Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 986
Filtrar
1.
Int J Oral Sci ; 16(1): 59, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39384739

RESUMO

Odontoblasts are primarily responsible for synthesizing and secreting extracellular matrix proteins, which are crucial for dentinogenesis. Our previous single-cell profile and RNAscope for odontoblast lineage revealed that cyclic adenosine monophosphate responsive element-binding protein 3 like 1 (Creb3l1) was specifically enriched in the terminal differentiated odontoblasts. In this study, deletion of Creb3l1 in the Wnt1+ lineage led to insufficient root elongation and dentin deposition. Assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) and RNA sequencing were performed to revealed that in CREB3L1-deficient mouse dental papilla cells (mDPCs), the genes near the closed chromatin regions were mainly associated with mesenchymal development and the downregulated genes were primarily related to biological processes including cell differentiation, protein biosynthesis and transport, all of which were evidenced by a diminished ability of odontoblastic differentiation, a significant reduction in intracellular proteins, and an even greater decline in extracellular supernatant proteins. Dentin matrix protein 1 (Dmp1), dentin sialophosphoprotein (Dspp), and transmembrane protein 30B (Tmem30b) were identified as direct transcriptional regulatory targets. TMEM30B was intensively expressed in the differentiated odontoblasts, and exhibited a significant decline in both CREB3L1-deficient odontoblasts in vivo and in vitro. Deletion of Tmem30b impaired the ability of odontoblastic differentiation, protein synthesis, and protein secretion in mDPCs. Moreover, overexpressing TMEM30B in CREB3L1-deficient mDPCs partially rescued the extracellular proteins secretion. Collectively, our findings suggest that CREB3L1 participates in dentinogenesis and facilitates odontoblastic differentiation by directly enhancing the transcription of Dmp1, Dspp, and other differentiation-related genes and indirectly promoting protein secretion partially via TMEM30B.


Assuntos
Diferenciação Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Dentina , Proteínas da Matriz Extracelular , Dente Molar , Proteínas do Tecido Nervoso , Odontoblastos , Animais , Camundongos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Dentina/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Odontoblastos/metabolismo , Fosfoproteínas , Sialoglicoproteínas , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo
2.
Pflugers Arch ; 476(9): 1411-1421, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39101996

RESUMO

Hypoxia is relevant to several physiological and pathological processes and this also applies for the tooth. The adaptive response to lowering oxygen concentration is mediated by hypoxia-inducible factors (HIFs). Since HIFs were shown to participate in the promotion of angiogenesis, stem cell survival, odontoblast differentiation and dentin formation, they may play a beneficial role in the tooth reparative processes. Although some data were generated in vitro, little is known about the in vivo context of HIFs in tooth development. In order to contribute to this field, the mouse mandibular first molar was used as a model.The expression and in situ localisation of HIFs were examined at postnatal (P) days P0, P7, P14, using RT-PCR and immunostaining. The expression pattern of a broad spectrum of hypoxia-related genes was monitored by customised PCR Arrays. Metabolic aspects were evaluated by determination of the lactate level and mRNA expression of the mitochondrial marker Nd1.The results show constant high mRNA expression of Hif1a, increasing expression of Hif2a, and very low expression of Hif3a during early postnatal molar development. In the examined period the localisation of HIFs in the nuclei of odontoblasts and the subodontoblastic layer identified their presence during odontoblastic differentiation. Additionally, the lower lactate level and higher expression of mitochondrial Nd1 in advanced development points to decreasing glycolysis during differentiation. Postnatal nuclear localisation of HIFs indicates a hypoxic state in specific areas of dental pulp as oxygen demands depend on physiological events such as crown and root dentin mineralization.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Polpa Dentária , Subunidade alfa do Fator 1 Induzível por Hipóxia , Dente Molar , Animais , Polpa Dentária/metabolismo , Camundongos , Dente Molar/metabolismo , Dente Molar/crescimento & desenvolvimento , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Odontoblastos/metabolismo , Redes e Vias Metabólicas , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Repressoras , Proteínas Reguladoras de Apoptose
3.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38999956

RESUMO

The transforming growth factor ß (TGFß) superfamily is a master regulator of development, adult homeostasis, and wound repair. Dysregulated TGFß signaling can lead to cancer, fibrosis, and musculoskeletal malformations. We previously demonstrated that TGFß receptor 2 (Tgfbr2) signaling regulates odontoblast differentiation, dentin mineralization, root elongation, and sensory innervation during tooth development. Sensory innervation also modulates the homeostasis and repair response in adult teeth. We hypothesized that Tgfbr2 regulates the neuro-pulpal responses to dentin injury. To test this, we performed a shallow dentin injury with a timed deletion of Tgfbr2 in the dental pulp mesenchyme of mice and analyzed the levels of tertiary dentin and calcitonin gene-related peptide (CGRP) axon sprouting. Microcomputed tomography imaging and histology indicated lower dentin volume in Tgfbr2cko M1s compared to WT M1s 21 days post-injury, but the volume was comparable by day 56. Immunofluorescent imaging of peptidergic afferents demonstrated that the duration of axon sprouting was longer in injured Tgfbr2cko compared to WT M1s. Thus, CGRP+ sensory afferents may provide Tgfbr2-deficient odontoblasts with compensatory signals for healing. Harnessing these neuro-pulpal signals has the potential to guide the development of treatments for enhanced dental healing and to help patients with TGFß-related diseases.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Polpa Dentária , Dentina , Receptor do Fator de Crescimento Transformador beta Tipo II , Transdução de Sinais , Animais , Polpa Dentária/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Camundongos , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/genética , Dentina/metabolismo , Camundongos Knockout , Odontoblastos/metabolismo
4.
Int J Biol Sci ; 20(9): 3557-3569, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993575

RESUMO

To investigate the cell linkage between tooth dentin and bones, we studied TGF-ß roles during postnatal dentin development using TGF-ß receptor 2 (Tgfßr2) cKO models and cell lineage tracing approaches. Micro-CT showed that the early Tgfßr2 cKO exhibit short roots and thin root dentin (n = 4; p<0.01), a switch from multilayer pre-odontoblasts/odontoblasts to a single-layer of bone-like cells with a significant loss of ~85% of dentinal tubules (n = 4; p<0.01), and a matrix shift from dentin to bone. Mechanistic studies revealed a statistically significant decrease in odontogenic markers, and a sharp increase in bone markers. The late Tgfßr2 cKO teeth displayed losses of odontoblast polarity, a significant reduction in crown dentin volume, and the onset of massive bone-like structures in the crown pulp with high expression levels of bone markers and low levels of dentin markers. We thus concluded that bones and tooth dentin are in the same evolutionary linkage in which TGF-ß signaling defines the odontogenic fate of dental mesenchymal cells and odontoblasts. This finding also raises the possibility of switching the pulp odontogenic to the osteogenic feature of pulp cells via a local manipulation of gene programs in future treatment of tooth fractures.


Assuntos
Dentina , Odontoblastos , Receptores de Fatores de Crescimento Transformadores beta , Transdução de Sinais , Fator de Crescimento Transformador beta , Dentina/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Odontoblastos/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Camundongos , Dente/metabolismo , Osso e Ossos/metabolismo , Microtomografia por Raio-X , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Camundongos Knockout
5.
J Dent Res ; 103(9): 889-898, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38910430

RESUMO

Located at the interface of the dentin-pulp complex, the odontoblasts are specialized cells responsible for dentin synthesis and nociceptive signal detection in response to external stimuli. Recent studies have shown that the mechanosensitive ion channel PIEZO1 is involved in bone formation and remodeling through the influx of calcium ions, and it is abundantly expressed in odontoblasts. However, the specific role of PIEZO1 in reactionary dentinogenesis and the underlying mechanisms remain elusive. In this study, we found intense PIEZO1 expression in the plasma membrane and cytoplasm of odontoblasts in healthy human third molars, mouse mandibular molars, and human odontoblast-like cells (hOBLCs). In hOBLCs, PIEZO1 positively regulated DSPP, DMP1, and COL1A1 expression through the Ca2+/PI3K-Akt/SEMA3A signaling pathway. In addition, exogenous SEMA3A supplementation effectively reversed reduced mineralization capacity in PIEZO1-knockdown hOBLCs. In vivo, Piezo1 expression peaked at day 7 and returned to baseline at day 21 in a wild-type mice dentin injury model, with Sema3a presenting a similar expression pattern. To investigate the specific role of PIEZO1 in odontoblast-mediated reactionary dentinogenesis, mice with a conditional knockout of Piezo1 in odontoblasts were generated, and no significant differences in teeth phenotypes were observed between the control and conditional knockout (cKO) mice. Nevertheless, cKO mice exhibited reduced reactionary dentin formation and decreased Sema3a and Dsp positive staining after dentin injury, indicating impaired dental pulp repair by odontoblasts. In summary, these findings suggest that PIEZO1 enhances the mineralization capacity of hOBLCs in vitro via the Ca2+/PI3K-Akt/SEMA3A signaling pathway and contributes to reactionary dentinogenesis in vivo.


Assuntos
Dentinogênese , Canais Iônicos , Odontoblastos , Semaforina-3A , Odontoblastos/metabolismo , Animais , Camundongos , Canais Iônicos/metabolismo , Humanos , Dentinogênese/fisiologia , Semaforina-3A/metabolismo , Transdução de Sinais/fisiologia , Dente Serotino
6.
Int J Mol Sci ; 25(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38928274

RESUMO

Epigenetic modulation, including histone modification, alters gene expression and controls cell fate. Histone deacetylases (HDACs) are identified as important regulators of dental pulp cell (DPC) mineralisation processes. Currently, there is a paucity of information regarding the nature of histone modification and HDAC expression in the dentine-pulp complex during dentinogenesis. The aim of this study was to investigate post-translational histone modulation and HDAC expression during DPC mineralisation and the expression of Class I/II HDACs during tooth development and in adult teeth. HDAC expression (isoforms -1 to -6) was analysed in mineralising primary rat DPCs using qRT-PCR and Western blot with mass spectrometry being used to analyse post-translational histone modifications. Maxillary molar teeth from postnatal and adult rats were analysed using immunohistochemical (IHC) staining for HDACs (1-6). HDAC-1, -2, and -4 protein expression increased until days 7 and 11, but decreased at days 14 and 21, while other HDAC expression increased continuously for 21 days. The Class II mineralisation-associated HDAC-4 was strongly expressed in postnatal sample odontoblasts and DPCs, but weakly in adult teeth, while other Class II HDACs (-5, -6) were relatively strongly expressed in postnatal DPCs and adult odontoblasts. Among Class I HDACs, HDAC-1 showed high expression in postnatal teeth, notably in ameloblasts and odontoblasts. HDAC-2 and -3 had extremely low expression in the rat dentine-pulp complex. Significant increases in acetylation were noted during DPC mineralisation processes, while trimethylation H3K9 and H3K27 marks decreased, and the HDAC-inhibitor suberoylanilide hydroxamic acid (SAHA) enhanced H3K27me3. These results highlight a dynamic alteration in histone acetylation during mineralisation and indicate the relevance of Class II HDAC expression in tooth development and regenerative processes.


Assuntos
Polpa Dentária , Dentina , Dentinogênese , Histona Desacetilases , Animais , Acetilação , Ratos , Histona Desacetilases/metabolismo , Histona Desacetilases/genética , Dentina/metabolismo , Polpa Dentária/metabolismo , Polpa Dentária/citologia , Polpa Dentária/crescimento & desenvolvimento , Processamento de Proteína Pós-Traducional , Histonas/metabolismo , Dente Molar/metabolismo , Dente Molar/crescimento & desenvolvimento , Odontoblastos/metabolismo , Masculino
7.
Life Sci ; 352: 122797, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38917871

RESUMO

Caries and pulpitis remain a major global disease burden and affect the quality of life of patients. Odontoblasts are key players in the progression of caries and pulpitis, not only secreting and mineralizing to form dentin, but also acting as a wall of defense to initiate immune defenses. Mitochondrion is an information processor for numerous cellular activities, and dysregulation of mitochondrion homeostasis not only affects cellular metabolism but also triggers a wide range of diseases. Elucidating mitochondrial homeostasis in odontoblasts can help deepen scholars' understanding of odontoblast-associated diseases. Articles on mitochondrial homeostasis in odontoblasts were evaluated for information pertinent to include in this narrative review. This narrative review focused on understanding the complex interplay between mitochondrial homeostasis in odontoblasts under physiological and pathological conditions. Furthermore, mitochondria-centered therapeutic strategies (including mitochondrial base editing, targeting platforms, and mitochondrial transplantation) were emphasized by resolving key genes that regulate mitochondrial function. Mitochondria are involved in odontoblast differentiation and function, and act as mitochondrial danger-associated molecular patterns (mtDAMPs) to mediate odontoblast pathological progression. Novel mitochondria-centered therapeutic strategies are particularly attractive as emerging therapeutic approaches for the maintenance of mitochondrial homeostasis. It is expected to probe key events of odontoblast differentiation and advance the clinical resolution of dentin formation and mineralization disorders and odontoblast-related diseases.


Assuntos
Homeostase , Mitocôndrias , Odontoblastos , Odontoblastos/metabolismo , Odontoblastos/fisiologia , Humanos , Homeostase/fisiologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Animais , Cárie Dentária/patologia , Cárie Dentária/metabolismo , Diferenciação Celular , Pulpite/metabolismo , Pulpite/patologia
8.
J Oral Biosci ; 66(3): 530-538, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38942194

RESUMO

OBJECTIVES: This study aimed to investigate the regulatory mechanisms governing dental mesenchymal cell commitment during tooth development, focusing on odontoblast differentiation and the role of epigenetic regulation in this process. METHODS: We performed single-cell RNA sequencing (scRNA-seq) of dental cells from embryonic day 14.5 (E14.5) mice to understand the heterogeneity of developing tooth germ cells. Computational analyses including gene regulatory network (GRN) assessment were conducted. We validated our findings using immunohistochemistry (IHC) and in vitro loss-of-function analyses using the DNA methyltransferase 1 (DNMT1) inhibitor Gsk-3484862 in primary dental mesenchymal cells (DMCs) isolated from E14.5 mouse tooth germs. Bulk RNA-seq of Gsk-3484862-treated DMCs was performed to identify potential downstream targets of DNMT1. RESULTS: scRNA-seq analysis revealed diverse cell populations within the tooth germs, including epithelial, mesenchymal, immune, and muscle cells. Using single-cell regulatory network inference and clustering (SCENIC), we identified Dnmt1 as a key regulator of early odontoblast development. IHC analysis showed the ubiquitous expression of DNMT1 in the dental papilla and epithelium. Bulk RNA-seq of cultured DMCs showed that Gsk-3484862 treatment upregulated odontoblast-related genes, whereas genes associated with cell division and the cell cycle were downregulated. Integrated analysis of bulk RNA-seq data with scRNA-seq SCENIC profiles was used to identify the potential Dnmt1 target genes. CONCLUSIONS: Dnmt1 may negatively affect odontoblast commitment and differentiation during tooth development. These findings contribute to a better understanding of the molecular mechanisms underlying tooth development and future development of hard-tissue regenerative therapies.


Assuntos
Diferenciação Celular , DNA (Citosina-5-)-Metiltransferase 1 , Papila Dentária , Odontoblastos , Análise de Célula Única , Germe de Dente , Animais , Camundongos , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Germe de Dente/metabolismo , Germe de Dente/citologia , Germe de Dente/embriologia , Papila Dentária/citologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Odontoblastos/citologia , Odontoblastos/metabolismo , Odontoblastos/efeitos dos fármacos , Análise de Sequência de RNA/métodos , Odontogênese/genética , Odontogênese/efeitos dos fármacos , Transcriptoma , Imuno-Histoquímica , Redes Reguladoras de Genes/efeitos dos fármacos
9.
Int J Mol Sci ; 25(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38891829

RESUMO

It is remarkable how teeth maintain their healthy condition under exceptionally high levels of mechanical loading. This suggests the presence of inherent mechanical adaptation mechanisms within their structure to counter constant stress. Dentin, situated between enamel and pulp, plays a crucial role in mechanically supporting tooth function. Its intermediate stiffness and viscoelastic properties, attributed to its mineralized, nanofibrous extracellular matrix, provide flexibility, strength, and rigidity, enabling it to withstand mechanical loading without fracturing. Moreover, dentin's unique architectural features, such as odontoblast processes within dentinal tubules and spatial compartmentalization between odontoblasts in dentin and sensory neurons in pulp, contribute to a distinctive sensory perception of external stimuli while acting as a defensive barrier for the dentin-pulp complex. Since dentin's architecture governs its functions in nociception and repair in response to mechanical stimuli, understanding dentin mechanobiology is crucial for developing treatments for pain management in dentin-associated diseases and dentin-pulp regeneration. This review discusses how dentin's physical features regulate mechano-sensing, focusing on mechano-sensitive ion channels. Additionally, we explore advanced in vitro platforms that mimic dentin's physical features, providing deeper insights into fundamental mechanobiological phenomena and laying the groundwork for effective mechano-therapeutic strategies for dentinal diseases.


Assuntos
Dentina , Dentina/fisiologia , Dentina/metabolismo , Humanos , Animais , Odontoblastos/fisiologia , Odontoblastos/metabolismo , Odontoblastos/citologia , Mecanotransdução Celular/fisiologia , Fenômenos Biomecânicos , Polpa Dentária/fisiologia , Matriz Extracelular/metabolismo , Matriz Extracelular/fisiologia
10.
Int J Hyperthermia ; 41(1): 2369749, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38925872

RESUMO

PURPOSE: Dentin hypersensitivity (DH) is a prevalent condition, but long-term effective treatments are scarce. Differentiation of odontoblast-like cells is promising for inducing tertiary dentinogenesis and ensuring sustained therapeutic efficacy against DH. This study examined the effects and mechanism of action of mild heat stress (MHS) on the differentiation of odontoblast-like MDPC-23 cells. METHODS: We used a heating device to accurately control the temperature and duration, mimicking the thermal microenvironment of odontoblast-like cells. Using this device, the effects of MHS on cell viability and differentiation were examined. Cell viability was assessed using the MTT assay. The expression and nucleoplasmic ratio of the yes-associated protein (YAP) were examined by western blotting and immunofluorescence. The gene expression levels of heat shock proteins (HSPs) and dentin matrix protein-1 (DMP1) were measured using qPCR. Dentin sialophosphoprotein (DSPP) expression was evaluated using immunofluorescence and immunoblotting. Verteporfin was used to inhibit YAP activity. RESULTS: Mild heat stress (MHS) enhanced the odontoblast differentiation of MDPC-23 cells while maintaining cell viability. MHS also increased YAP activity, as well as the levels of HSP25 mRNA, HSP70 mRNA, HSP90α mRNA, DMP1 mRNA, and DSPP protein. However, after YAP inhibition, both cell viability and the levels of HSP90α mRNA, DMP1 mRNA, and DSPP protein were reduced. CONCLUSION: YAP plays a crucial role in maintaining cell viability and promoting odontoblast differentiation of MDPC-23 cells under MHS. Consequently, MHS is a potential therapeutic strategy for DH, and boosting YAP activity could be beneficial for maintaining cell viability and promoting odontoblast differentiation.


Assuntos
Diferenciação Celular , Resposta ao Choque Térmico , Odontoblastos , Proteínas de Sinalização YAP , Odontoblastos/metabolismo , Animais , Proteínas de Sinalização YAP/metabolismo , Camundongos , Linhagem Celular , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sobrevivência Celular
11.
Cell Mol Biol (Noisy-le-grand) ; 70(6): 135-141, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38836669

RESUMO

Epigenetic change has been found to play an important role in cell differentiation and regulation and the dental pulp stem cell in tissue engineering is gaining attention due to the ability of cells to differentiate into odontoblast and other cells. This study evaluated the influence of poly L- lactic acid with hydroxyapatite-coated with polyaniline scaffold (PLLA/HA/PANI) on dental pulp stem cell (DPSC) proliferation and differentiation. After scaffold preparation and DPSCs seeding, the cells proliferation and differentiation were evaluated by immunocytochemistry assay and cell viability was measured by cytotoxicity / MTT assay. The results showed (PLLA/HA/PANI) scaffold facilitates DPSC proliferation and differentiation with gene expression. This finding underscores the promise of this biomaterial combination as a scaffold for dental tissue regeneration and application.


Assuntos
Materiais Biocompatíveis , Diferenciação Celular , Proliferação de Células , Polpa Dentária , Durapatita , Odontoblastos , Osteoblastos , Células-Tronco , Alicerces Teciduais , Polpa Dentária/citologia , Humanos , Diferenciação Celular/efeitos dos fármacos , Odontoblastos/citologia , Odontoblastos/efeitos dos fármacos , Odontoblastos/metabolismo , Alicerces Teciduais/química , Células-Tronco/citologia , Células-Tronco/metabolismo , Células-Tronco/efeitos dos fármacos , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Proliferação de Células/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Durapatita/química , Durapatita/farmacologia , Compostos de Anilina/farmacologia , Compostos de Anilina/química , Poliésteres/química , Poliésteres/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Engenharia Tecidual/métodos
12.
J Cell Biochem ; 125(7): e30577, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38720665

RESUMO

Odontoblast differentiation is a key process in dentin formation. Mouse dental papilla cells (mDPCs) are pivotal in dentinogenesis through their differentiation into odontoblasts. Odontoblast differentiation is intricately controlled by transcription factors (TFs) in a spatiotemporal manner. Previous research explored the role of RUNX2 and KLF4 in odontoblast lineage commitment, respectively. Building on bioinformatics analysis of our previous ATAC-seq profiling, we hypothesized that KLF4 potentially collaborates with RUNX2 to exert its biological role. To investigate the synergistic effect of multiple TFs in odontoblastic differentiation, we first examined the spatiotemporal expression patterns of RUNX2 and KLF4 in dental papilla at the bell stage using immunostaining techniques. Notably, RUNX2 and KLF4 demonstrated colocalization in preodontoblast. Further, immunoprecipitation and proximity ligation assays verified the interaction between RUNX2 and KLF4 in vitro. Specifically, the C-terminus of RUNX2 was identified as the interacting domain with KLF4. Functional implications of this interaction were investigated using small hairpin RNA-mediated knockdown of Runx2, Klf4, or both. Western blot analysis revealed a marked decrease in DSPP expression, an odontoblast differentiation marker, particularly in the double knockdown condition. Additionally, alizarin red S staining indicated significantly reduced mineralized nodule formation in this group. Collectively, our findings highlight the synergistic interaction between RUNX2 and KLF4 in promoting odontoblast differentiation from mDPCs. This study contributes to a more comprehensive understanding of the regulatory network of TFs governing odontoblast differentiation.


Assuntos
Diferenciação Celular , Subunidade alfa 1 de Fator de Ligação ao Core , Papila Dentária , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like , Odontoblastos , Fator 4 Semelhante a Kruppel/metabolismo , Odontoblastos/metabolismo , Odontoblastos/citologia , Animais , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Papila Dentária/citologia , Papila Dentária/metabolismo
13.
Int J Dev Biol ; 68(1): 19-24, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38591690

RESUMO

Tooth formation is a process tightly regulated by reciprocal interactions between epithelial and mesenchymal tissues. These epithelial-mesenchyme interactions regulate the expression of target genes via transcription factors. Among the regulatory elements governing this process, Epiprofin/Sp6 is a zinc finger transcription factor which is expressed in the embryonic dental epithelium and in differentiating pre-odontoblasts. Epiprofin knockout (Epfn-/-) mice present severe dental abnormalities, such as supernumerary teeth and enamel hypoplasia. Here, we describe dentin defects in molars and incisors of Epfn-/- mice. We observed that in the absence of Epfn, markers of early odontoblast differentiation, such as alkaline phosphatase activity, Dsp/Dpp expression, and Collagen Type I deposition, are downregulated. In addition, the expression of tight and gap junction proteins was severely impaired in the predontoblastic cell layer of developing Epfn-/- molars. Altogether, our data shows that Epfn is crucial for the proper differentiation of dental mesenchymal cells towards functional odontoblasts and subsequent dentin-matrix deposition.


Assuntos
Displasia da Dentina , Odontoblastos , Camundongos , Animais , Odontoblastos/metabolismo , Displasia da Dentina/metabolismo , Diferenciação Celular , Odontogênese , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 22-28, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38650160

RESUMO

This study aimed to evaluate the physiological role of NAMPT associated with MDPC-23 odontoblast cell proliferation. Cell viability was measured using the (DAPI) staining, caspase activation analysis and immunoblotting were performed. Visfatin promoted MDPC-23 odontoblast cell growth in a dose-dependent manner. Furthermore, the up-regulation of Visfatin promoted odontogenic differentiation and accelerated mineralization through an increase in representative odontoblastic biomarkers in MDPC-23 cells. However, FK-866 cell growth in a dose-dependent manner induced nuclear condensation and fragmentation. FK-866-treated cells showed H&E staining and increased apoptosis compared to control cells. The expression of anti-apoptotic factors components of the mitochondria-dependent intrinsic apoptotic pathway significantly decreased following FK-866 treatment. The expression of pro-apoptotic increased upon FK-866 treatment. In addition, FK-866 activated caspase-3 and PARP to induce cell death. In addition, after treating FK-866 for 72 h, the 3/7 activity of MDPC-23 cells increased in a concentration-dependent manner, and the IHC results also confirmed that Caspase-3 increased in a concentration-dependent. Therefore, the presence or absence of NAMPT expression in dentin cells was closely related to cell proliferation and formation of extracellular substrates.


Assuntos
Apoptose , Proliferação de Células , Nicotinamida Fosforribosiltransferase , Odontoblastos , Nicotinamida Fosforribosiltransferase/metabolismo , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Odontoblastos/efeitos dos fármacos , Odontoblastos/citologia , Odontoblastos/metabolismo , Animais , Camundongos , Linhagem Celular , Citocinas/metabolismo , Caspase 3/metabolismo , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Acrilamidas/farmacologia , Odontogênese/efeitos dos fármacos
15.
Shanghai Kou Qiang Yi Xue ; 33(1): 22-29, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38583020

RESUMO

PURPOSE: To investigate the role and mechanism of connexin 43(Cx43)in odontoblast differentiation of human dental pulp cells (hDPCs) induced by lipopolysaccharide (LPS). METHODS: The maxillary first molar injury model of SD rats was established. The expression pattern of Cx43 in dental pulp repair after injury was detected by immunofluorescence(IF) staining. hDPCs was respectively stimulated with 0, 1, 10, 100 and 1 000 ng/mL LPS for 6 h to screen the optimal concentration, and then the expression of Cx43 was inhibited and overexpressed in hDPCs. Quantitative real-time PCR(qRT-PCR) and Western blot(WB) were used to detect the expression of Cx43 and dentin sialophosphoprotein (DSPP), dental matrix protein-1 (DMP-1), osterix (Osx) and extracellular signal-regulated kinase (ERK) activity. Furthermore, hDPCs were treated with specific Cx43 channel inhibitors to investigate the effect of Cx43-mediated channel activity in odontoblast differentiation of hDPCs, and to explore the role and mechanism of Cx43 in regulating odontoblast differentiation of hDPCs induced by LPS. Statistical analysis was performed with SPSS 26.0 software package. RESULTS: IF results showed that Cx43 was mainly expressed in the odontoblast layer in healthy dental pulp tissues. At 3-24 h after tooth injury, the expression of Cx43 decreased and then gradually increased to the normal level; from 3 days to 2 weeks after injury, the expression of Cx43 tended to be down-regulated which was in the odontoblast layer and pulp proper. The expression of DSPP mRNA was significantly up-regulated in the hDPCs stimulated with 10 ng/mL LPS for 6 h(P<0.01). Inhibition of Cx43 significantly up-regulated the expression of DSPP, DMP-1 and Osx mRNA induced by LPS in hDPCs(P<0.05), while overexpression of Cx43 obviously inhibited the expression of factors related to LPS-induced odontoblast differentiation(P<0.01) and the fluorescence intensity of DSPP. 10 ng/mL LPS activated ERK signal in hDPCs, and overexpression of Cx43 significantly attenuated the activity of ERK signal induced by LPS(P<0.01). Inhibition of Cx43-mediated hemichannel (HC) promoted mRNA expression of factors related to odontoblast differentiation in hDPCs and the activity of ERK signal induced by LPS(P<0.05), while blocking Cx43-mediated gap junction channel (GJC) inhibited odontoblast differentiation. CONCLUSIONS: Cx43 participates in the regulation of dental pulp repair after injury, and its expression shows a downward trend as a whole. Inhibition of Cx43 or blocking of HC promotes LPS-induced ERK signal activity and odontoblast differentiation of hDPCs.


Assuntos
Conexina 43 , Lipopolissacarídeos , Animais , Humanos , Ratos , Diferenciação Celular/fisiologia , Células Cultivadas , Conexina 43/metabolismo , Polpa Dentária/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Odontoblastos/metabolismo , Ratos Sprague-Dawley , RNA Mensageiro/metabolismo
16.
Matrix Biol ; 129: 1-14, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38490466

RESUMO

The coordination between odontoblastic differentiation and directed cell migration of mesenchymal progenitors is necessary for regular dentin formation. The synthesis and degradation of hyaluronan (HA) in the extracellular matrix create a permissive niche that directly regulates cell behaviors. However, the role and mechanisms of HA degradation in dentin formation remain unknown. In this work, we present that HA digestion promotes odontoblastic differentiation and cell migration of mouse dental papilla cells (mDPCs). Hyaluronidase 2 (HYAL2) is responsible for promoting odontoblastic differentiation through degrading HA, while hyaluronidase 1 (HYAL1) exhibits negligible effect. Silencing Hyal2 generates an extracellular environment rich in HA, which attenuates F-actin and filopodium formation and in turn inhibits cell migration of mDPCs. In addition, activating PI3K/Akt signaling significantly rescues the effects of HA accumulation on cytodifferentiation. Taken together, the results confirm the contribution of HYAL2 to HA degradation in dentinogenesis and uncover the mechanism of the HYAL2-mediated HA degradation in regulating the odontoblastic differentiation and migration of mDPCs.


Assuntos
Diferenciação Celular , Movimento Celular , Papila Dentária , Ácido Hialurônico , Hialuronoglucosaminidase , Odontoblastos , Animais , Hialuronoglucosaminidase/metabolismo , Hialuronoglucosaminidase/genética , Camundongos , Ácido Hialurônico/metabolismo , Odontoblastos/metabolismo , Odontoblastos/citologia , Papila Dentária/citologia , Papila Dentária/metabolismo , Transdução de Sinais , Proteínas Ligadas por GPI/metabolismo , Proteínas Ligadas por GPI/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Células Cultivadas , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética
17.
Oral Dis ; 30(6): 3745-3760, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-38409677

RESUMO

OBJECTIVES: A zinc-finger transcription factor family comprising specificity proteins (SPs) and Krüppel-like factor proteins (KLFs) plays an important role in dentin development and regeneration. However, a systematic regulatory network involving SPs/KLFs in odontoblast differentiation has not yet been described. This review examined the expression patterns of SP/KLF gene family members and their current known functions and mechanisms in odontoblast differentiation, and discussed prospective research directions for further exploration of mechanisms involving the SP/KLF gene family in dentin development. MATERIALS AND METHODS: Relevant literature on SP/KLF gene family members and dentin development was acquired from PubMed and Web of Science. RESULTS: We discuss the expression patterns, functions, and related mechanisms of eight members of the SP/KLF gene family in dentin development and genetic disorders with dental problems. We also summarize current knowledge about their complementary or synergistic actions. Finally, we propose future research directions for investigating the mechanisms of dentin development. CONCLUSIONS: The SP/KLF gene family plays a vital role in tooth development. Studying the complex complementary or synergistic interactions between SPs/KLFs is helpful for understanding the process of odontoblast differentiation. Applications of single-cell and spatial multi-omics may provide a more complete investigation of the mechanism involved in dentin development.


Assuntos
Diferenciação Celular , Fatores de Transcrição Kruppel-Like , Odontoblastos , Odontoblastos/metabolismo , Humanos , Diferenciação Celular/genética , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Sp/genética , Fatores de Transcrição Sp/metabolismo , Dentina/metabolismo , Odontogênese/genética , Odontogênese/fisiologia
18.
Adv Mater ; 36(21): e2313419, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38335452

RESUMO

It remains an obstacle to induce the regeneration of hard dentin tissue in clinical settings. To overcome this, a P(VDF-TrFE) piezoelectric film with 2 wt% SrCl2 addition is designed. The biofilm shows a high flexibility, a harmonious biocompatibility, and a large piezoelectric d33 coefficient of 14 pC N-1, all contributing to building an electric microenvironment that favor the recruitment of dental pulp stem cells (DPSCs) and their differentiation into odontoblasts during normal chewing, speaking, etc. On the other hand, the strontium ions can be gradually released from the film, thus promoting DPSC odonto-differentiation. In vivo experiments also demonstrate that the film induces the release of dentin minerals and regeneration of dentin tissue. In the large animal dentin defect models, this piezoelectric film induces in situ dentin tissue formation effectively over a period of three months. This study illustrates a therapeutic potential of the piezoelectric film to improve dentin tissue repair in clinical settings.


Assuntos
Biofilmes , Polpa Dentária , Dentina , Regeneração , Células-Tronco , Estrôncio , Dentina/química , Biofilmes/efeitos dos fármacos , Polpa Dentária/citologia , Estrôncio/química , Estrôncio/farmacologia , Animais , Humanos , Regeneração/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Odontoblastos/citologia , Odontoblastos/efeitos dos fármacos , Odontoblastos/metabolismo , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia
19.
Int Dent J ; 74(3): 597-606, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38184457

RESUMO

OBJECTIVES: The aim of this study was to investigate the molecular mechanism underlying odontoblast damage repair in dentin hypersensitivity (DH) and the role of Yes-associated protein (YAP) in this process. METHODS: The DH model was constructed in Sprague-Dawley (SD) rats, and the in vivo expression of Piezo1, Integrin αvß3, YAP, and dentin sialophosphoprotein (DSPP) was detected by immunohistochemistry. COMSOL Multiphysics software was used to simulate the dentinal tubule fluid flow velocity and corresponding fluid shear stress (FSS) on the odontoblast processes. MDPC-23 cells were cultured in vitro and loaded with a peristaltic pump for 1 hour at FSS values of 0.1, 0.3, 0.5, and 0.7 dyne/cm2. The expression of Piezo1, Integrin αvß3, and YAP was detected by immunofluorescence. Verteporfin (a YAP-specific inhibitor) was utilised to confirm the effect of YAP on the expression of dentineogenesis-related protein under FSS. RESULTS: The level and duration of external mechanical stimuli have an effect on the functional expression of odontoblasts. In DH, the harder the food that is chewed, the faster the flow of the dentinal tubule fluid and the greater the FSS on the odontoblast processes. The expression of Piezo1, Integrin αvß3, and YAP can be promoted when the FSS is less than 0.3 dyne/cm2. After YAP inhibition, the DSPP protein expression level was reduced at 0.3 dyne/cm2 FSS. CONCLUSIONS: These results suggest that appropriate FSS can enhance the expression of odontoblast-related factors in odontoblasts via the Piezo1-Integrin αvß3-YAP mechanotransduction pathway and the YAP appears to play an essential role in the response of odontoblasts to external mechanical stimuli.


Assuntos
Sensibilidade da Dentina , Odontoblastos , Proteínas de Sinalização YAP , Animais , Ratos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sensibilidade da Dentina/genética , Sensibilidade da Dentina/metabolismo , Modelos Animais de Doenças , Proteínas da Matriz Extracelular/metabolismo , Imuno-Histoquímica , Integrina alfaVbeta3/metabolismo , Canais Iônicos/metabolismo , Proteínas de Membrana , Odontoblastos/metabolismo , Fosfoproteínas/metabolismo , Ratos Sprague-Dawley , Sialoglicoproteínas/metabolismo , Estresse Mecânico , Verteporfina/farmacologia , Verteporfina/uso terapêutico
20.
Odontology ; 112(1): 125-137, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37493885

RESUMO

Perfect intercellular junctions are key for odontoblast barrier function. However, whether Partitioning defective-3 (Par3) is expressed in odontoblasts and its potential effects on odontoblast junctions are unknown. Herein, we investigated the effect of Par3 on cellular junctions and the biological behavior of odontoblast-lineage cells (OLCs). Whole-transcriptome sequencing was used to analyze the effects of Par3 on OLCs and the underlying molecular mechanism. Par3 was detected under physiological and inflammatory conditions in OLCs. To investigate the regulatory effect of Par3 on junctions between mouse OLCs, the effects of Par3 downregulation on the proliferation, migration, cycle and apoptosis of OLCs were detected by 5-ethyl-2'-deoxyuridine (EdU) and Transwell assays and flow cytometry. Western blotting and alizarin red S and alkaline phosphatase (ALP) staining were used to observe the effect of Par3 downregulation on OLC mineralization. Whole-transcriptome sequencing was used to investigate the biological role of Par3 in OLCs and potential molecular mechanisms. Par3 was located along the odontoblast layer in the rat pulp tissue and in the cytoplasm of OLCs. Par3 expression was downregulated under inflammatory conditions. The OLC junctions were discontinuous, and total Zona occluden-1 (ZO-1) expression and expression of ZO-1 at the membrane in OLCs were reduced after Par3 silencing (P < 0.05). Expression of a junction-related protein (ZO-1) was downregulated after the downregulation of Par3 (P < 0.05), and ZO-1 moved from the cell membrane to the cytoplasm. OLC proliferation and migration were enhanced, but apoptosis and mineralization were inhibited in shPar3-transfected cells (P < 0.05). Sequencing identified 2996 differentially expressed genes (DEGs), which were mainly enriched in the response to stimuli and binding. Downregulation of Par3 could overactivate the PI3k-AKT pathway by promoting AKT phosphorylation (P < 0.05). Downregulation of Par3 may disrupt junctions between OLCs by affecting ZO-1 expression and distribution and promote OLC proliferation and migration but inhibit OLC mineralization. Par3 may interact with 14-3-3 proteins for PI3K-AKT pathway activation to affect OLC junctions and function.


Assuntos
Odontoblastos , Fosfatidilinositol 3-Quinases , Camundongos , Ratos , Animais , Odontoblastos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/farmacologia , Linhagem Celular , Junções Intercelulares , Diferenciação Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA