RESUMO
The ultrafast photochemical reaction mechanism, transient spectra, and transition kinetics of the human blue cone visual pigment have been recorded at room temperature. Ultrafast time-resolved absorption spectroscopy revealed the progressive formation and decay of several metastable photo-intermediates, corresponding to the Batho to Meta-II photo-intermediates previously observed with bovine rhodopsin and human green cone opsin, on the picosecond to millisecond timescales following pulsed excitation. The experimental data reveal several interesting similarities and differences between the photobleaching sequences of bovine rhodopsin, human green cone opsin, and human blue cone opsin. While Meta-II formation kinetics are comparable between bovine rhodopsin and blue cone opsin, the transition kinetics of earlier photo-intermediates and qualitative characteristics of the Meta-I to Meta-II transition are more similar for blue cone opsin and green cone opsin. Additionally, the blue cone photo-intermediate spectra exhibit a high degree of overlap with uniquely small spectral shifts. The observed variation in Meta-II formation kinetics between rod and cone visual pigments is explained based on key structural differences.
Assuntos
Temperatura , Humanos , Cinética , Bovinos , Animais , Opsinas dos Cones/metabolismo , Opsinas dos Cones/química , Rodopsina/química , Rodopsina/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Opsinas de Bastonetes/química , Opsinas de Bastonetes/metabolismo , Pigmentos da Retina/química , Pigmentos da Retina/metabolismo , Análise Espectral/métodosRESUMO
High sensitivity of scotopic vision (vision in dim light conditions) is achieved by the rods' low background noise, which is attributed to a much lower thermal activation rate (kth) of rhodopsin compared with cone pigments. Frogs and nocturnal geckos uniquely possess atypical rods containing noncanonical cone pigments that exhibit low kth, mimicking rhodopsin. Here, we investigated the convergent mechanism underlying the low kth of rhodopsins and noncanonical cone pigments. Our biochemical analysis revealed that the kth of canonical cone pigments depends on their absorption maximum (λmax). However, rhodopsin and noncanonical cone pigments showed a substantially lower kth than predicted from the λmax dependency. Given that the λmax is inversely proportional to the activation energy of the pigments in the Hinshelwood distribution-based model, our findings suggest that rhodopsin and noncanonical cone pigments have convergently acquired low frequency of spontaneous-activation attempts, including thermal fluctuations of the protein moiety, in the molecular evolutionary processes from canonical cone pigments, which contributes to highly sensitive scotopic vision.
Assuntos
Evolução Molecular , Visão Noturna , Rodopsina , Animais , Luz , Visão Noturna/fisiologia , Rodopsina/química , Rodopsina/metabolismo , Vertebrados , Opsinas dos Cones/química , Opsinas dos Cones/metabolismoRESUMO
Nervous systems are incredibly diverse, with myriad neuronal subtypes defined by gene expression. How binary and graded fate characteristics are patterned across tissues is poorly understood. Expression of opsin photopigments in the cone photoreceptors of the mouse retina provides an excellent model to address this question. Individual cones express S-opsin only, M-opsin only, or both S-opsin and M-opsin. These cell populations are patterned along the dorsal-ventral axis, with greater M-opsin expression in the dorsal region and greater S-opsin expression in the ventral region. Thyroid hormone signaling plays a critical role in activating M-opsin and repressing S-opsin. Here, we developed an image analysis approach to identify individual cone cells and evaluate their opsin expression from immunofluorescence imaging tiles spanning roughly 6 mm along the D-V axis of the mouse retina. From analyzing the opsin expression of ~250,000 cells, we found that cones make a binary decision between S-opsin only and co-expression competent fates. Co-expression competent cells express graded levels of S- and M-opsins, depending nonlinearly on their position in the dorsal-ventral axis. M- and S-opsin expression display differential, inverse patterns. Using these single-cell data, we developed a quantitative, probabilistic model of cone cell decisions in the retinal tissue based on thyroid hormone signaling activity. The model recovers the probability distribution for cone fate patterning in the mouse retina and describes a minimal set of interactions that are necessary to reproduce the observed cell fates. Our study provides a paradigm describing how differential responses to regulatory inputs generate complex patterns of binary and graded cell fates.
Assuntos
Opsinas dos Cones , Modelos Biológicos , Retina , Células Fotorreceptoras Retinianas Cones , Animais , Biologia Computacional , Opsinas dos Cones/análise , Opsinas dos Cones/química , Opsinas dos Cones/metabolismo , Feminino , Processamento de Imagem Assistida por Computador , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Retina/citologia , Retina/crescimento & desenvolvimento , Células Fotorreceptoras Retinianas Cones/citologia , Células Fotorreceptoras Retinianas Cones/fisiologiaRESUMO
There are fundamental differences in the structures of outer segments between rod and cone photoreceptor cells in the vertebrate retina. Visual pigments are the only essential membrane proteins that differ between rod and cone outer segments, making it likely that they contribute to these structural differences. Human rhodopsin is N-glycosylated on Asn2 and Asn15, whereas human (h) red and green cone opsins (hOPSR and hOPSG, respectively) are N-glycosylated at Asn34 Here, utilizing a monoclonal antibody (7G8 mAB), we demonstrate that hOPSR and hOPSG from human retina also are O-glycosylated with full occupancy. We determined that 7G8 mAB recognizes the N-terminal sequence 21DSTQSSIF28 of hOPSR and hOPSG from extracts of human retina, but only after their O-glycans have been removed with O-glycosidase treatment, thus revealing this post-translational modification of red and green cone opsins. In addition, we show that hOPSR and hOPSG from human retina are recognized by jacalin, a lectin that binds to O-glycans, preferentially to Gal-GalNAc. Next, we confirmed the presence of O-glycans on OPSR and OPSG from several vertebrate species, including mammals, birds, and amphibians. Finally, the analysis of bovine OPSR by MS identified an O-glycan on Ser22, a residue that is semi-conserved (Ser or Thr) among vertebrate OPSR and OPSG. These results suggest that O-glycosylation is a fundamental feature of red and green cone opsins, which may be relevant to their function or to cone cell development, and that differences in this post-translational modification also could contribute to the different morphologies of rod and cone photoreceptors.
Assuntos
Opsinas dos Cones , Processamento de Proteína Pós-Traducional , Células Fotorreceptoras Retinianas Cones/metabolismo , Animais , Bovinos , Galinhas , Opsinas dos Cones/química , Opsinas dos Cones/genética , Opsinas dos Cones/metabolismo , Glicosilação , Células HEK293 , Humanos , Macaca fascicularis , Domínios Proteicos , Especificidade da Espécie , Xenopus laevisRESUMO
The variable composition of the chromophore-binding pocket in visual receptors is essential for vision. The visual phototransduction starts with the cis-trans isomerization of the retinal chromophore upon absorption of photons. Despite sharing the common 11-cis-retinal chromophore, rod and cone photoreceptors possess distinct photochemical properties. Thus, a detailed molecular characterization of the chromophore-binding pocket of these receptors is critical to understanding the differences in the photochemistry of vision between rods and cones. Unlike for rhodopsin (Rh), the crystal structures of cone opsins remain to be determined. To obtain insights into the specific chromophore-protein interactions that govern spectral tuning in human visual pigments, here we harnessed the unique binding properties of 11-cis-6-membered-ring-retinal (11-cis-6mr-retinal) with human blue, green, and red cone opsins. To unravel the specificity of the chromophore-binding pocket of cone opsins, we applied 11-cis-6mr-retinal analog-binding analyses to human blue, green, and red cone opsins. Our results revealed that among the three cone opsins, only blue cone opsin can accommodate the 11-cis-6mr-retinal in its chromophore-binding pocket, resulting in the formation of a synthetic blue pigment (B6mr) that absorbs visible light. A combination of primary sequence alignment, molecular modeling, and mutagenesis experiments revealed the specific amino acid residue 6.48 (Tyr-262 in blue cone opsins and Trp-281 in green and red cone opsins) as a selectivity filter in human cone opsins. Altogether, the results of our study uncover the molecular basis underlying the binding selectivity of 11-cis-6mr-retinal to the cone opsins.
Assuntos
Opsinas dos Cones/química , Modelos Moleculares , Retinaldeído/química , Opsinas dos Cones/genética , Opsinas dos Cones/metabolismo , Células HEK293 , Humanos , Ligação Proteica , Retinaldeído/metabolismoRESUMO
Vertebrates have four classes of cone opsin genes derived from two rounds of genome duplication. These are short wavelength sensitive 1(SWS1), short wavelength sensitive 2(SWS2), medium wavelength sensitive (RH2), and long wavelength sensitive (LWS). Teleosts had another genome duplication at their origin and it is believed that only one of each cone opsin survived the ancestral teleost duplication event. We tested this by examining the retinal cones of a basal teleost group, the osteoglossomorphs. Surprisingly, this lineage has lost the typical vertebrate green-sensitive RH2 opsin gene and, instead, has a duplicate of the LWS opsin that is green sensitive. This parallels the situation in mammalian evolution in which the RH2 opsin gene was lost in basal mammals and a green-sensitive opsin re-evolved in Old World, and independently in some New World, primates from an LWS opsin gene. Another group of fish, the characins, possess green-sensitive LWS cones. Phylogenetic analysis shows that the evolution of green-sensitive LWS opsins in these two teleost groups derives from a common ancestral LWS opsin that acquired green sensitivity. Additionally, the nocturnally active African weakly electric fish (Mormyroideae), which are osteoglossomorphs, show a loss of the SWS1 opsin gene. In comparison with the independently evolved nocturnally active South American weakly electric fish (Gymnotiformes) with a functionally monochromatic LWS opsin cone retina, the presence of SWS2, LWS, and LWS2 cone opsins in mormyrids suggests the possibility of color vision.
Assuntos
Opsinas dos Cones/genética , Peixe Elétrico/genética , Sequência de Aminoácidos , Animais , Opsinas dos Cones/química , Células Fotorreceptoras de Vertebrados/química , Filogenia , SinteniaRESUMO
We report the implementation of the Laplace-transform scaled opposite-spin (LT-SOS) resolution-of-the-identity second-order approximate coupled-cluster singles and doubles (RICC2) combined with frozen-density embedding for excitation energies and molecular properties. In the present work, we furthermore employ the Hartree-Fock density for the interaction energy leading to a simplified Lagrangian which is linear in the Lagrangian multipliers. This approximation has the key advantage of a decoupling of the coupled-cluster amplitude and multipliers, leading also to a significant reduction in computation time. Using the new simplified Lagrangian in combination with efficient wavefunction models such as RICC2 or LT-SOS-RICC2 and density-functional theory (DFT) for the environment molecules (CC2-in-DFT) enables the efficient study of biological applications such as the rhodopsin and visual cone pigments using ab initio methods as routine applications.
Assuntos
Simulação por Computador , Modelos Químicos , Teoria Quântica , Opsinas dos Cones/química , Modelos Biológicos , Rodopsina/químicaRESUMO
Human color vision is mediated by the red, green, and blue cone visual pigments. Cone opsins are G-protein-coupled receptors consisting of an opsin apoprotein covalently linked to the 11-cis-retinal chromophore. All visual pigments share a common evolutionary origin, and red and green cone opsins exhibit a higher homology, whereas blue cone opsin shows more resemblance to the dim light receptor rhodopsin. Here we show that chromophore regeneration in photoactivated blue cone opsin exhibits intermediate transient conformations and a secondary retinoid binding event with slower binding kinetics. We also detected a fine-tuning of the conformational change in the photoactivated blue cone opsin binding site that alters the retinal isomer binding specificity. Furthermore, the molecular models of active and inactive blue cone opsins show specific molecular interactions in the retinal binding site that are not present in other opsins. These findings highlight the differential conformational versatility of human cone opsin pigments in the chromophore regeneration process, particularly compared to rhodopsin, and point to relevant functional, unexpected roles other than spectral tuning for the cone visual pigments.
Assuntos
Opsinas dos Cones/metabolismo , Regeneração , Retinaldeído/metabolismo , Sítios de Ligação , Opsinas dos Cones/química , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , TermodinâmicaRESUMO
Vision is the dominant sensory modality in many organisms for foraging, predator avoidance, and social behaviors including mate selection. Vertebrate visual perception is initiated when light strikes rod and cone photoreceptors within the neural retina of the eye. Sensitivity to individual colors, i.e., peak spectral sensitivities (λmax) of visual pigments, are a function of the type of chromophore and the amino acid sequence of the associated opsin protein in the photoreceptors. Large differences in peak spectral sensitivities can result from minor differences in amino acid sequence of cone opsins. To determine how minor sequence differences could result in large spectral shifts we selected a spectrally-diverse group of 14 teleost Rh2 cone opsins for which sequences and λmax are experimentally known. Classical molecular dynamics simulations were carried out after embedding chromophore-associated homology structures within explicit bilayers and water. These simulations revealed structural features of visual pigments, particularly within the chromophore, that contributed to diverged spectral sensitivities. Statistical tests performed on all the observed structural parameters associated with the chromophore revealed that a two-term, first-order regression model was sufficient to accurately predict λmax over a range of 452-528 nm. The approach was accurate, efficient and simple in that site-by-site molecular modifications or complex quantum mechanics models were not required to predict λmax. These studies identify structural features associated with the chromophore that may explain diverged spectral sensitivities, and provide a platform for future, functionally predictive opsin modeling.
Assuntos
Opsinas dos Cones/química , Células Fotorreceptoras Retinianas Cones/fisiologia , Pigmentos da Retina/química , Opsinas de Bastonetes/fisiologia , Sequência de Aminoácidos , Animais , Ciclídeos , Simulação por Computador , Humanos , Bicamadas Lipídicas , Modelos Moleculares , Simulação de Dinâmica Molecular , Opsinas , Oryzias , Filogenia , Pigmentação , Poecilia , Especificidade da Espécie , Vertebrados , Água , Peixe-ZebraRESUMO
Opsins comprise the protein component of light sensitive G protein-coupled receptors (GPCRs) in the retina of the eye that are responsible for the transduction of light into a biochemical signal. Here, we used hydrogen/deuterium (H/D) exchange coupled with mass spectrometry to map conformational changes in green cone opsin upon light activation. We then compared these findings with those reported for rhodopsin. The extent of H/D exchange in green cone opsin was greater than in rhodopsin in the dark and bleached states, suggesting a higher structural heterogeneity for green cone opsin. Further analysis revealed that green cone opsin exists as a dimer in both dark (inactive) and bleached (active) states, and that the predicted glycosylation sites at N32 and N34 are indeed glycosylated. Comparison of deuterium uptake between inactive and active states of green cone opsin also disclosed a reduced solvent accessibility of the extracellular N-terminal region and an increased accessibility of the chromophore binding site. Increased H/D exchange at the extracellular side of transmembrane helix four (TM4) combined with an analysis of sequence alignments revealed a conserved Pro-Pro motif in extracellular loop 2 (EL2) of monostable visual GPCRs. These data present new insights into the locus of chromophore release at the extracellular side of TM4 and TM5 and provide a foundation for future functional evaluation.
Assuntos
Opsinas dos Cones/química , Receptores Acoplados a Proteínas G/química , Opsinas de Bastonetes/química , Motivos de Aminoácidos , Substituição de Aminoácidos , Asparagina/metabolismo , Sítios de Ligação , Biologia Computacional , Opsinas dos Cones/genética , Opsinas dos Cones/metabolismo , Opsinas dos Cones/efeitos da radiação , Sequência Conservada , Medição da Troca de Deutério , Glicosilação , Humanos , Ligantes , Luz , Mutação Puntual , Prolina/química , Conformação Proteica , Redobramento de Proteína/efeitos da radiação , Estrutura Terciária de Proteína , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/efeitos da radiação , Proteínas Recombinantes , Opsinas de Bastonetes/genética , Opsinas de Bastonetes/metabolismo , Opsinas de Bastonetes/efeitos da radiação , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em TandemRESUMO
G protein-coupled receptors (GPCRs) detect a wide variety of physical and chemical signals and transmit that information across the cellular plasma membrane. Dimerization is a proposed modulator of GPCR signaling, but the structure and stability of class A GPCR dimerization have been difficult to establish. Here we investigated the dimerization affinity and binding interface of human cone opsins, which initiate and sustain daytime color vision. Using a time-resolved fluorescence approach, we found that human red cone opsin exhibits a strong propensity for dimerization, whereas the green and blue cone opsins do not. Through mutagenesis experiments, we identified a dimerization interface in the fifth transmembrane helix of human red cone opsin involving amino acids I230, A233, and M236. Insights into this dimerization interface of red cone opsin should aid ongoing investigations of the structure and function of GPCR quaternary interactions in cell signaling. Finally, we demonstrated that the same residues needed for dimerization are also partially responsible for the spectral tuning of red cone opsin. This last observation has the potential to open up new lines of inquiry regarding the functional role of dimerization for red cone opsin.
Assuntos
Opsinas dos Cones/química , Multimerização Proteica , Receptores Acoplados a Proteínas G/química , Transdução de Sinais , Sequência de Aminoácidos , Animais , Células COS , Membrana Celular/metabolismo , Chlorocebus aethiops , Opsinas dos Cones/genética , Opsinas dos Cones/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Immunoblotting , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia Confocal , Microscopia de Fluorescência , Mutação , Receptores Acoplados a Proteínas G/metabolismo , Homologia de Sequência de Aminoácidos , Espectrometria de Fluorescência , Proteína Vermelha FluorescenteRESUMO
Proteorhodopsins (PRs), members of the microbial rhodopsin superfamily of seven-transmembrane-helix proteins that use retinal chromophores, comprise the largest subfamily of rhodopsins, yet very little structural information is available. PRs are ubiquitous throughout the biosphere and their genes have been sequenced in numerous species of bacteria. They have been shown to exhibit ion-pumping activity like their archaeal homolog bacteriorhodopsin (BR). Here, the first crystal structure of a proteorhodopsin, that of a blue-light-absorbing proteorhodopsin (BPR) isolated from the Mediterranean Sea at a depth of 12â m (Med12BPR), is reported. Six molecules of Med12BPR form a doughnut-shaped C6 hexameric ring, unlike BR, which forms a trimer. Furthermore, the structures of two mutants of a related BPR isolated from the Pacific Ocean near Hawaii at a depth of 75â m (HOT75BPR), which show a C5 pentameric arrangement, are reported. In all three structures the retinal polyene chain is shifted towards helix C when compared with other microbial rhodopsins, and the putative proton-release group in BPR differs significantly from those of BR and xanthorhodopsin (XR). The most striking feature of proteorhodopsin is the position of the conserved active-site histidine (His75, also found in XR), which forms a hydrogen bond to the proton acceptor from the same molecule (Asp97) and also to Trp34 of a neighboring protomer. Trp34 may function by stabilizing His75 in a conformation that favors a deprotonated Asp97 in the dark state, and suggests cooperative behavior between protomers when the protein is in an oligomeric form. Mutation-induced alterations in proton transfers in the BPR photocycle in Escherichia coli cells provide evidence for a similar cross-protomer interaction of BPR in living cells and a functional role of the inter-protomer Trp34-His75 interaction in ion transport. Finally, Wat402, a key molecule responsible for proton translocation between the Schiff base and the proton acceptor in BR, appears to be absent in PR, suggesting that the ion-transfer mechanism may differ between PR and BR.
Assuntos
Bacteriorodopsinas/química , Opsinas dos Cones/química , Rodopsina/química , Bacteriorodopsinas/genética , Opsinas dos Cones/genética , Cristalização , Cristalografia por Raios X , Escherichia coli/genética , Mutação , Ressonância Magnética Nuclear Biomolecular , Transporte Proteico/genética , Prótons , Rodopsina/genética , Rodopsinas Microbianas/química , Rodopsinas Microbianas/genéticaRESUMO
Visual pigments have a conserved phenylalanine in transmembrane helix 5 located near the ß-ionone ring of the retinal chromophore. Site-directed mutants of this residue (F207) in a short-wavelength sensitive visual pigment (VCOP) were studied using UV-visible spectroscopy to investigate its role in photosensitivity and formation of the light-activated state. The side chain is important for pigment formation: VCOP(F207A), VCOP(F207L), VCOP(F207M), and VCOP(F207W) substitutions all bound 11-cis-retinal and formed a stable visual pigment, while VCOP(F207V), VCOP(F207S), VCOP(F207T), and VCOP(F207Y) substitutions do not. The extinction coefficients of all pigments are close, ranging between 35800 and 45600 M⻹ cm⻹. Remarkably, the mutants exhibit an up to 5-fold reduction in photosensitivity and also abnormal photobleaching behavior. One mutant, VCOP(F207A), forms an isomeric composition of the retinal chromophore after illumination comparable to that of wild-type VCOP yet does not release the all-trans-retinal chromophore. These findings suggest that the conserved F207 residue is important for a normal photoactivation pathway, formation of the active conformation and the exit of all-trans-retinal from the chromophore-binding pocket.
Assuntos
Opsinas dos Cones/química , Modelos Moleculares , Fenilalanina/química , Proteínas de Xenopus/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Sítios de Ligação , Opsinas dos Cones/genética , Opsinas dos Cones/metabolismo , Sequência Conservada , Conformação Molecular , Mutagênese Sítio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Fotodegradação , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Retinaldeído/química , Retinaldeído/metabolismo , Espectrofotometria , Xenopus , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismoRESUMO
Tarsiers are small nocturnal primates with a long history of fuelling debate on the origin and evolution of anthropoid primates. Recently, the discovery of M and L opsin genes in two sister species, Tarsius bancanus (Bornean tarsier) and Tarsius syrichta (Philippine tarsier), respectively, was interpreted as evidence of an ancestral long-to-middle (L/M) opsin polymorphism, which, in turn, suggested a diurnal or cathemeral (arrhythmic) activity pattern. This view is compatible with the hypothesis that stem tarsiers were diurnal; however, a reversion to nocturnality during the Middle Eocene, as evidenced by hyper-enlarged orbits, predates the divergence of T. bancanus and T. syrichta in the Late Miocene. Taken together, these findings suggest that some nocturnal tarsiers possessed high-acuity trichromatic vision, a concept that challenges prevailing views on the adaptive origins of the anthropoid visual system. It is, therefore, important to explore the plausibility and antiquity of trichromatic vision in the genus Tarsius. Here, we show that Sulawesi tarsiers (Tarsius tarsier), a phylogenetic out-group of Philippine and Bornean tarsiers, have an L opsin gene that is more similar to the L opsin gene of T. syrichta than to the M opsin gene of T. bancanus in non-synonymous nucleotide sequence. This result suggests that an L/M opsin polymorphism is the ancestral character state of crown tarsiers and raises the possibility that many hallmarks of the anthropoid visual system evolved under dim (mesopic) light conditions. This interpretation challenges the persistent nocturnal-diurnal dichotomy that has long informed debate on the origin of anthropoid primates.
Assuntos
Opsinas dos Cones/genética , Evolução Molecular , Polimorfismo Genético , Tarsiidae/fisiologia , Visão Ocular , Animais , Evolução Biológica , Opsinas dos Cones/química , Opsinas dos Cones/metabolismo , Feminino , Luz , Masculino , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Análise de Sequência de Proteína , Homologia de Sequência , Tarsiidae/genéticaRESUMO
Parietopsin is a nonvisual green light-sensitive opsin closely related to vertebrate visual opsins and was originally identified in lizard parietal eye photoreceptor cells. To obtain insight into the functional diversity of opsins, we investigated by UV-visible absorption spectroscopy the molecular properties of parietopsin and its mutants exogenously expressed in cultured cells and compared the properties to those of vertebrate and invertebrate visual opsins. Our mutational analysis revealed that the counterion in parietopsin is the glutamic acid (Glu) in the second extracellular loop, corresponding to Glu181 in bovine rhodopsin. This arrangement is characteristic of invertebrate rather than vertebrate visual opsins. The photosensitivity and the molar extinction coefficient of parietopsin were also lower than those of vertebrate visual opsins, features likewise characteristic of invertebrate visual opsins. On the other hand, irradiation of parietopsin yielded meta-I, meta-II, and meta-III intermediates after batho and lumi intermediates, similar to vertebrate visual opsins. The pH-dependent equilibrium profile between meta-I and meta-II intermediates was, however, similar to that between acid and alkaline metarhodopsins in invertebrate visual opsins. Thus, parietopsin behaves as an "evolutionary intermediate" between invertebrate and vertebrate visual opsins.
Assuntos
Opsinas dos Cones/química , Proteínas do Olho/química , Rodopsina/química , Animais , Ácido Glutâmico/genética , Invertebrados , Fotoquímica , Células Fotorreceptoras/metabolismo , Filogenia , Especificidade da Espécie , VertebradosRESUMO
Retinal analogues have been used to probe the chromophore binding pocket and function of the rod visual pigment rhodopsin. Despite the high homology between rod and cone visual pigment proteins, conclusions drawn from rhodopsin studies should not necessarily be extrapolated to cone visual pigment proteins. In this study, the effects of full-length and truncated retinal analogues on the human red cone opsin's ability to activate transducin, the G protein in visual transduction, were assessed. The result with beta-ionone (6) confirms that a covalent bond is not necessary to deactivate the red cone opsin. In addition, several small compounds were found able to deactivate this opsin. However, as the polyene chain is extended in a trans configuration beyond the 9-carbon position, the analogues became agonists up to all-trans-retinal (3). The 22-carbon analogue (2) appeared to be neither an agonist nor an inverse agonist. Although the all-trans-C17 (5) analogue was an agonist, the 9-cis-C17 (11) compound was an inverse agonist, a result that differs from that with rhodopsin. These results suggest that the red cone opsin has a more open structure in the chromophore binding region than rhodopsin and its activation or deactivation as a G-protein receptor may be less selective than rhodopsin.
Assuntos
Opsinas dos Cones/metabolismo , Retinaldeído , Animais , Bovinos , Opsinas dos Cones/química , Humanos , Estrutura Molecular , Retina/química , Pigmentos da Retina/metabolismo , Retinaldeído/análogos & derivados , Retinaldeído/química , Retinaldeído/metabolismo , Rodopsina/metabolismo , Estereoisomerismo , Transducina/metabolismoRESUMO
Upon absorption of a photon, the bound 11-cis-retinoid isomerizes to the all-trans form resulting in a protein conformational change that enables it to activate its G protein, transducin, to begin the visual signal transduction cascade. The native ligand, 11-cis-retinal, acts as an inverse agonist to both the apoproteins of rod and cone visual pigments (opsins); all-trans-retinal is an agonist. Truncated analogs of retinal have been used to characterize structure-function relationships with rod opsins, but little has been done with cone opsins. Activation of transducin by an opsin is one method to characterize the conformational state of the opsin. This chapter describes an in vitro transducin activation assay that can be used with cone opsins to determine the degree to which different ligands can act as an agonist or an inverse agonist to gain insight into the ligand-binding pocket of cone opsins and differences between the different classes of opsins. The understanding of the effects of ligands on cone opsin activity can potentially be applied to future therapeutic agents targeting opsins.
Assuntos
Opsinas dos Cones/agonistas , Opsinas dos Cones/metabolismo , Agonismo Inverso de Drogas , Retinaldeído/análogos & derivados , Retinaldeído/farmacologia , Opsinas de Bastonetes/agonistas , Opsinas de Bastonetes/metabolismo , Animais , Células COS , Bovinos , Membrana Celular/metabolismo , Chlorocebus aethiops , Opsinas dos Cones/química , Humanos , Opsinas de Bastonetes/química , Transducina/metabolismoRESUMO
The biologist Gordon Walls proposed his "transmutation" theory through the 1930s and the 1940s to explain cone-like morphology of rods (and vice versa) in the duplex retinas of modern-day reptiles, with snakes regarded as the epitome of his hypothesis. Despite Walls' interest, the visual system of reptiles, and in particular snakes, has been widely neglected in favor of studies of fishes and mammals. By analyzing the visual pigments of two henophidian snakes, Xenopeltis unicolor and Python regius, we show that both species express two cone opsins, an ultraviolet-sensitive short-wavelength-sensitive 1 (SWS1) (lambda(max) = 361 nm) pigment and a long-wavelength-sensitive (LWS) (lambda(max) = 550 nm) pigment, providing the potential for dichromatic color vision. They also possess rod photoreceptors which express the usual rod opsin (Rh1) pigment with a lambda(max) at 497 nm. This is the first molecular study of the visual pigments expressed in the photoreceptors of any snake species. The presence of a duplex retina and the characterization of LWS, SWS1, and Rh1 visual pigments in henophidian snakes implies that "lower" snakes do not provide support for Walls' transmutation theory, unlike some "higher" (caenophidian) snakes and other reptiles, such as geckos. More data from other snake lineages will be required to test this hypothesis further.