Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 236
Filtrar
1.
J Neural Eng ; 21(4)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39084245

RESUMO

Objective.Optogenetics allows the manipulation of neural circuitsin vivowith high spatial and temporal precision. However, combining this precision with control over a significant portion of the brain is technologically challenging (especially in larger animal models).Approach.Here, we have developed, optimised, and testedin vivo, the Utah Optrode Array (UOA), an electrically addressable array of optical needles and interstitial sites illuminated by 181µLEDs and used to optogenetically stimulate the brain. The device is specifically designed for non-human primate studies.Main results.Thinning the combinedµLED and needle backplane of the device from 300µm to 230µm improved the efficiency of light delivery to tissue by 80%, allowing lowerµLED drive currents, which improved power management and thermal performance. The spatial selectivity of each site was also improved by integrating an optical interposer to reduce stray light emission. These improvements were achieved using an innovative fabrication method to create an anodically bonded glass/silicon substrate with through-silicon vias etched, forming an optical interposer. Optical modelling was used to demonstrate that the tip structure of the device had a major influence on the illumination pattern. The thermal performance was evaluated through a combination of modelling and experiment, in order to ensure that cortical tissue temperatures did not rise by more than 1 °C. The device was testedin vivoin the visual cortex of macaque expressing ChR2-tdTomato in cortical neurons.Significance.It was shown that the UOA produced the strongest optogenetic response in the region surrounding the needle tips, and that the extent of the optogenetic response matched the predicted illumination profile based on optical modelling-demonstrating the improved spatial selectivity resulting from the optical interposer approach. Furthermore, different needle illumination sites generated different patterns of low-frequency potential activity.


Assuntos
Optogenética , Animais , Optogenética/métodos , Optogenética/instrumentação , Estimulação Luminosa/métodos , Estimulação Luminosa/instrumentação , Desenho de Equipamento/métodos , Macaca mulatta , Luz , Masculino
2.
Commun Biol ; 7(1): 916, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39080467

RESUMO

Cytokines have attracted sustained attention due to their multi-functional cellular response in immunotherapy. However, their application was limited to their short half-time, narrow therapeutic window, and undesired side effects. To address this issue, we developed a portable smart blue-light controlled (PSLC) device based on optogenetic technology. By combining this PSLC device with blue-light controlled gene modules, we successfully achieved the targeted regulation of cytokine expression within the tumor microenvironment. To alter the tumor microenvironment of solid tumors, pro-inflammatory cytokines were selected as blue-light controlled molecules. The results show that blue-light effectively regulates the expression of pro-inflammatory cytokines both in vitro and in vivo. This strategy leads to enhanced and activated tumor-infiltrating immune cells, which facilitated to overcome the immunosuppressive microenvironment, resulting in significant tumor shrinkage in tumor-bearing mice. Hence, our study offers a unique strategy for cytokine therapy and a convenient device for animal studies in optogenetic immunotherapy.


Assuntos
Citocinas , Luz , Optogenética , Microambiente Tumoral , Animais , Citocinas/metabolismo , Camundongos , Optogenética/métodos , Optogenética/instrumentação , Humanos , Linhagem Celular Tumoral , Imunoterapia/métodos , Feminino , Regulação Neoplásica da Expressão Gênica , Neoplasias/terapia , Neoplasias/imunologia , Neoplasias/metabolismo
3.
Nat Commun ; 15(1): 5736, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982049

RESUMO

Excessive exercise is an etiological factor of intervertebral disc degeneration (IVDD). Engineered extracellular vesicles (EVs) exhibit excellent therapeutic potential for disease-modifying treatments. Herein, we fabricate an exercise self-powered triboelectric-responsive microneedle (MN) assay with the sustainable release of optogenetically engineered EVs for IVDD repair. Mechanically, exercise promotes cytosolic DNA sensing-mediated inflammatory activation in senescent nucleus pulposus (NP) cells (the master cell population for IVD homeostasis maintenance), which accelerates IVDD. TREX1 serves as a crucial nuclease, and disassembly of TRAM1-TREX1 complex disrupts the subcellular localization of TREX1, triggering TREX1-dependent genomic DNA damage during NP cell senescence. Optogenetically engineered EVs deliver TRAM1 protein into senescent NP cells, which effectively reconstructs the elimination function of TREX1. Triboelectric nanogenerator (TENG) harvests mechanical energy and triggers the controllable release of engineered EVs. Notably, an optogenetically engineered EV-based targeting treatment strategy is used for the treatment of IVDD, showing promising clinical potential for the treatment of degeneration-associated disorders.


Assuntos
Vesículas Extracelulares , Degeneração do Disco Intervertebral , Agulhas , Núcleo Pulposo , Optogenética , Degeneração do Disco Intervertebral/terapia , Degeneração do Disco Intervertebral/metabolismo , Vesículas Extracelulares/metabolismo , Animais , Núcleo Pulposo/metabolismo , Optogenética/métodos , Optogenética/instrumentação , Humanos , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Senescência Celular , Exodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/genética , Ratos , Dano ao DNA , Camundongos , Masculino , Modelos Animais de Doenças , Ratos Sprague-Dawley
4.
Sci Rep ; 14(1): 13812, 2024 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-38877050

RESUMO

We have designed, fabricated, and characterized implantable silicon neural probes with nanophotonic grating emitters that focus the emitted light at a specified distance above the surface of the probe for spatially precise optogenetic targeting of neurons. Using the holographic principle, we designed gratings for wavelengths of 488 and 594 nm, targeting the excitation spectra of the optogenetic actuators Channelrhodopsin-2 and Chrimson, respectively. The measured optical emission pattern of these emitters in non-scattering medium and tissue matched well with simulations. To our knowledge, this is the first report of focused spots with the size scale of a neuron soma in brain tissue formed from implantable neural probes.


Assuntos
Neurônios , Optogenética , Fótons , Optogenética/métodos , Optogenética/instrumentação , Neurônios/fisiologia , Animais , Próteses e Implantes , Silício/química
5.
Sci Robot ; 9(90): eadi8995, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38776378

RESUMO

Closed-loop neuroprostheses show promise in restoring motion in individuals with neurological conditions. However, conventional activation strategies based on functional electrical stimulation (FES) fail to accurately modulate muscle force and exhibit rapid fatigue because of their unphysiological recruitment mechanism. Here, we present a closed-loop control framework that leverages physiological force modulation under functional optogenetic stimulation (FOS) to enable high-fidelity muscle control for extended periods of time (>60 minutes) in vivo. We first uncovered the force modulation characteristic of FOS, showing more physiological recruitment and significantly higher modulation ranges (>320%) compared with FES. Second, we developed a neuromuscular model that accurately describes the highly nonlinear dynamics of optogenetically stimulated muscle. Third, on the basis of the optogenetic model, we demonstrated real-time control of muscle force with improved performance and fatigue resistance compared with FES. This work lays the foundation for fatigue-resistant neuroprostheses and optogenetically controlled biohybrid robots with high-fidelity force modulation.


Assuntos
Fadiga Muscular , Músculo Esquelético , Optogenética , Optogenética/métodos , Optogenética/instrumentação , Animais , Fadiga Muscular/fisiologia , Músculo Esquelético/fisiologia , Humanos , Estimulação Elétrica/instrumentação , Contração Muscular/fisiologia , Robótica/instrumentação , Masculino , Desenho de Equipamento , Próteses Neurais , Dinâmica não Linear
6.
Biosens Bioelectron ; 258: 116298, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38701537

RESUMO

Wireless activation of the enteric nervous system (ENS) in freely moving animals with implantable optogenetic devices offers a unique and exciting opportunity to selectively control gastrointestinal (GI) transit in vivo, including the gut-brain axis. Programmed delivery of light to targeted locations in the GI-tract, however, poses many challenges not encountered within the central nervous system (CNS). We report here the development of a fully implantable, battery-free wireless device specifically designed for optogenetic control of the GI-tract, capable of generating sufficient light over large areas to robustly activate the ENS, potently inducing colonic motility ex vivo and increased propulsion in vivo. Use in in vivo studies reveals unique stimulation patterns that increase expulsion of colonic content, likely mediated in part by activation of an extrinsic brain-gut motor pathway, via pelvic nerves. This technology overcomes major limitations of conventional wireless optogenetic hardware designed for the CNS, providing targeted control of specific neurochemical classes of neurons in the ENS and brain-gut axis, for direct modulation of GI-transit and associated behaviours in freely moving animals.


Assuntos
Sistema Nervoso Entérico , Optogenética , Tecnologia sem Fio , Animais , Optogenética/instrumentação , Sistema Nervoso Entérico/fisiologia , Camundongos , Tecnologia sem Fio/instrumentação , Eixo Encéfalo-Intestino/fisiologia , Técnicas Biossensoriais/instrumentação , Desenho de Equipamento , Encéfalo/fisiologia , Camundongos Endogâmicos C57BL
7.
Lab Chip ; 24(9): 2397-2417, 2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38623840

RESUMO

Optical techniques, such as optogenetic stimulation and functional fluorescence imaging, have been revolutionary for neuroscience by enabling neural circuit analysis with cell-type specificity. To probe deep brain regions, implantable light sources are crucial. Silicon photonics, commonly used for data communications, shows great promise in creating implantable devices with complex optical systems in a compact form factor compatible with high volume manufacturing practices. This article reviews recent developments of wafer-scale multifunctional nanophotonic neural probes. The probes can be realized on 200 or 300 mm wafers in commercial foundries and integrate light emitters for photostimulation, microelectrodes for electrophysiological recording, and microfluidic channels for chemical delivery and sampling. By integrating active optical devices to the probes, denser emitter arrays, enhanced on-chip biosensing, and increased ease of use may be realized. Silicon photonics technology makes possible highly versatile implantable neural probes that can transform neuroscience experiments.


Assuntos
Encéfalo , Encéfalo/fisiologia , Humanos , Animais , Mapeamento Encefálico/instrumentação , Neurônios/fisiologia , Neurônios/citologia , Silício/química , Nanotecnologia/instrumentação , Optogenética/instrumentação
8.
Nat Commun ; 13(1): 839, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35149715

RESUMO

Optogenetic methods provide efficient cell-specific modulations, and the ability of simultaneous neural activation and inhibition in the same brain region of freely moving animals is highly desirable. Here we report bidirectional neuronal activity manipulation accomplished by a wireless, dual-color optogenetic probe in synergy with the co-expression of two spectrally distinct opsins (ChrimsonR and stGtACR2) in a rodent model. The flexible probe comprises vertically assembled, thin-film microscale light-emitting diodes with a lateral dimension of 125 × 180 µm2, showing colocalized red and blue emissions and enabling chronic in vivo operations with desirable biocompatibilities. Red or blue irradiations deterministically evoke or silence neurons co-expressing the two opsins. The probe interferes with dopaminergic neurons in the ventral tegmental area of mice, increasing or decreasing dopamine levels. Such bidirectional regulations further generate rewarding and aversive behaviors and interrogate social interactions among multiple mice. These technologies create numerous opportunities and implications for brain research.


Assuntos
Comportamento Animal , Optogenética/instrumentação , Optogenética/métodos , Tecnologia sem Fio , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Dopamina , Neurônios Dopaminérgicos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Opsinas , Área Tegmentar Ventral , Tecnologia sem Fio/instrumentação
9.
Nat Commun ; 13(1): 985, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35190556

RESUMO

Simultaneous large-scale recordings and optogenetic interventions may hold the key to deciphering the fast-paced and multifaceted dialogue between neurons that sustains brain function. Here we have taken advantage of thin, cell-sized, optical fibers for minimally invasive optogenetics and flexible implantations. We describe a simple procedure for making those fibers side-emitting with a Lambertian emission distribution. Here we combined those fibers with silicon probes to achieve high-quality recordings and ultrafast multichannel optogenetic inhibition. Furthermore, we developed a multi-channel optical commutator and general-purpose patch-cord for flexible experiments. We demonstrate that our framework allows to conduct simultaneous laminar recordings and multifiber stimulations, 3D optogenetic stimulation, connectivity inference, and behavioral quantification in freely moving animals. Our framework paves the way for large-scale photo tagging and controlled interrogation of rapid neuronal communication in any combination of brain areas.


Assuntos
Encéfalo/fisiologia , Neurônios/fisiologia , Optogenética/métodos , Animais , Encéfalo/citologia , Eletrodos Implantados , Masculino , Camundongos , Fibras Ópticas , Optogenética/instrumentação , Ratos , Técnicas Estereotáxicas
10.
PLoS Biol ; 20(1): e3001524, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35089912

RESUMO

We present a high-throughput optogenetic illumination system capable of simultaneous closed-loop light delivery to specified targets in populations of moving Caenorhabditis elegans. The instrument addresses three technical challenges: It delivers targeted illumination to specified regions of the animal's body such as its head or tail; it automatically delivers stimuli triggered upon the animal's behavior; and it achieves high throughput by targeting many animals simultaneously. The instrument was used to optogenetically probe the animal's behavioral response to competing mechanosensory stimuli in the the anterior and posterior gentle touch receptor neurons. Responses to more than 43,418 stimulus events from a range of anterior-posterior intensity combinations were measured. The animal's probability of sprinting forward in response to a mechanosensory stimulus depended on both the anterior and posterior stimulation intensity, while the probability of reversing depended primarily on the anterior stimulation intensity. We also probed the animal's response to mechanosensory stimulation during the onset of turning, a relatively rare behavioral event, by delivering stimuli automatically when the animal began to turn. Using this closed-loop approach, over 9,700 stimulus events were delivered during turning onset at a rate of 9.2 events per worm hour, a greater than 25-fold increase in throughput compared to previous investigations. These measurements validate with greater statistical power previous findings that turning acts to gate mechanosensory evoked reversals. Compared to previous approaches, the current system offers targeted optogenetic stimulation to specific body regions or behaviors with many fold increases in throughput to better constrain quantitative models of sensorimotor processing.


Assuntos
Caenorhabditis elegans/fisiologia , Ensaios de Triagem em Larga Escala , Mecanotransdução Celular/fisiologia , Movimento/fisiologia , Optogenética/métodos , Animais , Comportamento Animal/fisiologia , Retroalimentação Sensorial/fisiologia , Optogenética/instrumentação , Estimulação Luminosa , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/fisiologia
11.
Neuroimage ; 247: 118793, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34896291

RESUMO

Despite extensive efforts to increase the signal-to-noise ratio (SNR) of fMRI images for brain-wide mapping, technical advances of focal brain signal enhancement are lacking, in particular, for animal brain imaging. Emerging studies have combined fMRI with fiber optic-based optogenetics to decipher circuit-specific neuromodulation from meso to macroscales. High-resolution fMRI is needed to integrate hemodynamic responses into cross-scale functional dynamics, but the SNR remains a limiting factor given the complex implantation setup of animal brains. Here, we developed a multimodal fMRI imaging platform with an implanted inductive coil detector. This detector boosts the tSNR of MRI images, showing a 2-3-fold sensitivity gain over conventional coil configuration. In contrast to the cryoprobe or array coils with limited spaces for implanted brain interface, this setup offers a unique advantage to study brain circuit connectivity with optogenetic stimulation and can be further extended to other multimodal fMRI mapping schemes.


Assuntos
Encéfalo/diagnóstico por imagem , Imagem Ecoplanar/instrumentação , Razão Sinal-Ruído , Animais , Mapeamento Encefálico/instrumentação , Desenho de Equipamento , Optogenética/instrumentação , Estudo de Prova de Conceito , Ratos
12.
Elife ; 102021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34878406

RESUMO

Intelligent behavior and cognitive functions in mammals depend on cortical microcircuits made up of a variety of excitatory and inhibitory cells that form a forest-like complex across six layers. Mechanistic understanding of cortical microcircuits requires both manipulation and monitoring of multiple layers and interactions between them. However, existing techniques are limited as to simultaneous monitoring and stimulation at different depths without damaging a large volume of cortical tissue. Here, we present a relatively simple and versatile method for delivering light to any two cortical layers simultaneously. The method uses a tiny optical probe consisting of two microprisms mounted on a single shaft. We demonstrate the versatility of the probe in three sets of experiments: first, two distinct cortical layers were optogenetically and independently manipulated; second, one layer was stimulated while the activity of another layer was monitored; third, the activity of thalamic axons distributed in two distinct cortical layers was simultaneously monitored in awake mice. Its simple-design, versatility, small-size, and low-cost allow the probe to be applied widely to address important biological questions.


Assuntos
Optogenética/instrumentação , Optogenética/métodos , Estimulação Luminosa/instrumentação , Estimulação Luminosa/métodos , Córtex Visual Primário/diagnóstico por imagem , Córtex Visual Primário/fisiologia , Animais , Camundongos
13.
Nat Commun ; 12(1): 7036, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34857745

RESUMO

The molecular nanoscale organization of the surfaceome is a fundamental regulator of cellular signaling in health and disease. Technologies for mapping the spatial relationships of cell surface receptors and their extracellular signaling synapses would unlock theranostic opportunities to target protein communities and the possibility to engineer extracellular signaling. Here, we develop an optoproteomic technology termed LUX-MS that enables the targeted elucidation of acute protein interactions on and in between living cells using light-controlled singlet oxygen generators (SOG). By using SOG-coupled antibodies, small molecule drugs, biologics and intact viral particles, we demonstrate the ability of LUX-MS to decode ligand receptor interactions across organisms and to discover surfaceome receptor nanoscale organization with direct implications for drug action. Furthermore, by coupling SOG to antigens we achieved light-controlled molecular mapping of intercellular signaling within functional immune synapses between antigen-presenting cells and CD8+ T cells providing insights into T cell activation with spatiotemporal specificity. LUX-MS based decoding of surfaceome signaling architectures thereby provides a molecular framework for the rational development of theranostic strategies.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Linfócitos T CD8-Positivos/imunologia , Sinapses Imunológicas/metabolismo , Optogenética/métodos , Proteômica/métodos , Receptores de Superfície Celular/imunologia , Anticorpos/química , Células Apresentadoras de Antígenos/citologia , Linfócitos B/imunologia , Linfócitos B/patologia , Produtos Biológicos/química , Linfócitos T CD8-Positivos/citologia , Comunicação Celular , Linhagem Celular Tumoral , Cromatografia Líquida , Expressão Gênica , Células HL-60 , Humanos , Ligantes , Luz , Ativação Linfocitária , Optogenética/instrumentação , Medicina de Precisão/instrumentação , Medicina de Precisão/métodos , Ligação Proteica , Proteômica/instrumentação , Receptores de Superfície Celular/genética , Transdução de Sinais , Oxigênio Singlete/química , Oxigênio Singlete/metabolismo , Bibliotecas de Moléculas Pequenas/química , Espectrometria de Massas em Tandem , Vírion/química
14.
Int J Mol Sci ; 22(21)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34768957

RESUMO

With the rapid increase in the use of optogenetics to investigate nervous systems, there is high demand for neural interfaces that can simultaneously perform optical stimulation and electrophysiological recording. However, high-magnitude stimulation artifacts have prevented experiments from being conducted at a desirably high temporal resolution. Here, a flexible polyimide-based neural probe with polyethylene glycol (PEG) packaged optical fiber and Pt-Black/PEDOT-GO (graphene oxide doped poly(3,4-ethylene-dioxythiophene)) modified microelectrodes was developed to reduce the stimulation artifacts that are induced by photoelectrochemical (PEC) and photovoltaic (PV) effects. The advantages of this design include quick and accurate implantation and high-resolution recording capacities. Firstly, electrochemical performance of the modified microelectrodes is significantly improved due to the large specific surface area of the GO layer. Secondly, good mechanical and electrochemical stability of the modified microelectrodes is obtained by using Pt-Black as bonding layer. Lastly, bench noise recordings revealed that PEC noise amplitude of the modified neural probes could be reduced to less than 50 µV and no PV noise was detected when compared to silicon-based neural probes. The results indicate that this device is a promising optogenetic tool for studying local neural circuits.


Assuntos
Microeletrodos , Optogenética/instrumentação , Optogenética/métodos , Animais , Técnicas Eletroquímicas , Fenômenos Eletrofisiológicos , Desenho de Equipamento , Microscopia Eletrônica de Varredura , Neurônios/fisiologia , Fibras Ópticas
15.
Nat Commun ; 12(1): 5804, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34608155

RESUMO

During the last decade, cardiac optogenetics has turned into an essential tool for investigating cardiac function in general and for assessing functional interactions between different myocardial cell types in particular. To advance exploitation of the unique research opportunities offered by this method, we develop a panoramic opto-electrical measurement and stimulation (POEMS) system for mouse hearts. The core of the experimental platform is composed of 294 optical fibers and 64 electrodes that form a cup which embraces the entire ventricular surface of mouse hearts and enables straightforward 'drop&go' experimentation. The flexible assignment of fibers and electrodes to recording or stimulation tasks permits a precise tailoring of experiments to the specific requirements of individual optogenetic constructs thereby avoiding spectral congestion. Validation experiments with hearts from transgenic animals expressing the optogenetic voltage reporters ASAP1 and ArcLight-Q239 demonstrate concordance of simultaneously recorded panoramic optical and electrical activation maps. The feasibility of single fiber optical stimulation is proven with hearts expressing the optogenetic voltage actuator ReaChR. Adaptation of the POEMS system to larger hearts and incorporation of additional sensors can be achieved by redesigning the system-core accordingly.


Assuntos
Coração/fisiologia , Optogenética/métodos , Animais , Técnicas Eletrofisiológicas Cardíacas , Frequência Cardíaca , Potenciais da Membrana , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/fisiologia , Optogenética/instrumentação , Imagens com Corantes Sensíveis à Voltagem
16.
STAR Protoc ; 2(3): 100677, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34377994

RESUMO

Inducible biomolecular condensates play fundamental roles in cellular responses to intracellular and environmental cues. Knowledge about their composition is crucial to understand the functions that arise specifically from the assembly of condensates. This protocol combines an optogenetic and an efficient proximity labeling approach to analyze protein modifications driven by protein condensation in cultured cells. Low endogenous biotin level ensures sharp signals. For complete details on the use and execution of this protocol, please refer to Frattini et al. (2021).


Assuntos
Condensados Biomoleculares/química , Optogenética/métodos , Proteínas Recombinantes/genética , Condensados Biomoleculares/genética , Biotina/química , Linhagem Celular , Células Cultivadas , Células HEK293 , Humanos , Luz , Optogenética/instrumentação , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação
17.
Nat Neurosci ; 24(10): 1356-1366, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34400843

RESUMO

Optogenetics ushered in a revolution in how neuroscientists interrogate brain function. Because of technical limitations, the majority of optogenetic studies have used low spatial resolution activation schemes that limit the types of perturbations that can be made. However, neural activity manipulations at finer spatial scales are likely to be important to more fully understand neural computation. Spatially precise multiphoton holographic optogenetics promises to address this challenge and opens up many new classes of experiments that were not previously possible. More specifically, by offering the ability to recreate extremely specific neural activity patterns in both space and time in functionally defined ensembles of neurons, multiphoton holographic optogenetics could allow neuroscientists to reveal fundamental aspects of the neural codes for sensation, cognition and behavior that have been beyond reach. This Review summarizes recent advances in multiphoton holographic optogenetics that substantially expand its capabilities, highlights outstanding technical challenges and provides an overview of the classes of experiments it can execute to test and validate key theoretical models of brain function. Multiphoton holographic optogenetics could substantially accelerate the pace of neuroscience discovery by helping to close the loop between experimental and theoretical neuroscience, leading to fundamental new insights into nervous system function and disorder.


Assuntos
Holografia/instrumentação , Holografia/métodos , Neurociências/métodos , Optogenética/instrumentação , Optogenética/métodos , Animais , Encéfalo/fisiologia , Humanos , Rede Nervosa/fisiologia , Opsinas , Estimulação Luminosa , Fótons
18.
Methods Mol Biol ; 2312: 125-139, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34228288

RESUMO

With the increasing indispensable role of smartphones in our daily lives, the mobile health care system coupled with embedded physical sensors and modern communication technologies make it an attractive technology for enabling the remote monitoring of an individual's health. Using a multidisciplinary design principle coupled with smart electronics, software, and optogenetics, the investigators constructed smartphone-controlled optogenetic switches to enable the ultraremote-control transgene expression. A custom-designed SmartController system was programmed to process wireless signals from smartphones, enabling the regulation of therapeutic outputs production by optically engineered cells via a far-red light (FRL)-responsive optogenetic interface. In the present study, the investigators describe the details of the protocols for constructing smartphone-controlled optogenetic switches, including the rational design of an FRL-triggered transgene expression circuit, the procedure for cell culture and transfection, the implementation of the smartphone-controlled far-red light-emitting diode (LED) module, and the reporter detection assay.


Assuntos
Proteínas de Bactérias/genética , Engenharia Celular/instrumentação , Regulação da Expressão Gênica/efeitos da radiação , Luz , Optogenética/instrumentação , Smartphone , Biologia Sintética/instrumentação , Tecnologia sem Fio/instrumentação , Animais , Proteínas de Bactérias/metabolismo , Células HEK293 , Humanos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transfecção , Transgenes
19.
Methods Mol Biol ; 2312: 141-158, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34228289

RESUMO

With the development of mobile communication technology, smartphones have been used in point-of-care technologies (POCTs) as an important part of telemedicine. Using a multidisciplinary design principle coupling electrical engineering, software development, synthetic biology, and optogenetics, the investigators developed a smartphone-controlled semiautomatic theranostic system that regulates blood glucose homeostasis in diabetic mice in an ultraremote-control manner. The present chapter describes how the investigators tailor-designed the implant architecture "HydrogeLED," which is capable of coharboring a designer-cell-carrying alginate hydrogel and wirelessly powered far-red light LEDs. Using diabetes mellitus as a model disease, the in vivo expression of insulin or human glucagon-like peptide 1 (shGLP-1) from HydrogeLED implants could be controlled not only by pre-set ECNU-TeleMed programs, but also by a custom-engineered Bluetooth-active glucometer in a semiautomatic and glycemia-dependent manner. As a result, blood glucose homeostasis was semiautomatically maintained in diabetic mice through the smartphone-controlled semiautomatic theranostic system. By combining digital signals with optogenetically engineered cells, the present study provides a new method for the integrated diagnosis and treatment of diseases.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus Experimental/terapia , Controle Glicêmico/instrumentação , Optogenética/instrumentação , Smartphone , Telemedicina/instrumentação , Nanomedicina Teranóstica/instrumentação , Tecnologia sem Fio/instrumentação , Alginatos/química , Animais , Biomarcadores/sangue , Automonitorização da Glicemia/instrumentação , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/diagnóstico , Diabetes Mellitus Experimental/genética , Regulação da Expressão Gênica/efeitos da radiação , Peptídeo 1 Semelhante ao Glucagon/genética , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Células HEK293 , Homeostase , Humanos , Hidrogéis , Insulina/genética , Insulina/metabolismo , Luz , Masculino , Camundongos Endogâmicos C57BL , Aplicativos Móveis
20.
Nat Commun ; 12(1): 4478, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294698

RESUMO

Scintillators emit visible luminescence when irradiated with X-rays. Given the unlimited tissue penetration of X-rays, the employment of scintillators could enable remote optogenetic control of neural functions at any depth of the brain. Here we show that a yellow-emitting inorganic scintillator, Ce-doped Gd3(Al,Ga)5O12 (Ce:GAGG), can effectively activate red-shifted excitatory and inhibitory opsins, ChRmine and GtACR1, respectively. Using injectable Ce:GAGG microparticles, we successfully activated and inhibited midbrain dopamine neurons in freely moving mice by X-ray irradiation, producing bidirectional modulation of place preference behavior. Ce:GAGG microparticles are non-cytotoxic and biocompatible, allowing for chronic implantation. Pulsed X-ray irradiation at a clinical dose level is sufficient to elicit behavioral changes without reducing the number of radiosensitive cells in the brain and bone marrow. Thus, scintillator-mediated optogenetics enables minimally invasive, wireless control of cellular functions at any tissue depth in living animals, expanding X-ray applications to functional studies of biology and medicine.


Assuntos
Encéfalo/fisiologia , Animais , Comportamento Animal/fisiologia , Comportamento Animal/efeitos da radiação , Encéfalo/efeitos da radiação , Cério , Feminino , Células HEK293 , Humanos , Luminescência , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Opsinas/metabolismo , Opsinas/efeitos da radiação , Optogenética/instrumentação , Contagem de Cintilação , Tecnologia sem Fio/instrumentação , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA