Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Oncol Rep ; 47(2)2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34913067

RESUMO

Vasculogenic mimicry (VM) is the formation of a blood supply system that confers aggressive and metastatic properties to tumors and correlates with a poor prognosis in cancer patients. Thus, the inhibition of VM is considered an effective approach for cancer treatment, although such a mechanism remains poorly described. In the present study, we examined methionine aminopeptidase­2 (MetAP2), a key factor of angiogenesis, and demonstrated that it is pivotal for VM, using pharmacological and genetic approaches. Fumagillin and TNP­470, angiogenesis inhibitors that target MetAP2, significantly suppressed VM in various human cancer cell lines. We established MetAP2­knockout (KO) human fibrosarcoma HT1080 cells using the CRISPR/Cas9 system and found that VM was attenuated in these cells. Furthermore, re­expression of wild­type MetAP2 restored VM in the MetAP2­KO HT1080 cells, but the substitution of D251, a conserved amino acid in MetAP2, failed to rescue the VM. Collectively, our results demonstrate that MetAP2 is critical for VM in human cancer cells and suggest fumagillin and TNP­470 as potent VM­suppressing agents.


Assuntos
Aminopeptidases/efeitos dos fármacos , Inibidores da Angiogênese/farmacologia , Cicloexanos/farmacologia , Ácidos Graxos Insaturados/farmacologia , Metaloendopeptidases/efeitos dos fármacos , Metionil Aminopeptidases/efeitos dos fármacos , Neovascularização Patológica/tratamento farmacológico , O-(Cloroacetilcarbamoil)fumagilol/farmacologia , Aminopeptidases/genética , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Fibrossarcoma/tratamento farmacológico , Técnicas de Silenciamento de Genes , Humanos , Metaloendopeptidases/genética , Metionil Aminopeptidases/genética , Neovascularização Patológica/genética , Sesquiterpenos/farmacologia
2.
Int J Mol Sci ; 21(14)2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32708166

RESUMO

During the metastasis process, tumor cells invade the blood circulatory system directly from venous capillaries or indirectly via lymphatic vessels. Understanding the relative contribution of each pathway and identifying the molecular targets that affect both processes is critical for reducing cancer spread. Methionine aminopeptidase 2 (MetAp2) is an intracellular enzyme known to modulate angiogenesis. In this study, we investigated the additional role of MetAp2 in lymphangiogenesis. A histological staining of tumors from human breast-cancer donors was performed in order to detect the level and the localization of MetAp2 and lymphatic capillaries. The basal enzymatic level and activity in vascular and lymphatic endothelial cells were compared, followed by loss of function studies determining the role of MetAp2 in lymphangiogenesis in vitro and in vivo. The results from the histological analyses of the tumor tissues revealed a high MetAp2 expression, with detectable sites of co-localization with lymphatic capillaries. We showed slightly reduced levels of the MetAp2 enzyme and MetAp2 mRNA expression and activity in primary lymphatic cells when compared to the vascular endothelial cells. The genetic and biochemical manipulation of MetAp2 confirmed the dual activity of the enzyme in both vascular and lymphatic remodulation in cell function assays and in a zebrafish model. We found that cancer-related lymphangiogenesis is inhibited in murine models following MetAp2 inhibition treatment. Taken together, our study provides an indication that MetAp2 is a significant contributor to lymphangiogenesis and carries a dual role in both vascular and lymphatic capillary formation. Our data suggests that MetAp2 inhibitors can be effectively used as anti-metastatic broad-spectrum drugs.


Assuntos
Inibidores da Angiogênese/farmacologia , Proliferação de Células/genética , Células Endoteliais/metabolismo , Linfangiogênese/genética , Metástase Linfática/genética , Metionil Aminopeptidases/metabolismo , Neovascularização Patológica/metabolismo , Animais , Animais Geneticamente Modificados , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/enzimologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/enzimologia , Endotélio Vascular/metabolismo , Humanos , Metástase Linfática/patologia , Vasos Linfáticos/efeitos dos fármacos , Vasos Linfáticos/metabolismo , Masculino , Metionil Aminopeptidases/antagonistas & inibidores , Metionil Aminopeptidases/genética , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Patológica/enzimologia , O-(Cloroacetilcarbamoil)fumagilol/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
3.
J Cancer Res Ther ; 15(1): 148-152, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30880771

RESUMO

CONTEXT: Resistance of cancer cells to chemotherapeutic drugs is a major pitfall of the failure of chemotherapy treatment for cholangiocarcinoma (CCA). A new therapeutic strategy that can improve treatment efficacy is mandatory for CCA patients. Our previous findings demonstrated the overexpression of methionine aminopeptidase-2 (MetAP2) in CCA patients. In addition, supplementation of TNP-470, a MetAP2 inhibitor, significantly inhibited the growth and metastatic activities of CCA cell lines. However, the molecular mechanism of antitumor activity of TNP-470 and the synergistic antitumor activity of TNP-470 combined with chemotherapeutic drugs are still unknown. AIMS: The aim of this study is to evaluate the molecular mechanism of anticancer activity and the potential use of TNP-470 as a chemosensitizing agent in CCA cell lines. MATERIALS AND METHODS: Cell cycle and apoptosis of CCA cell lines were evaluated using flow cytometry with propidium iodide staining. Expression of apoptosis regulatory proteins was measured by Western blotting. The chemosensitizing effect of TNP-470 was determined using combination index. RESULTS: TNP-470 inhibited the growth of CCA cells via induction of apoptosis through activation of the p38-phosphorylation and up- and down-regulation of Bax and Bcl-xL, respectively. Furthermore, TNP-470 significantly enhanced the antitumor activity of 5-fluorouracil, cisplatin, doxorubicin, and gemcitabine. CONCLUSIONS: The present results show that TNP-470 could be a potential therapeutic or adjuvant agent for CCA.


Assuntos
Aminopeptidases/antagonistas & inibidores , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias dos Ductos Biliares/tratamento farmacológico , Colangiocarcinoma/tratamento farmacológico , Glicoproteínas/antagonistas & inibidores , O-(Cloroacetilcarbamoil)fumagilol/farmacologia , Aminopeptidases/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Apoptose/efeitos dos fármacos , Neoplasias dos Ductos Biliares/patologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Colangiocarcinoma/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Glicoproteínas/metabolismo , Humanos , Concentração Inibidora 50 , Metionil Aminopeptidases , O-(Cloroacetilcarbamoil)fumagilol/uso terapêutico
4.
Blood Adv ; 2(14): 1664-1679, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-30012585

RESUMO

Fumagillin is an antiangiogenic and antineoplastic fungal natural product, and TNP-470 is one of its most potent analogs. Decades of studies revealed that TNP-470 has potent anticancer activities via destruction of neovasculature. In stark contrast, TNP-470 has been reported to suppress lymphocyte proliferation, thereby limiting its clinical potentials. In an attempt to investigate whether the similar or opposite immunomodulatory effect of TNP-470 could act on myeloid cells, we found that TNP-470 potentiates the immunogenicity of dendritic cells (DCs) toward a phenotype with T helper cell type 1 (Th1)-stimulatory features. Using DC vaccine on a murine melanoma cancer model, the TNP-470-treated DC vaccine could significantly induce tumor-specific immunogenicity and substantially enhance tumor eradication when compared with vehicle-treated DC vaccine in a prophylactic setting. Enhanced tumor-specific immunogenicity and delayed tumor progression were observed in a therapeutic setting upon the TNP-470-treated DC vaccine. Our data showed that TNP-470 potentiates Toll-like receptor signaling, including NF-κB activation, in DCs to transcriptionally activate interleukin-12 production, thus inducing a Th1-immune response. Our current study uncovers a novel immune function of TNP-470 in DCs and redefines its role as a novel class of small molecule immune adjuvant in DC-based cancer vaccine given potentiation of DC immunogenicity is a major roadblock in DC vaccine development. Our study not only provides a novel adjuvant for ex vivo-cultured patient-specific DC vaccines for cancer treatment but also discovers the distinct immunostimulatory function of TNP-470 in DCs of myeloid lineage that differs from its immunosuppressive function in lymphoid cells.


Assuntos
Adjuvantes Imunológicos/farmacologia , Vacinas Anticâncer/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células Dendríticas/imunologia , O-(Cloroacetilcarbamoil)fumagilol/farmacologia , Células Th1/imunologia , Animais , Diferenciação Celular/imunologia , Células Dendríticas/patologia , Masculino , Melanoma/imunologia , Melanoma/patologia , Melanoma/prevenção & controle , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/patologia , Neoplasias Experimentais/prevenção & controle , Células Th1/patologia
5.
Curr Eye Res ; 43(2): 147-154, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29111834

RESUMO

PURPOSE: The leading cause of severe visual loss world-wide is age-related macular degeneration. Although anti-Vascular Endothelial Growth Factor agents have significantly led to the initial pharmacologic reversal of vision loss in many cases of exudative macular degeneration, there still has been recurrence of choroidal neovascularization, and/or the onset of chorioretinal atrophy with fibrosis. MATERIALS AND METHODS: In this review we discuss the status of anti- Vascular Endothelial Growth Factor in age-related macular degeneration and describe different studies focused on new potential therapeutic targets beyond anti- Vascular Endothelial Growth Factor. RESULTS: Further investigations have elicited that Vascular Endothelial Growth Factor is only one of many angiogenic, and pro-inflammatory factors that bring about the growth and leakage of active choroidal neovascularization. Various new multifaceted strategies, including inhibitors to down-stream targets of endothelial cell division, such as TNP-470, may lead to a more permanent inactivation of choroidal neovascularization. CONCLUSIONS: Based on the accumulated results in the treatment of age-related macular degeneration, it is hoped that the appropriate combination of anti-Vascular Endothelial Growth Factor agents with longer-acting and multidimensional pharmaceuticals, such as Methionine Aminopeptidase-2 inhibitors, will more effectively control choroidal neovascularization, prevent atrophy and fibrosis, and reduce the burden of frequent intraocular injections in age-related macular degeneration.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Neovascularização de Coroide/tratamento farmacológico , Degeneração Macular/tratamento farmacológico , Preparações Farmacêuticas , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Aminopeptidases/antagonistas & inibidores , Inibidores da Angiogênese/efeitos adversos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Inibidores Enzimáticos/uso terapêutico , Glicoproteínas/antagonistas & inibidores , Humanos , Injeções Intravítreas , Metionil Aminopeptidases , O-(Cloroacetilcarbamoil)fumagilol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA