poles in human, bovine, and porcine oocytes and in mouse oocytes depleted of acentriolar microtubule-organizing centers (aMTOCs). However, unlike human oocytes, bovine, porcine, and aMTOC-free mouse oocytes have stable spindles. We identified the molecular motor KIFC1 (kinesin superfamily protein C1) as a spindle-stabilizing protein that is deficient in human oocytes. Depletion of KIFC1 recapitulated spindle instability in bovine and aMTOC-free mouse oocytes, and the introduction of exogenous KIFC1 rescued spindle instability in human oocytes. Thus, the deficiency of KIFC1 contributes to spindle instability in human oocytes.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cinesinas/deficiência , Oócitos/fisiologia , Oócitos/ultraestrutura , Fuso Acromático/fisiologia , Polos do Fuso/fisiologia , 1-Alquil-2-acetilglicerofosfocolina Esterase/metabolismo , Animais , Bovinos , Complexo Dinactina/metabolismo , Dineínas/metabolismo , Feminino , Humanos , Cinesinas/genética , Cinesinas/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Centro Organizador dos Microtúbulos/fisiologia , Centro Organizador dos Microtúbulos/ultraestrutura , Microtúbulos/metabolismo , Proteínas Recombinantes/metabolismo , Fuso Acromático/ultraestrutura , Polos do Fuso/ultraestrutura , Suínos
10.
J Morphol ; 283(4): 502-509, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35092075

RESUMO

The ultrastructure of oocyte mitochondria and their contribution to the endogenous autosynthesis of the yolk was investigated in two clupeoid species, the Mediterranean sardine, Sardina pilchardus, and the European anchovy, Engraulis encrasicolus. The structure and abundance of mitochondria differ in secondary growth oocytes of the two species, whereas they are similar in chromatin nucleolus and primary growth oocytes. Sardine oocytes show a higher percentage of mitochondria in the cytoplasm as they develop. However, the individual size of each mitochondrion decreases, becoming smaller than those observed in anchovy oocytes. The volume fraction of cristae in mitochondria of sardine oocytes gradually increased throughout the oocyte developmental phases up to the early secondary growth phase and then slightly decreased during the mid-secondary growth phase. In the cytoplasm of early secondary growth oocytes of anchovy, the percentage of mitochondria is larger than in mid-secondary growth oocytes. As oocytes develop, the size of mitochondria diminishes as well. In contrast to the volume fraction of cristae in mitochondria of sardine oocytes, the volume fraction of cristae in anchovy was decreased in early secondary growth oocytes and then it was increased during the mid-secondary growth phase. As a result, based on both cytoplasmic dynamics of each species and mitochondrial alterations, it was assumed that mitochondria in sardine play a role in the formation of yolk granules, whereas mitochondria in anchovy play a role in the lipid synthesis pathway. Both species showed exogenous heterosynthesis of yolk, through the process of pinocytosis in the zona radiata of oocytes.


Assuntos
Peixes , Oogênese , Animais , Peixes/metabolismo , Mitocôndrias/ultraestrutura , Oócitos/ultraestrutura , Alimentos Marinhos
11.
Biol Reprod ; 106(1): 83-94, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-34726234

RESUMO

Infertility affects 10-15% of families worldwide. However, the pathogenesis of female infertility caused by abnormal early embryonic development is not clear. A recent study showed that poly(A)binding protein nuclear 1-like (PABPN1L) recruited BTG anti-proliferation factor 4 (BTG4) to mRNA 3'-poly(A) tails and was essential for maternal mRNA degradation. Here, we generated a PABPN1L-antibody and found "ring-like" PABPN1L aggregates in the cytoplasm of MII oocytes. PABPN1L-EGFP proteins spontaneously formed "ring-like" aggregates in vitro. This phenomenon is similar with CCR4-NOT catalytic subunit, CCR4-NOT transcription complex subunit 7 (CNOT7), when it starts deadenylation process in vitro. We constructed two mouse model (Pabpn1l-/- and Pabpn1l  tm1a/tm1a) simulating the intron 1-exon 2 abnormality of human PABPN1L and found that the female was sterile and the male was fertile. Using RNA-Seq, we observed a large-scale up-regulation of RNA in zygotes derived from Pabpn1l-/- MII oocytes. We found that 9222 genes were up-regulated instead of being degraded in the Pabpn1l-♀/+♂zygote. Both the Btg4 and CCR4-NOT transcription complex subunit 6 like (Cnot6l) genes are necessary for the deadenylation process and Pabpn1l-/- resembled both the Btg4 and Cnot6l knockouts, where 71.2% genes stabilized in the Btg4-♀/+♂ zygote and 84.2% genes stabilized in the Cnot6l-♀/+♂zygote were also stabilized in Pabpn1l-♀/+♂ zygote. BTG4/CNOT7/CNOT6L was partially co-located with PABPN1L in MII oocytes. The above results suggest that PABPN1L is widely associated with CCR4-NOT-mediated maternal mRNA degradation and PABPN1L variants on intron 1-exon 2 could be a genetic marker of female infertility.


Assuntos
Citoplasma/química , Oócitos/ultraestrutura , Proteína I de Ligação a Poli(A)/química , Proteína I de Ligação a Poli(A)/fisiologia , Agregados Proteicos , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Fluorescência Verde/química , Humanos , Infertilidade Feminina , Masculino , Camundongos , Camundongos Knockout , Proteína I de Ligação a Poli(A)/genética , Proteínas de Ligação a Poli(A)/química , Proteínas de Ligação a Poli(A)/genética , RNA Mensageiro/metabolismo , Receptores CCR4/genética , Receptores CCR4/fisiologia , Zigoto/metabolismo
12.
Science ; 374(6569): 874-879, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34762476

RESUMO

In mammals and flies, only one cell in a multicellular female germline cyst becomes an oocyte, but how symmetry is broken to select the oocyte is unknown. Here, we show that the microtubule (MT) minus end-stabilizing protein Patronin/CAMSAP marks the future Drosophila oocyte and is required for oocyte specification. The spectraplakin Shot recruits Patronin to the fusome, a branched structure extending into all cyst cells. Patronin stabilizes more MTs in the cell with the most fusome material. Our data suggest that this weak asymmetry is amplified by Dynein-dependent transport of Patronin-stabilized MTs. This forms a polarized MT network, along which Dynein transports oocyte determinants into the presumptive oocyte. Thus, Patronin amplifies a weak fusome anisotropy to break symmetry and select one cell to become the oocyte.


Assuntos
Proteínas de Drosophila/metabolismo , Células Germinativas/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Oócitos/fisiologia , Animais , Anisotropia , Drosophila melanogaster , Dineínas/metabolismo , Feminino , Células Germinativas/ultraestrutura , Proteínas dos Microfilamentos/metabolismo , Centro Organizador dos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Oócitos/ultraestrutura , Organelas/metabolismo , Organelas/ultraestrutura
13.
Reprod Biomed Online ; 43(5): 891-898, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34509376

RESUMO

RESEARCH QUESTION: How can the effect of genetic mutations that may cause primary female infertility be evaluated? DESIGN: Patients and their family members underwent whole-exome sequencing and Sanger sequencing to detect the infertility-causing gene and inheritance pattern. To study the function of mutant proteins in vitro, vectors containing wild-type or mutant TUBB8 cDNA were constructed for transient expression in HeLa cells, and in-vitro transcribed mRNA were used for microinjection in germinal vesicle-stage mouse oocytes. Immunofluorescence staining was used to observe the microtubule structure in HeLa cells or meiotic spindle in mouse oocytes. RESULTS: A maternally inherited TUBB8 (Tubulin beta 8 class VIII) mutation (NM_177987.2: c. 959G>A: p. R320H) and a previously reported (NM_177987.2: c. 161C>T: p. A54V) recessive mutation from two infertile female patients were identified. The oocytes from the patient carrying p.A54V mutation failed fertilization, whereas oocytes with p.R320H mutation could be fertilized but showed heavy fragmentation during early development. In vitro, functional assays showed that p. A54V mutant disrupted the microtubule structure in HeLa cells (49.3% of transfected cells) and caused large polar body extrusion in mouse oocytes (27.5%), whereas the p.R320H mutant caused a higher abnormal rate (69.7%) in cultured cells and arrested mouse oocytes at meiosis I (38.7%). CONCLUSION: Two TUBB8 mutations (p.A54V and p.R320H) were identified and their pathogeny was confirmed by in-vitro functional assays.


Assuntos
Desenvolvimento Embrionário/genética , Infertilidade Feminina/genética , Mutação , Oócitos/crescimento & desenvolvimento , Tubulina (Proteína)/genética , Adulto , Animais , Feminino , Fertilização/genética , Células HeLa/ultraestrutura , Humanos , Meiose/genética , Camundongos , Microtúbulos/genética , Oócitos/ultraestrutura , Linhagem , Corpos Polares/fisiologia , Transfecção
14.
Anim Sci J ; 92(1): e13608, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34405491

RESUMO

This study aims to investigate the morphology and distribution of mitochondria, spindles, and chromosomes in oocytes of aged mice and examine the effects of SRT1720 on oocyte maturation. C57BL/6J mice were divided into young (4-8 weeks) and aged groups (48-52 weeks). In vitro maturation media contained (0.05, 0.1, and 1.0 µM) SRT1720 and 0.1-µM dimethyl sulfoxide (DMSO control). The rate of chromosome misalignment and spindle misorientation in oocytes of aged mice were significantly higher than that of young mice (P < 0.01). Fluorescence intensity of mitochondria from oocytes of aged mice was significantly lower than that of young mice (P < 0.01). SRT1720 at 0.1 µM significantly improved oocyte maturation, fertilization, and blastocyst formation in aged mice compared with young mice (P < 0.01). Additionally, immunofluorescence intensity of mitochondria, normal spindle morphology, and chromosome alignment were notably enhanced with SRT1720 when compared with the DSMO control group for metaphase II (MII)-stage oocytes matured in vitro (P < 0.01); 0.1-µM SRT1720 enhanced the expression level of SRIT1 in oocytes from aged mice. In summary, the aged mice oocytes showed increased nuclear and cytoplasmic defects, whereas SRT1720 enhanced oocyte maturation and quality. We concluded that 0.1-µM SRT1720 was an appropriate concentration for in vitro maturation media.


Assuntos
Envelhecimento/efeitos dos fármacos , Envelhecimento/patologia , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Técnicas de Maturação in Vitro de Oócitos , Oócitos/efeitos dos fármacos , Oócitos/crescimento & desenvolvimento , Animais , Blastocisto , Cromossomos/metabolismo , Relação Dose-Resposta a Droga , Feminino , Fertilização/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Oócitos/citologia , Oócitos/ultraestrutura , Fuso Acromático/metabolismo , Fuso Acromático/patologia
15.
Cells ; 10(8)2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34440706

RESUMO

The nuclear basket (NB) scaffold, a fibrillar structure anchored to the nuclear pore complex (NPC), is regarded as constructed of polypeptides of the coiled-coil dominated protein TPR to which other proteins can bind without contributing to the NB's structural integrity. Here we report vertebrate protein ZC3HC1 as a novel inherent constituent of the NB, common at the nuclear envelopes (NE) of proliferating and non-dividing, terminally differentiated cells of different morphogenetic origin. Formerly described as a protein of other functions, we instead present the NB component ZC3HC1 as a protein required for enabling distinct amounts of TPR to occur NB-appended, with such ZC3HC1-dependency applying to about half the total amount of TPR at the NEs of different somatic cell types. Furthermore, pointing to an NB structure more complex than previously anticipated, we discuss how ZC3HC1 and the ZC3HC1-dependent TPR polypeptides could enlarge the NB's functional repertoire.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Neoplasias/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Poro Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Oócitos/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Xenopus/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas de Ciclo Celular/genética , Feminino , Células HCT116 , Células HeLa , Humanos , Macaca mulatta , Neoplasias/genética , Neoplasias/ultraestrutura , Poro Nuclear/genética , Poro Nuclear/ultraestrutura , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Proteínas Nucleares/genética , Oócitos/ultraestrutura , Ligação Proteica , Proteínas Proto-Oncogênicas/genética , Transdução de Sinais , Proteínas de Xenopus/genética , Xenopus laevis
16.
Cells ; 10(8)2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34440763

RESUMO

Among the morphological processes that characterize the early stages of Drosophila oogenesis, the dynamic of the centrioles deserves particular attention. We re-examined the architecture and the distribution of the centrioles within the germarium and early stages of the vitellarium. We found that most of the germ cell centrioles diverge from the canonical model and display notable variations in size. Moreover, duplication events were frequently observed within the germarium in the absence of DNA replication. Finally, we report the presence of an unusually long centriole that is first detected in the cystoblast and is always associated with the developing oocyte. This centriole is directly inherited after the asymmetric division of the germline stem cells and persists during the process of oocyte selection, thus already representing a marker for oocyte identification at the beginning of its formation and during the ensuing developmental stages.


Assuntos
Centríolos/fisiologia , Drosophila melanogaster/fisiologia , Oócitos/fisiologia , Oogênese , Animais , Centríolos/genética , Centríolos/ultraestrutura , Drosophila melanogaster/genética , Drosophila melanogaster/ultraestrutura , Feminino , Microscopia Eletrônica de Transmissão , Oócitos/ultraestrutura , Fatores de Tempo
17.
Mol Hum Reprod ; 27(8)2021 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-34264319

RESUMO

Investigations of genes required in early mammalian development are complicated by protein deposits of maternal products, which continue to operate after the gene locus has been disrupted. This leads to delayed phenotypic manifestations and underestimation of the number of genes known to be needed during the embryonic phase of cellular totipotency. Here we expose a critical role of the gene Cops3 by showing that it protects genome integrity during the 2-cell stage of mouse development, in contrast to the previous functional assignment at postimplantation. This new role is mediated by a substantial deposit of protein (94th percentile of the proteome), divided between an exceptionally stable cortical rim, which is prevalent in oocytes, and an ancillary deposit in the embryonic nuclei. Since protein abundance and stability defeat prospects of DNA- or RNA-based gene inactivation in oocytes, we harnessed a classical method next to an emerging method for protein inactivation: antigen masking (for functional inhibition) versus TRIM21-mediated proteasomal degradation, also known as 'Trim away' (for physical removal). Both resulted in 2-cell embryo lethality, unlike the embryos receiving anti-green fluorescent protein. Comparisons between COPS3 protein-targeted and non-targeted embryos revealed large-scale transcriptome differences, which were most evident for genes associated with biological functions critical for RNA metabolism and for the preservation of genome integrity. The gene expression abnormalities associated with COPS3 inactivation were confirmed in situ by the occurrence of DNA endoreduplication and DNA strand breaks in 2-cell embryos. These results recruit Cops3 to the small family of genes that are necessary for early embryo survival. Overall, assigning genes with roles in embryogenesis may be less safe than assumed, if the protein products of these genes accumulate in oocytes: the inactivation of a gene at the protein level can expose an earlier phenotype than that identified by genetic techniques such as conventional gene silencing.


Assuntos
Blastômeros/metabolismo , Complexo do Signalossomo COP9/fisiologia , Desenvolvimento Embrionário , Oócitos/metabolismo , Proteínas Proto-Oncogênicas/fisiologia , Animais , Blastômeros/ultraestrutura , Complexo do Signalossomo COP9/biossíntese , Complexo do Signalossomo COP9/genética , Sobrevivência Celular , Quebras de DNA , Transferência Embrionária , Desenvolvimento Embrionário/genética , Endorreduplicação , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Ontologia Genética , Histonas/biossíntese , Histonas/genética , Proteínas Luminescentes/análise , Camundongos , Microinjeções , Oócitos/ultraestrutura , Peptídeo Hidrolases/biossíntese , Peptídeo Hidrolases/genética , Gravidez , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteoma , Proteínas Proto-Oncogênicas/biossíntese , Proteínas Proto-Oncogênicas/genética , RNA Mensageiro/administração & dosagem , RNA Mensageiro/genética , Proteínas Recombinantes/análise , Ribonucleoproteínas/fisiologia , Transcriptoma , Zigoto/metabolismo , Proteína Vermelha Fluorescente
18.
Dokl Biochem Biophys ; 498(1): 190-192, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34189648

RESUMO

For in vitro fertilization technology, the quality of oocytes has a direct impact on the egg fertilization and developmental competence of early embryo. The morphological criteria are used for the estimation of oocyte quality before its fertilization in vitro. To date, only one method is known to determine the maturity of oocyte. This is the routine observation with a light microscope. The aim of this article was to adapt the noninvasive quantitative laser scanning microtomography (QLSM) for the investigation of morphological features of a human oocyte in vitro. This approach was used to accumulate the Z-stack gallery of optical sections of IVF oocyte. The layer-by-layer acquisition allows the fine cytoplasmic structure imaging. Applying the QLSM Z-stack of optical sections, the cellular volume was calculated with quantitative 3D reconstruction of a human oocyte. The volume value and intracellular structure were used as novel criteria to assess the oocyte state after the stress evoked by cryopreservation procedure.


Assuntos
Fertilização in vitro/métodos , Oócitos/citologia , Tomografia Computadorizada por Raios X/métodos , Feminino , Humanos , Lasers , Oócitos/fisiologia , Oócitos/ultraestrutura
19.
Mol Hum Reprod ; 27(7)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34191027

RESUMO

Since its recent discovery, the subcortical maternal complex (SCMC) is emerging as a maternally inherited and crucial biological structure for the initial stages of embryogenesis in mammals. Uniquely expressed in oocytes and preimplantation embryos, where it localizes to the cell subcortex, this multiprotein complex is essential for early embryo development in the mouse and is functionally conserved across mammalian species, including humans. The complex has been linked to key processes leading the transition from oocyte to embryo, including meiotic spindle formation and positioning, regulation of translation, organelle redistribution, and epigenetic reprogramming. Yet, the underlying molecular mechanisms for these diverse functions are just beginning to be understood, hindered by unresolved interplay of SCMC components and variations in early lethal phenotypes. Here we review recent advances confirming involvement of the SCMC in human infertility, revealing an unexpected relationship with offspring health. Moreover, SCMC organization is being further revealed in terms of novel components and interactions with additional cell constituents. Collectively, this evidence prompts new avenues of investigation into possible roles during the process of oogenesis and the regulation of maternal transcript turnover during the oocyte to embryo transition.


Assuntos
Blastocisto/ultraestrutura , Desenvolvimento Embrionário , Complexos Multiproteicos/fisiologia , Oócitos/ultraestrutura , Aneuploidia , Animais , Blastocisto/metabolismo , Anormalidades Congênitas , Proteínas do Ovo/fisiologia , Impressão Genômica , Humanos , Infertilidade/genética , Camundongos , Complexos Multiproteicos/ultraestrutura , Mutação , Oócitos/metabolismo , Estabilidade de RNA , RNA Mensageiro/metabolismo
20.
Mol Reprod Dev ; 88(6): 427-436, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34032339

RESUMO

Mitochondrial dysfunction is considered a crucial factor aggravating oocyte viability after vitrification-warming. To clarify the role of mitophagy in mitochondrial extinction of vitrified porcine oocytes, mitochondrial function, ultrastructural characteristics, mitochondria-lysosomes colocalization, and mitophagic proteins were detected with or without chloroquine (CQ) treatment. The results showed that vitrification caused mitochondrial dysfunction, including increasing reactive oxygen species production, decreasing mitochondrial membrane potential, and mitochondrial DNA copy number. Damaged mitochondrial cristae and mitophagosomes were observed in vitrified oocytes. A highly fused fluorescence distribution of mitochondria and lysosomes was also observed. In the detection of mitophagic flux, mitophagy was demonstrated as increasing fluorescence aggregation of microtubule-associated protein light chain 3B (LC3B), enhanced colocalization between LC3B, and voltage-dependent anion channels 1 (VDAC1), and upregulated LC3B-II/I protein expression ratio. CQ inhibited the degradation of mitophagosomes in vitrified oocytes, manifested as decreased mitochondria-lysosomes colocalization, increased fluorescence fraction of VDAC1 overlapping LC3B, increased LC3B-II/I protein expression ratio, and p62 accumulation. The inhibition of mitophagosomes degradation by CQ aggravated mitochondrial dysfunction, including increased oxidative damage, reduced mitochondrial function, and further led to loss of oocyte viability and developmental potentiality. In conclusion, mitophagy is involved in the regulation of mitochondrial function during porcine oocyte vitrification.


Assuntos
Mitofagia , Oócitos/fisiologia , Vitrificação , Animais , Cloroquina/farmacologia , Cloroquina/toxicidade , Criopreservação/métodos , Desenvolvimento Embrionário/efeitos dos fármacos , Feminino , Lisossomos/efeitos dos fármacos , Lisossomos/ultraestrutura , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Proteínas Associadas aos Microtúbulos/análise , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Mitofagia/efeitos dos fármacos , Oócitos/efeitos dos fármacos , Oócitos/ultraestrutura , Fagossomos/efeitos dos fármacos , Fagossomos/ultraestrutura , Preservação Biológica/métodos , Espécies Reativas de Oxigênio/metabolismo , Suínos , Canal de Ânion 1 Dependente de Voltagem/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA