Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.200
Filtrar
1.
Biol Open ; 13(5)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38752595

RESUMO

There is evidence that indicates that temperature modulates the reproduction of the tropical species Octopus maya, through the over- or under-expression of many genes in the brain. If the oxygen supply to the brain depends on the circulatory system, how temperature affects different tissues will begin in the heart, responsible for pumping the oxygen to tissues. The present study examines the impact of heat stress on the mitochondrial function of the systemic heart of adult O. maya. The mitochondrial metabolism and antioxidant defense system were measured in the systemic heart tissue of female organisms acclimated to different temperatures (24, 26, and 30°C). The results show that acclimation temperature affects respiratory State 3 and State 4o (oligomycin-induced) with higher values observed in females acclimated at 26°C. The antioxidant defense system is also affected by acclimation temperature with significant differences observed in superoxide dismutase, glutathione S-transferase activities, and glutathione levels. The results suggest that high temperatures (30°C) could exert physical limitations on the circulatory system through the heart pumping, affecting nutrient and oxygen transport to other tissues, including the brain, which exerts control over the reproductive system. The role of the cardiovascular system in supporting aerobic metabolism in octopus females is discussed.


Assuntos
Antioxidantes , Mudança Climática , Octopodiformes , Fosforilação Oxidativa , Animais , Feminino , Octopodiformes/metabolismo , Octopodiformes/fisiologia , Antioxidantes/metabolismo , Aclimatação , Temperatura , Coração/fisiologia , Miocárdio/metabolismo , Superóxido Dismutase/metabolismo
2.
Glob Chang Biol ; 30(4): e17255, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38572638

RESUMO

Global warming is one of the most significant and widespread effects of climate change. While early life stages are particularly vulnerable to increasing temperatures, little is known about the molecular processes that underpin their capacity to adapt to temperature change during early development. Using a quantitative proteomics approach, we investigated the effects of thermal stress on octopus embryos. We exposed Octopus berrima embryos to different temperature treatments (control 19°C, current summer temperature 22°C, or future projected summer temperature 25°C) until hatching. By comparing their protein expression levels, we found that future projected temperatures significantly reduced levels of key eye proteins such as S-crystallin and retinol dehydrogenase 12, suggesting the embryonic octopuses had impaired vision at elevated temperature. We also found that this was coupled with a cellular stress response that included a significant elevation of proteins involved in molecular chaperoning and redox regulation. Energy resources were also redirected away from non-essential processes such as growth and digestion. These findings, taken together with the high embryonic mortality observed under the highest temperature, identify critical physiological functions of embryonic octopuses that may be impaired under future warming conditions. Our findings demonstrate the severity of the thermal impacts on the early life stages of octopuses as demonstrated by quantitative proteome changes that affect vision, protein chaperoning, redox regulation and energy metabolism as critical physiological functions that underlie the responses to thermal stress.


Assuntos
Octopodiformes , Animais , Temperatura , Mudança Climática , Aquecimento Global , Oceanos e Mares
3.
J Parasitol ; 110(2): 159-169, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38629270

RESUMO

Dicyemids (phylum Dicyemida) are the most common and most characteristic endosymbionts in the renal sacs of benthic cephalopod molluscs: octopuses and cuttlefishes. Typically, 2 or 3 dicyemid species are found in a single specimen of the host, and most dicyemids have high host specificity. Host-specific parasites are restricted to a limited range of host species by ecological barriers that impede dispersal and successful establishment; therefore, phylogenies of interacting groups are often congruent due to repeated co-speciation. Most frequently, however, host and parasite phylogenies are not congruent, which can be explained by processes such as host switching and other macro-evolutionary events. Here, the history of dicyemids and their host cephalopod associations were studied by comparing their phylogenies. Dicyemid species were collected from 8 decapodiform species and 12 octopodiform species in Japanese waters. Using whole mitochondrial cytochrome c oxidase subunit 1 (COI) sequences, a phylogeny of 37 dicyemid species, including 4 genera representing the family Dicyemidae, was reconstructed. Phylogenetic trees derived from analyses of COI genes consistently suggested that dicyemid species should be separated into 3 major clades and that the most common genera, Dicyema and Dicyemennea, are not monophyletic. Thus, morphological classification does not reflect the phylogenetic relationships of these 2 genera. Divergence (speciation) of dicyemid species seems to have occurred within a single host species. Possible host-switching events may have occurred between the Octopodiformes and Decapodiformes or within the Octopodiformes or the Decapodiformes. Therefore, the mechanism of dicyemid speciation may be a mixture of host switching and intra-host speciation. This is the first study in which the process of dicyemid diversification involving cephalopod hosts has been evaluated with a large number of dicyemid species and genera.


Assuntos
Octopodiformes , Parasitos , Animais , Filogenia , Invertebrados/anatomia & histologia , Invertebrados/genética , Decapodiformes/parasitologia
4.
Fish Shellfish Immunol ; 149: 109591, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679344

RESUMO

Toll-like receptors (TLRs) are one of the extensively studied pattern recognition receptors (PRRs) and play crucial roles in the immune responses of vertebrates and invertebrates. In this study, 14 TLR genes were identified from the genome-wide data of Octopus sinensis. Protein structural domain analysis showed that most TLR proteins had three main structural domains: extracellular leucine-rich repeats (LRR), transmembrane structural domains, and intracellular Toll/IL-1 receptor domain (TIR). The results of subcellular localization prediction showed that the TLRs of O. sinensis were mainly located on the plasma membrane. The results of quantitative real-time PCR (qPCR) showed that the detected TLR genes were differentially expressed in the hemolymph, white bodies, hepatopancreas, gills, gill heart, intestine, kidney, and salivary gland of O. sinensis. Furthermore, the present study investigated the expression changes of O. sinensis TLR genes in hemolymph, white bodies, gills, and hepatopancreas in different phases (6 h, 12 h, 24 h, 48 h) after stimulation with PGN, poly(I: C) and Vibrio parahaemolyticus. The expression of most of the TLR genes was upregulated at different time points after infection with pathogens or stimulation with PAMPs, a few genes were unchanged or even down-regulated, and many of the TLR genes were much higher after V. parahaemolyticus infection than after PGN and poly(I:C) stimulation. The results of this study contribute to a better understanding of the molecular immune mechanisms of O. sinensis TLRs genes in resistance to pathogen stimulation.


Assuntos
Regulação da Expressão Gênica , Imunidade Inata , Octopodiformes , Receptores Toll-Like , Vibrio parahaemolyticus , Animais , Receptores Toll-Like/genética , Receptores Toll-Like/imunologia , Receptores Toll-Like/química , Vibrio parahaemolyticus/fisiologia , Octopodiformes/genética , Octopodiformes/imunologia , Imunidade Inata/genética , Regulação da Expressão Gênica/imunologia , Filogenia , Perfilação da Expressão Gênica/veterinária , Poli I-C/farmacologia , Peptidoglicano/farmacologia , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Proteínas de Artrópodes/química , Moléculas com Motivos Associados a Patógenos/farmacologia
5.
Bioinspir Biomim ; 19(3)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38467068

RESUMO

Bioinspired and biomimetic soft grippers are rapidly growing fields. They represent an advancement in soft robotics as they emulate the adaptability and flexibility of biological end effectors. A prominent example of a gripping mechanism found in nature is the octopus tentacle, enabling the animal to attach to rough and irregular surfaces. Inspired by the structure and morphology of the tentacles, this study introduces a novel design, fabrication, and characterization method of dielectric elastomer suction cups. To grasp objects, the developed suction cups perform out-of-plane deflections as the suction mechanism. Their attachment mechanism resembles that of their biological counterparts, as they do not require a pre-stretch over a rigid frame or any external hydraulic or pneumatic support to form and hold the dome structure of the suction cups. The realized artificial suction cups demonstrate the capability of generating a negative pressure up to 1.3 kPa in air and grasping and lifting objects with a maximum 58 g weight under an actuation voltage of 6 kV. They also have sensing capabilities to determine whether the grasping was successful without the need of lifting the objects.


Assuntos
Octopodiformes , Robótica , Animais , Biomimética/métodos , Elastômeros , Octopodiformes/anatomia & histologia , Robótica/métodos
6.
Sci Total Environ ; 923: 171510, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38453076

RESUMO

Shallow waters are characterized by fluctuating environmental conditions, modulating marine life cycles and biological phenomena. Multiple variations in water temperature could affect eggs and embryos during spawning events of many marine invertebrate species, yet most of the findings on embryonic development in invertebrates come from experiments based on the constant temperature. In this study, to examine the effects of temperature variation on octopus embryos, Amphioctopus fangsiao, a common shallow-water octopus along the coast of China, was exposed to the constant temperature (18 °C, in situ temperature of the seawater in Lianyungang), ramping temperatures (from 18 to 24 °C), diel oscillating temperatures (18 °C and 20 °C for 12 h each day), and acute increasing temperatures (the temperature increased sharply from 18 °C to 24 °C at embryonic development stage XIX) for 47 days (from embryogenesis to settlement). The results demonstrated that the temperature variations accelerated the development time of A. fangsiao embryos. Temperature fluctuations could cause embryonic oxidative damage and disorder of glycolipid metabolism, thereby affecting the growth performance of embryos and the survival rate of hatchings. Through transcriptome sequencing, the mechanistic adaption of the embryo to environmental temperature variations was revealed. The pathways involved in the TCA cycle, DNA replication and repair, protein synthesis, cell signaling, and nervous system damage repair were significantly enriched, indicating that the embryo could improve heat tolerance to thermal stress by regulating gene expression. Moreover, acute warming temperatures posed the most detrimental effects on A. fangsiao embryos, which could cause embryos to hatch prematurely from the vegetal pole, further reducing the survival of hatchings. Meanwhile, the diel oscillating temperature was observed to affect the normal morphology of the embryo, resulting in embryo deformities. Thus, the constant temperature is critical for balanced growth and defense status in octopuses by maintaining metabolism homeostasis. For the first time, this study evaluates the effects of multiple temperature fluctuations on embryos of A. fangsiao, providing new insights into the physiological changes and molecular responses of cephalopod embryos following dynamic temperature stress.


Assuntos
Octopodiformes , Animais , Humanos , Recém-Nascido , Temperatura , Água , Embrião não Mamífero/fisiologia , Desenvolvimento Embrionário
7.
Mar Environ Res ; 196: 106402, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38402778

RESUMO

Cephalopods receive a great deal of attention due to their socioeconomically important fisheries and aquaculture industries as well their unique biological features. However, basic information about their physiological responses under stress conditions is lacking. This study investigated the impact of a simple stressor, exercise to exhaustion, on the activity levels of antioxidant enzymes and the concentrations of molecules involved in oxidative stress response in the pale octopus (Octopus pallidus). Eight biochemical assays were measured in the humoral (plasma) and cellular (hemocyte) components of O. pallidus haemolymph, the invertebrate analogue to vertebrate blood. Overall, exercise resulted in an increase in activity of plasma catalase (CAT) and glutathione-S-transferase (GST) and the decrease in activity of plasms glutathione reductase (GR). In the hemocytes, the exercise elicited a different response, with a reduction in the activity of superoxide dismutase (SOD), GR, and glutathione peroxidase (GPX) and a reduction in nitric oxide (NO) concentration. Malondialdehyde (MDA) activity was similar in the plasma and haemocytes in control and exercised treatments, indicating that exercise did not induce lipid peroxidation. These results provide an important baseline for understanding oxidative stress in octopus, with exercise to exhaustion serving as a simple stressor which will ultimately inform our ability to detect and understand physiological responses to more complex stressors.


Assuntos
Octopodiformes , Animais , Octopodiformes/metabolismo , Antioxidantes , Estresse Oxidativo , Catalase/metabolismo , Superóxido Dismutase/metabolismo , Glutationa Peroxidase/metabolismo , Peroxidação de Lipídeos , Glutationa Redutase/metabolismo , Glutationa Transferase/metabolismo , Glutationa/metabolismo
8.
Int J Biol Macromol ; 261(Pt 1): 129533, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38246448

RESUMO

Constructing high-density contact-separation sites on conductive materials highly determines the sensitivity of flexible resistance-type sensors relying on the crack microstructures. Herein, inspired from the multiple-tentacle structures on octopus, we demonstrated a sort of novel carbonized ZIF-8@loofah (CZL) as conductive material to develop ultrasensitivity flexible sensor, in which the carbonized ZIF-8 nanoparticles (~100 nm) served as tentacles. Originating from the formation of high-density contact-separation sites, the fabricated CZL-based strain sensor delivered ultrahigh sensitivity of GFmax = 15,901, short response time of 22 ms and excellent durability over 10,000 cycles. These features enable the sensor with efficient monitoring capacity for complex human activities, such as pulse rate and phonation. Moreover, when CZL was assembled into triboelectric nanogenerator (TENG), CZL-based TENG can effectively convert the irregular biomechanical energy into electric energy, providing sustainable power supply for the continuous operation of the sensing micro-system. Our findings established a novel platform to develop high-performance self-powered sensing systems of physiological parameter of human inspired from the nature.


Assuntos
Luffa , Octopodiformes , Humanos , Animais , Hidrogéis , Carboximetilcelulose Sódica , Alimentos Marinhos , Movimento Celular
9.
Artigo em Inglês | MEDLINE | ID: mdl-38083478

RESUMO

Wearable electronics demand high adhesion properties through various skin conditions. Here, 3D-printed porous skin patches with octopus-like suckers of different geometries are presented. Experimental and theoretical studies are investigated to show an enhanced, low-cost 3D-printed bioinspired patches that successfully obtain biosignals comparable to commercial electrodes.Clinical Relevance- This work establishes low-cost, highly-adhesive skin patches that are irritation- and contamination-free with effortless peel-off technique for biosignal measurement.


Assuntos
Octopodiformes , Dispositivos Eletrônicos Vestíveis , Animais , Adesivos , Pele , Eletrônica
10.
Mol Biol Rep ; 51(1): 21, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38108856

RESUMO

BACKGROUND: The Octopus vulgaris species complex consists of numerous morphologically similar but genetically distinct species. The current publicly available mitogenome of this species has been generated from a specimen collected from Tsukiji Fish Market, Tokyo, Japan. Octopus from the northwestern Pacific Ocean are now considered to be a separate species, Octopus sinensis. For this reason, we hypothesised that the current record of O. vulgaris was sequenced from a specimen of O. sinensis. Here, we sequenced the first complete mitogenome of a specimen of Octopus vulgaris sensu stricto that was collected from the species' confirmed distribution areas in northeastern Atlantic. METHODS AND RESULTS: The complete mitogenome was assembled de novo and annotated using 250 bp paired-end sequences. A single circular contig 15,655 bp in length with a mean read coverage of 1089 reads was reconstructed. The annotation pipeline identified 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNA) and two ribosomal RNAs. A maximum likelihood phylogenetic tree recovered the assembled mitogenome as the sister taxon of a monophyletic group comprising O. sinensis and the previously published mitogenome of "O. vulgaris" from Japan. This confirms that the latter was a Japanese specimen of O. sinensis. CONCLUSION: The mitogenome sequenced here is the first to be published for Octopus vulgaris sensu stricto. It represents an important first step in genetics-informed research on the evolution, conservation, and management of this commercially important species.


Assuntos
Genoma Mitocondrial , Octopodiformes , Animais , Genoma Mitocondrial/genética , Octopodiformes/genética , Filogenia , Japão , Oceano Pacífico
11.
Science ; 382(6677): 1384-1389, 2023 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-38127761

RESUMO

The marine-based West Antarctic Ice Sheet (WAIS) is considered vulnerable to irreversible collapse under future climate trajectories, and its tipping point may lie within the mitigated warming scenarios of 1.5° to 2°C of the United Nations Paris Agreement. Knowledge of ice loss during similarly warm past climates could resolve this uncertainty, including the Last Interglacial when global sea levels were 5 to 10 meters higher than today and global average temperatures were 0.5° to 1.5°C warmer than preindustrial levels. Using a panel of genome-wide, single-nucleotide polymorphisms of a circum-Antarctic octopus, we show persistent, historic signals of gene flow only possible with complete WAIS collapse. Our results provide the first empirical evidence that the tipping point of WAIS loss could be reached even under stringent climate mitigation scenarios.


Assuntos
Aquecimento Global , Camada de Gelo , Octopodiformes , Regiões Antárticas , Genômica , Água do Mar , Temperatura , Octopodiformes/genética , Polimorfismo de Nucleotídeo Único , Animais
12.
Nat Rev Drug Discov ; 22(12): 955, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37907754
14.
G3 (Bethesda) ; 13(12)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37850903

RESUMO

Cephalopods are emerging animal models and include iconic species for studying the link between genomic innovations and physiological and behavioral complexities. Coleoid cephalopods possess the largest nervous system among invertebrates, both for cell counts and brain-to-body ratio. Octopus vulgaris has been at the center of a long-standing tradition of research into diverse aspects of cephalopod biology, including behavioral and neural plasticity, learning and memory recall, regeneration, and sophisticated cognition. However, no chromosome-scale genome assembly was available for O. vulgaris to aid in functional studies. To fill this gap, we sequenced and assembled a chromosome-scale genome of the common octopus, O. vulgaris. The final assembly spans 2.8 billion basepairs, 99.34% of which are in 30 chromosome-scale scaffolds. Hi-C heatmaps support a karyotype of 1n = 30 chromosomes. Comparisons with other octopus species' genomes show a conserved octopus karyotype and a pattern of local genome rearrangements between species. This new chromosome-scale genome of O. vulgaris will further facilitate research in all aspects of cephalopod biology, including various forms of plasticity and the neural machinery underlying sophisticated cognition, as well as an understanding of cephalopod evolution.


Assuntos
Octopodiformes , Animais , Octopodiformes/genética , Genoma , Genômica , Sistema Nervoso , Cromossomos/genética
15.
Proc Natl Acad Sci U S A ; 120(41): e2301207120, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37782798

RESUMO

Enzymes from ectotherms living in chronically cold environments have evolved structural innovations to overcome the effects of temperature on catalysis. Cold adaptation of soluble enzymes is driven by changes within their primary structure or the aqueous milieu. For membrane-embedded enzymes, like the Na+/K+-ATPase, the situation is different because changes to the lipid bilayer in which they operate may also be relevant. Although much attention has been focused on thermal adaptation within lipid bilayers, relatively little is known about the contribution of structural changes within membrane-bound enzymes themselves. The identification of specific mutations that confer temperature compensation is complicated by the presence of neutral mutations, which can be more numerous. In the present study, we identified specific amino acids in a Na+/K+-ATPase from an Antarctic octopus that underlie cold resistance. Our approach was to generate chimeras between an Antarctic clone and a temperate ortholog and then study their temperature sensitivities in Xenopus oocytes using an electrophysiological approach. We identified 12 positions in the Antarctic Na+/K+-ATPase that, when transferred to the temperate ortholog, were sufficient to confer cold tolerance. Furthermore, although all 12 Antarctic mutations were required for the full phenotype, a single leucine in the third transmembrane segment (M3) imparted most of it. Mutations that confer cold resistance are mostly in transmembrane segments, at positions that face the lipid bilayer. We propose that the interface between a transmembrane enzyme and the lipid bilayer is a critical determinant of temperature sensitivity and, accordingly, has been a prime evolutionary target for thermal adaptation.


Assuntos
Bicamadas Lipídicas , Octopodiformes , ATPase Trocadora de Sódio-Potássio , Aclimatação/genética , Aminoácidos , Regiões Antárticas , ATPase Trocadora de Sódio-Potássio/metabolismo , Octopodiformes/enzimologia , Animais
16.
Bull Environ Contam Toxicol ; 111(5): 60, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37903889

RESUMO

Benzophenone-3 (BP-3) is an active ingredient in sunscreen lotions and personal-care products that protects against the damaging effects of ultraviolet rays. Given its worldwide dissemination, it has been linked with harmful effects on aquatic biota; however, its impact is not fully understood calling for further studies. To understand the impacts on an important economically and ecologically species, we evaluated the toxicity of BP-3 during the embryonic development of Octopus maya. Embryos were exposed to increasing concentrations of up to 500 µg BP-3/L until hatching. Antioxidant enzyme activities, oxidative-stress indicators, and B-esterases activities were measured at different developmental phases (organogenesis, activation, and growth). There were no significant differences between treatments, suggesting the lack of production of toxic metabolites that may be related to a protective chorion, an underdeveloped detoxification system, and the experimental conditions that limited phototoxicity.


Assuntos
Octopodiformes , Animais , Carboxilesterase/farmacologia , Estresse Oxidativo , Antioxidantes/farmacologia , Desenvolvimento Embrionário
17.
Mar Biotechnol (NY) ; 25(6): 1043-1056, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37878213

RESUMO

Octopus minor is an economically important species, but little is known about the histological pattern and regulatory mechanisms during gonadal development. In this study, we investigated the annual changes in total body weight (TW), gonad somatic index (GSI), gonadal histological features, and transcriptome of O. minor. The results indicated that both females and males showed a similar TW trend. The GSI peaked in June in females, while it remained constant at around 3% in males. Nine and four histological stages were observed in ovaries and testes, respectively. Our field sampling results implied that O. minor might have overwintering periods for both eggs and larvae. Transcriptome analysis revealed that a total of 1095 and 2468 genes were significantly expressed during ovarian and testicular development, separately. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis displayed that 126 GO terms and 5 KEGG pathways were significantly enriched in the ovarian group of advanced vitellogenic oocytes vs vitellogenic oocytes (AVO vs VO). The pathways "Ribosomal", "Cell cycle", and "Progesterone-mediated oocyte maturation" were predicted to promote yolk deposition. Additionally, the testicular comparison group of spent vs mature (Spent vs Mature) showed significant enrichment in 674 GO terms and 13 KEGG pathways, suggesting that energy metabolism and cell repair pathways may be involved in the spermatogenesis process. This work revealed the development process of the gonads and shed light on the potential regulatory pathways of O. minor, providing novel insights and laying a molecular basis for artificial breeding.


Assuntos
Octopodiformes , Animais , Feminino , Masculino , Octopodiformes/genética , Gônadas/metabolismo , Perfilação da Expressão Gênica , Ovário , Transcriptoma
18.
Curr Biol ; 33(20): R1081-R1082, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37875087

RESUMO

Allard et al. describe the remarkable 'taste by touch' abilities of cephalopods, in particular octopuses.


Assuntos
Cefalópodes , Octopodiformes , Percepção do Tato , Animais , Tato
19.
Curr Biol ; 33(20): R1083-R1086, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37875088

RESUMO

Underlying all animal behaviors, from the simplest reflexive reactions to the more complex cognitive reasoning and social interaction, are nervous systems uniquely adapted to bodies, environments, and challenges of different animal species. Coleoid cephalopods - octopuses, squid, and cuttlefish - are widely recognized as the most behaviorally complex invertebrates and provide exciting opportunities for studying the neural control of behaviour. These unusual molluscs evolved over 400 million years ago from slow-moving armored forms to active predators of coastal and open ocean ecosystems. In this primer we will discuss how, during cephalopod evolution, the relatively simple ganglion-based molluscan nervous system has been extensively transformed to control the complex bodies and process extensive visual, tactile, and chemical sensory inputs, and summarize some recent findings about their fascinating behaviors.


Assuntos
Cefalópodes , Octopodiformes , Animais , Ecossistema , Moluscos/fisiologia , Invertebrados , Octopodiformes/fisiologia , Sistema Nervoso , Decapodiformes
20.
Curr Biol ; 33(20): R1091-R1095, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37875090

RESUMO

Cephalopod molluscs are renowned for their unique central nervous system - a donut-shaped brain organised around the oesophagus. This brain supports sophisticated learning and memory abilities. Between the 1950s and 1980s, these cognitive abilities were extensively studied in octopus (Figure 1A) - a now leading model for the study of memory and its neural substrates (approximately 200 papers during this period). The focus on octopus learning and memory was mainly due to their curious nature and the fact that they adapt to laboratory-controlled conditions, making them easy to test and maintain in captivity. Research on cephalopod cognition began to widen in the late 20th century, when scientists started focusing on other coleoid cephalopods (i.e., cuttlefish and squid) (Figure 1B,C), and not just on associative learning and memory per se, but other more complex aspects of cognition such as episodic-like memory (the ability to remember the what, where, and when of a past event), source memory (the retrieval of contextual details from a memory), and self-control (the ability to inhibit an action in the present to gain a more valuable future reward). Attention broadened further over the last two decades to focus on the shelled cephalopods - the nautiloids (Figure 1D). The nautiloids have relatively primitive brains compared to their soft-bodied cousins (octopus, cuttlefish, and squid) but research shows that they are still able to comparatively succeed in some cognitive tasks. In this primer, we will provide a general description of the types of memory studied in cephalopods, and discuss learning and memory experiments that address the main challenges cephalopods face during their daily lives: navigation, timing, and food selection. Determining the type of information cephalopods learn and remember and whether they use such information to overcome ecological challenges will highlight why these invertebrates evolved large and sophisticated brains.


Assuntos
Aprendizagem , Octopodiformes , Animais , Aprendizagem/fisiologia , Encéfalo , Cognição , Decapodiformes/fisiologia , Octopodiformes/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA