Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 269
Filtrar
1.
An Acad Bras Cienc ; 96(suppl 1): e20240172, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39319837

RESUMO

Repetitive sequences can lead to variation in DNA quantity and composition among species. The Orchidaceae, the largest angiosperm family, is divided into five subfamilies, with Apostasioideae as the basal group and Orchidoideae and Epidendroideae showing high diversification rates. Despite their different evolutionary paths, some species in these groups have similar nuclear DNA content. This study focuses on one example to understand the dynamics of major repetitive DNAs in the nucleus. We used Next-Generation Sequencing (NGS) data from Apostasia wallichii (Apostasioideae) and Ludisia discolor (Orchidoideae) to identify and quantify the most abundant repeats. The repetitive fraction varied in abundance (27.5% in L. discolor and 60.6% in A. wallichii) and composition, with LTR retrotransposons of different lineages being the most abundant repeats in each species. Satellite DNAs showed varying organization and abundance. Despite the unbalanced ratio between single-copy and repetitive DNA sequences, the two species had the same genome size, possibly due to the elimination of non-essential genes. This phenomenon has been observed in other Apostasia and likely led to the proliferation of transposable elements in A. wallichii. Deep genome information in the future will aid in understanding the contraction/expansion of gene families and the evolution of sequences in these genomes.


Assuntos
Tamanho do Genoma , Genoma de Planta , Orchidaceae , Sequências Repetitivas de Ácido Nucleico , Orchidaceae/genética , Orchidaceae/classificação , Genoma de Planta/genética , Sequências Repetitivas de Ácido Nucleico/genética , Simulação por Computador , DNA de Plantas/genética , Sequenciamento de Nucleotídeos em Larga Escala
2.
Int J Mol Sci ; 25(17)2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39273486

RESUMO

Vanda R.Br. is an epiphytic orchid genus with significant horticultural and ornamental value. Previous molecular studies expanded Vanda including some members from five other genera. However, the interspecific relationships of this recently radiated genus have remained unclear based on several DNA markers until now. In this study, the complete plastome has been used to infer the phylogenetic relationships of Vanda s.l. The five newly obtained plastomes ranged from 146,340 bp to 149,273 bp in length, with a GC content ranging from 36.5% to 36.7%. The five plastomes contained 74 protein-coding genes (CDSs), 38 tRNAs, and 8 rRNAs, and their ndh genes underwent loss or pseudogenization. Comparative plastome analyses of 13 Vanda species revealed high conservation in terms of genome size, structure, and gene order, except for a large inversion from trnGGCC to ycf3 in V. coerulea. Moreover, six CDSs and five non-CDSs were selected as candidate DNA barcodes. Our phylogenetic analyses demonstrated that Vanda s.l. is a monophyletic group with high supporting values based on five different datasets (complete plastome with one IR, 68 CDSs, LSC, five hypervariable non-CDSs, and six hypervariable CDSs), while the phylogenetic relationships among species were fully resolved based on the complete plastome with one IR dataset. Our results confirmed that the complete plastome has a great power in resolving the phylogenetic relationships of recently radiated lineages.


Assuntos
Evolução Molecular , Orchidaceae , Filogenia , Orchidaceae/genética , Orchidaceae/classificação , Genomas de Plastídeos , Composição de Bases , Código de Barras de DNA Taxonômico
3.
PLoS One ; 19(9): e0291888, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39283891

RESUMO

The yellow-flowered Spathoglottis aurea (tribe Collabieae; family Orchidaceae) is native to the mountainous areas of Peninsular Malaysia. The species is well known as an ornamental plant and for its role in artificial hybrid breeding. There is an interesting evolutionary relationship between S. aurea and the geographically isolated S. microchilina from Borneo that has encouraged further study of the S. aurea populations, but the genomic resource for S. aurea has not yet been reported. The present study reports the first work to characterize a chloroplast (cp) genome among the Spathoglottis genus. The complete cp genome of S. aurea was assembled from a sequence generated by the Illumina platform and analysed in comparison with other Collabieae species available in the GenBank database. The cp genome of S. aurea is 157,957 base pairs (bp) in length with guanine-cytosine (GC) content of 37.3%. The genome possessed a typical quadripartite cp genome structure with large single-copy (LSC) (86,888 bp), small single-copy (SSC) (18,125 bp) and inverted repeat (IR) (26,472 bp) sequences. A total of 134 genes were annotated, with 88 protein coding genes (PCGs), 38 transfer RNA (tRNA) genes and eight ribosomal RNA (rRNA) genes. Overall, 80 simple sequence repeats (SSR) or microsatellites were identified. Comparative analysis with other Collabieae species revealed high conservation in the cp genome arrangements with minimal difference in genome lengths. However, several mutational hotspots were also detected, with high potential to be developed as genetic markers for phylogenetic analysis. Characterization of the S. aurea cp genome revealed its conserved nature without gene loss or rearrangements when compared to other species of the Collabieae tribe. Phylogenetic analysis of Collabieae species also revealed that S. aurea has a distant evolutionary relationship to other members of the Collabieae species, despite the presence of problematic genera such as Phaius and Cephalantheropsis.


Assuntos
Genoma de Cloroplastos , Orchidaceae , Filogenia , Genoma de Cloroplastos/genética , Orchidaceae/genética , Orchidaceae/classificação , Repetições de Microssatélites/genética , Composição de Bases/genética
4.
Int J Mol Sci ; 25(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39125719

RESUMO

Apostasia fujianica belongs to the genus Apostasia and is part of the basal lineage in the phylogenetic tree of the Orchidaceae. Currently, there are only ten reported complete mitochondrial genomes in orchids, which greatly hinders the understanding of mitochondrial evolution in Orchidaceae. Therefore, we assembled and annotated the mitochondrial genome of A. fujianica, which has a length of 573,612 bp and a GC content of 44.5%. We annotated a total of 44 genes, including 30 protein-coding genes, 12 tRNA genes, and two rRNA genes. We also performed relative synonymous codon usage (RSCU) analysis, repeat sequence analysis, intergenomic transfer (IGT) analysis, and Ka/Ks analysis for A. fujianica and conducted RNA editing site analysis on the mitochondrial genomes of eight orchid species. We found that most protein-coding genes are under purifying selection, but nad6 is under positive selection, with a Ka/Ks value of 1.35. During the IGT event in A. fujianica's mitogenome, the trnN-GUU, trnD-GUC, trnW-CCA, trnP-UGG, and psaJ genes were identified as having transferred from the plastid to the mitochondrion. Compared to other monocots, the family Orchidaceae appears to have lost the rpl10, rpl14, sdh3, and sdh4 genes. Additionally, to further elucidate the evolutionary relationships among monocots, we constructed a phylogenetic tree based on the complete mitogenomes of monocots. Our study results provide valuable data on the mitogenome of A. fujianica and lay the groundwork for future research on genetic variation, evolutionary relationships, and breeding of Orchidaceae.


Assuntos
Genoma Mitocondrial , Orchidaceae , Filogenia , Orchidaceae/genética , Orchidaceae/classificação , Genoma Mitocondrial/genética , Evolução Molecular , RNA de Transferência/genética , Composição de Bases , Edição de RNA/genética , Uso do Códon
5.
Int J Mol Sci ; 25(15)2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39126069

RESUMO

Gastrochilus is an orchid genus containing about 70 species in tropical and subtropical Asia with high morphological diversity. The phylogenetic relationships among this genus have not been fully resolved, and the plastome evolution has not been investigated either. In this study, five plastomes of Gastrochilus were newly reported, and sixteen plastomes of Gastrochilus were used to conduct comparative and phylogenetic analyses. Our results showed that the Gastrochilus plastomes ranged from 146,183 to 148,666 bp, with a GC content of 36.7-36.9%. There were 120 genes annotated, consisting of 74 protein-coding genes, 38 tRNA genes, and 8 rRNA genes. No contraction and expansion of IR borders, gene rearrangements, or inversions were detected. Additionally, the repeat sequences and codon usage bias of Gastrochilus plastomes were highly conserved. Twenty hypervariable regions were selected as potential DNA barcodes. The phylogenetic relationships within Gastrochilus were well resolved based on the whole plastome, especially among main clades. Furthermore, both molecular and morphological data strongly supported Haraella retrocalla as a member of Gastrochilus (G. retrocallus).


Assuntos
Código de Barras de DNA Taxonômico , Evolução Molecular , Orchidaceae , Filogenia , Orchidaceae/genética , Orchidaceae/classificação , Código de Barras de DNA Taxonômico/métodos , Genomas de Plastídeos
6.
Mol Phylogenet Evol ; 199: 108138, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38977041

RESUMO

Cypripedioideae (slipper orchids; Orchidaceae) currently consist of âˆ¼200 herbaceous species with a strikingly disjunctive distribution in tropical and temperate regions of both hemispheres. In this study, an updated phylogeny with representatives from all five cypripedioid genera was presented based on maximum likelihood and Bayesian inference of plastome and low-copy nuclear genes. Phylogenomic analyses indicated that each genus is monophyletic, but some relationships (e.g., those among Cypripedium sects. Acaulia, Arietinum, Bifolia, Flabellinervia, Obtusipetala and Palangshanensia) conflict with those in previous studies based on Sanger data. Cypripedioideae appeared to have arisen in South America and/or the adjacent Qinghai-Tibet Plateau and Hengduan Mountains âˆ¼35 Mya. We inferred multiple dispersal events between East Asia and North America in Cypripedium, and between mainland Southeast Asia and the Malay Archipelago in Paphiopedilum. In the Americas, divergences among four genera (except Cypripedium) occurred around 31-20 Mya, long before the closure of the Isthmus of Panama, indicating the importance of long-distance dispersal. Evolutionary patterns between morphological and plastome character evolution suggested several traits, genome size and NDH genes, which are likely to have contributed to the success of slipper orchids in alpine floras and low-elevation forests. Species diversification rates were notably higher in epiphytic clades of Paphiopedilum than in other, terrestrial cypripedioids, paralleling similar accelerations associated with epiphytism in other groups. This study also suggested that sea-level fluctuations and mountain-building processes promoted the diversification of the largest genera, Paphiopedilum and Cypripedium.


Assuntos
Orchidaceae , Filogenia , Filogeografia , Orchidaceae/genética , Orchidaceae/classificação , Teorema de Bayes , Evolução Molecular , Especiação Genética , Evolução Biológica , Análise de Sequência de DNA
7.
Int J Mol Sci ; 25(14)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39062906

RESUMO

As an important genus in Orchidaceae, Cymbidium has rich ecological diversity and significant economic value. DNA binding with one zinc finger (Dof) proteins are pivotal plant-specific transcription factors that play crucial roles in the growth, development, and stress response of plants. Although the Dof genes have been identified and functionally analyzed in numerous plants, exploration in Orchidaceae remains limited. We conducted a thorough analysis of the Dof gene family in Cymbidium goeringii, C. ensifolium, and C. sinensis. In total, 91 Dof genes (27 CgDofs, 34 CeDofs, 30 CsDofs) were identified, and Dof genes were divided into five groups (I-V) based on phylogenetic analysis. All Dof proteins have motif 1 and motif 2 conserved domains and over half of the genes contained introns. Chromosomal localization and collinearity analysis of Dof genes revealed their evolutionary relationships and potential gene duplication events. Analysis of cis-elements in CgDofs, CeDofs, and CsDofs promoters showed that light-responsive cis-elements were the most common, followed by hormone-responsive elements, plant growth-related elements, and abiotic stress response elements. Dof proteins in three Cymbidium species primarily exhibit a random coil structure, while homology modeling exhibited significant similarity. In addition, RT-qPCR analysis showed that the expression levels of nine CgDofs changed greatly under heat stress. CgDof03, CgDof22, CgDof27, CgDof08, and CgDof23 showed varying degrees of upregulation. Most upregulated genes under heat stress belong to group I, indicating that the Dof genes in group I have great potential for high-temperature resistance. In conclusion, our study systematically demonstrated the molecular characteristics of Dof genes in different Cymbidium species, preliminarily revealed the patterns of heat stress, and provided a reference for further exploration of stress breeding in orchids.


Assuntos
Regulação da Expressão Gênica de Plantas , Resposta ao Choque Térmico , Família Multigênica , Orchidaceae , Filogenia , Proteínas de Plantas , Orchidaceae/genética , Orchidaceae/classificação , Resposta ao Choque Térmico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Genoma de Planta , Dedos de Zinco/genética , Regiões Promotoras Genéticas
8.
BMC Genomics ; 25(1): 552, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38825700

RESUMO

BACKGROUND: The disputed phylogenetic position of Aerides flabellata Rolfe ex Downie, due to morphological overlaps with related species, was investigated based on evidence of complete chloroplast (cp) genomes. The structural characterization of complete cp genomes of A. flabellata and A. rosea Lodd. ex Lindl. & Paxton were analyzed and compared with those of six related species in "Vanda-Aerides alliance" to provide genomic information on taxonomy and phylogeny. RESULTS: The cp genomes of A. flabellata and A. rosea exhibited conserved quadripartite structures, 148,145 bp and 147,925 bp in length, with similar GC content (36.7 ~ 36.8%). Gene annotations revealed 110 single-copy genes, 18 duplicated in inverted regions, and ten with introns. Comparative analysis across related species confirmed stable sequence identity and higher variation in single-copy regions. However, there are notable differences in the IR regions between two Aerides Lour. species and the other six related species. The phylogenetic analysis based on CDS from complete cp genomes indicated that Aerides species except A. flabellata formed a monophyletic clade nested in the subtribe Aeridinae, being a sister group to Renanthera Lour., consistent with previous studies. Meanwhile, a separate clade consisted of A. flabellata and six Vanda R. Br. species was formed, as a sister taxon to Holcoglossum Schltr. CONCLUSIONS: This research was the first report on the complete cp genomes of A. flabellata. The results provided insights into understanding of plastome evolution and phylogenetic relationships of Aerides. The phylogenetic analysis based on complete cp genomes showed that A. flabellata should be placed in Vanda rather than in Aerides.


Assuntos
Genoma de Cloroplastos , Orchidaceae , Filogenia , Orchidaceae/genética , Orchidaceae/classificação , Composição de Bases , Anotação de Sequência Molecular
9.
Mol Ecol Resour ; 24(6): e13986, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38899721

RESUMO

Terrestrial orchids are a group of genetically understudied, yet culturally and economically important plants. The Orchidinae tribe contains many species that produce edible tubers that are used for the production of traditional delicacies collectively called 'salep'. Overexploitation of wild orchids in the Eastern Mediterranean and Western Asia threatens to drive many of these species to extinction, but cost-effective tools for monitoring their trade are currently lacking. Here we present a custom bait kit for target enrichment and sequencing of 205 novel genetic markers that are tailored to phylogenomic applications in Orchidinae s.l. A subset of 31 markers capture genes putatively involved in the production of glucomannan, a water-soluble polysaccharide that gives salep its distinctive properties. We tested the kit on 73 taxa native to the area, demonstrating universally high locus recovery irrespective of species identity, that exceeds the total sequence length obtained with alternative kits currently available. Phylogenetic inference with concatenation and coalescent approaches was robust and showed high levels of support for most clades, including some which were previously unresolved. Resolution for hybridizing and recently radiated lineages remains difficult, but could be further improved by analysing multiple haplotypes and the non-exonic sequences captured by our kit, with the promise to shed new light on the evolution of enigmatic taxa with a complex speciation history. Offering a step-up from traditional barcoding and universal markers, the genome-wide custom loci targeted by Orchidinae-205 are a valuable new resource to study the evolution, systematics and trade of terrestrial orchids.


Assuntos
Orchidaceae , Filogenia , Orchidaceae/genética , Orchidaceae/classificação , Marcadores Genéticos/genética , Análise de Sequência de DNA/métodos , Ásia , Região do Mediterrâneo , Genoma de Planta/genética
10.
Genes (Basel) ; 15(6)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38927625

RESUMO

Orchids of the genus Paphiopedilum, also called slippers, are among the most valued representatives of the Orchidaceae family due to their aesthetic qualities. Due to overexploitation, deforestation, and illegal trade in these plants, especially in the vegetative phase, Paphiopedilum requires special protection. This genus is listed in Appendix I of the Convention on International Trade in Endangered Species of Wild Fauna and Flora. Their precise identification is of great importance for the preservation of genetic resources and biodiversity of the orchid family (Orchidaceae). Therefore, the main objective of the study was to investigate the usefulness of the DNA barcoding technique for the identification of endangered orchids of the genus Paphiopedilum and to determine the effectiveness of five loci: matK, rbcL, ITS2, atpF-atpH and trnH-psbA as potential molecular markers for species of this genus. Among single locus barcodes, matK was the most effective at identifying species (64%). Furthermore, matK, ITS2, matK + rbcL, and matK + trnH-psbA barcodes can be successfully used as a complementary tool to identify Paphiopedilum orchids while supporting morphological data provided by taxonomists.


Assuntos
Código de Barras de DNA Taxonômico , Espécies em Perigo de Extinção , Orchidaceae , Código de Barras de DNA Taxonômico/métodos , Orchidaceae/genética , Orchidaceae/classificação , Filogenia , DNA de Plantas/genética
11.
Mol Phylogenet Evol ; 196: 108084, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38688440

RESUMO

The tribe Collabieae (Epidendroideae, Orchidaceae) comprises approximately 500 species. Generic delimitation within Collabieae are confusing and phylogenetic interrelationships within the Collabieae have not been well resolved. Plastid genomes and nuclear internal transcribed spacer (ITS) sequences were used to estimate the phylogenetic relationships, ancestral ranges, and diversification rates of Collabieae. The results showed that Collabieae was subdivided into nine clades with high support. We proposed to combine Ancistrochilus and Pachystoma into Spathoglottis, merge Collabium and Chrysoglossum into Diglyphosa, and separate Pilophyllum and Hancockia as distinctive genera. The diversification of the nine clades of Collabieae might be associated with the uplift of the Himalayas during the Late Oligocene/Early Miocene. The enhanced East Asian summer monsoon in the Late Miocene may have promoted the rapid diversification of Collabieae at a sustained high diversification rate. The increased size of terrestrial pseudobulbs may be one of the drivers of Collabieae diversification. Our results suggest that the establishment and development of evergreen broadleaved forests facilitated the diversification of Collabieae.


Assuntos
Orchidaceae , Filogenia , Orchidaceae/genética , Orchidaceae/classificação , Florestas , Genomas de Plastídeos/genética , Filogeografia , DNA Espaçador Ribossômico/genética , Análise de Sequência de DNA , Ásia , DNA de Plantas/genética
12.
Viruses ; 14(2)2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35215958

RESUMO

The Australasian biogeographic realm is a major centre of diversity for orchids, with every subfamily of the Orchidaceae represented and high levels of endemism at the species rank. It is hypothesised that there is a commensurate diversity of viruses infecting this group of plants. In this study, we have utilised high-throughput sequencing to survey for viruses infecting greenhood orchids (Pterostylidinae) in New South Wales and the Australian Capital Territory. The main aim of this study was to characterise Pterostylis blotch virus (PtBV), a previously reported but uncharacterised virus that had been tentatively classified in the genus Orthotospovirus. This classification was confirmed by genome sequencing, and phylogenetic analyses suggested that PtBV is representative of a new species that is possibly indigenous to Australia as it does not belong to either the American or Eurasian clades of orthotospoviruses. Apart from PtBV, putative new viruses in the genera Alphaendornavirus, Amalgavirus, Polerovirus and Totivirus were discovered, and complete genome sequences were obtained for each virus. It is concluded that the polerovirus is likely an example of an introduced virus infecting a native plant species in its natural habitat, as this virus is probably vectored by an aphid, and Australia has a depauperate native aphid fauna that does not include any species that are host-adapted to orchids.


Assuntos
Orchidaceae/virologia , Vírus de Plantas/isolamento & purificação , Vírus de RNA/isolamento & purificação , Austrália , Genoma Viral/genética , Sequenciamento de Nucleotídeos em Larga Escala , Orchidaceae/classificação , Filogenia , Doenças das Plantas/virologia , Vírus de Plantas/classificação , Vírus de Plantas/genética , Vírus de RNA/classificação , Vírus de RNA/genética , RNA Viral/genética , Proteínas Virais/genética
13.
Genes (Basel) ; 12(6)2021 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-34205392

RESUMO

The lady's slipper orchid (Cypripedium calceolus), which inhabits shady deciduous and mixed forests and meadows, is now threatened with extinction in many European countries, and its natural populations have been dramatically declining in recent years. Knowledge of its evolutionary history, genetic variability, and processes in small populations are therefore crucial for the species' protection. Nowadays, in south-west Poland, it is only distributed in seven small remnant and isolated populations, which we examined. One nuclear (ITS rDNA) and two plastid (accD-psa1, trnL-F) markers were analyzed and compared globally in this study. Based on the nuclear marker, the most common ancestor of C. calceolus and Cypripedium shanxiense existed about 2 million years ago (95% HPD: 5.33-0.44) in Asia. The division of the C. calceolus population into the European and Asian lineages indicated by C/T polymorphism started about 0.5 million years ago (95% HPD: 1.8-0.01). The observed variation of plastid DNA, which arose during the Pleistocene glacial-interglacial cycles, is still diffuse in Poland. Its distribution is explained by the result of fragmentation or habitat loss due to human impact on the environment.


Assuntos
DNA Espaçador Ribossômico/genética , Evolução Molecular , Genomas de Plastídeos , Orchidaceae/genética , Espécies em Perigo de Extinção , Fluxo Gênico , Orchidaceae/classificação , Filogenia , Polimorfismo de Nucleotídeo Único
14.
Plant Signal Behav ; 16(10): 1935605, 2021 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-34151732

RESUMO

Bee orchids have long been an excellent example of how dishonest signal works in plant-animal interaction. Many studies compared the flower structures that resemble female bees, leading toward pseudo-copulation of the male bees on the flower. Using Machine Learning, we tested whether nature is capable of besting artificial intelligence. A total of 2000 images of related bees, wasps, and Ophrys sp. were collected from the Google Image Repository. Unsuitable images were later filtered out manually, leaving a total of 995 images in the final selection. 80% of these images were used to build a supervised model using Logistic Regression, while the model accuracy was tested using 20% of the remaining images. Based on our results using Wolfram Mathematica, the Ophrys is not capable of fooling artificial intelligence. The accuracy, accuracy baseline, mean cross-entropy, Area Under ROC (receiver operating characteristic curve) curve (AUC) and the confusion matrix gave excellent image classification. However, we can now show the key points and highlights of the images and how the structures closely resemble actual bees using the SURF method. Rather than just a descriptive method, ML learning has enabled a more quantitative approach. Since this is a simple test, we encourage other scientists to adopt our approach using a larger dataset and better database samples.


Assuntos
Inteligência Artificial , Abelhas , Mimetismo Biológico , Flores , Orchidaceae , Animais , Abelhas/anatomia & histologia , Abelhas/classificação , Feminino , Flores/anatomia & histologia , Processamento de Imagem Assistida por Computador , Masculino , Orchidaceae/anatomia & histologia , Orchidaceae/classificação , Polinização
15.
Genes (Basel) ; 12(4)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924526

RESUMO

Orchidaceae is one of the largest and the most widespread plant families with many species threatened with extinction. However, only about 1.5% of orchids' genome sizes have been known so far. The aim of this study was to estimate the genome size of 15 species and one infraspecific taxon of endangered and protected orchids growing wild in Poland to assess their variability and develop additional criterion useful in orchid species identification and characterization. Flow cytometric genome size estimation revealed that investigated orchid species possessed intermediate, large, and very large genomes. The smallest 2C DNA content possessed Liparis loeselii (14.15 pg), while the largest Cypripedium calceolus (82.10 pg). It was confirmed that the genome size is characteristic to the subfamily. Additionally, for four species Epipactis albensis, Ophrys insectifera, Orchis mascula, Orchis militaris and one infraspecific taxon, Epipactis purpurata f. chlorophylla the 2C DNA content has been estimated for the first time. Genome size estimation by flow cytometry proved to be a useful auxiliary method for quick orchid species identification and characterization.


Assuntos
Genoma de Planta , Orchidaceae/classificação , Orchidaceae/genética , Espécies em Perigo de Extinção , Evolução Molecular , Citometria de Fluxo , Tamanho do Genoma , Filogenia , Polônia , Especificidade da Espécie
16.
Sci Rep ; 11(1): 6858, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33767214

RESUMO

Recent phylogenomic analyses based on the maternally inherited plastid organelle have enlightened evolutionary relationships between the subfamilies of Orchidaceae and most of the tribes. However, uncertainty remains within several subtribes and genera for which phylogenetic relationships have not ever been tested in a phylogenomic context. To address these knowledge-gaps, we here provide the most extensively sampled analysis of the orchid family to date, based on 78 plastid coding genes representing 264 species, 117 genera, 18 tribes and 28 subtribes. Divergence times are also provided as inferred from strict and relaxed molecular clocks and birth-death tree models. Our taxon sampling includes 51 newly sequenced plastid genomes produced by a genome skimming approach. We focus our sampling efforts on previously unplaced clades within tribes Cymbidieae and Epidendreae. Our results confirmed phylogenetic relationships in Orchidaceae as recovered in previous studies, most of which were recovered with maximum support (209 of the 262 tree branches). We provide for the first time a clear phylogenetic placement for Codonorchideae within subfamily Orchidoideae, and Podochilieae and Collabieae within subfamily Epidendroideae. We also identify relationships that have been persistently problematic across multiple studies, regardless of the different details of sampling and genomic datasets used for phylogenetic reconstructions. Our study provides an expanded, robust temporal phylogenomic framework of the Orchidaceae that paves the way for biogeographical and macroevolutionary studies.


Assuntos
Biodiversidade , Evolução Molecular , Genomas de Plastídeos , Orchidaceae/genética , Filogenia , Plastídeos/genética , Orchidaceae/classificação
17.
Mol Phylogenet Evol ; 159: 107105, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33601026

RESUMO

Angraecoid orchids present a remarkable diversity of chromosome numbers, which makes them a highly suitable system for exploring the impact of karyotypic changes on cladogenesis, diversification and morphological differentiation. We compiled an annotated cytotaxonomic checklist for 126 species of Angraecinae, which was utilised to reconstruct chromosomal evolution using a newly-produced, near-comprehensive phylogenetic tree that includes 245 angraecoid taxa. In tandem with this improved phylogenetic framework, using combined Bayesian, maximum likelihood and parsimony approaches on ITS-1 and five plastid markers, we propose a new cladistic nomenclature for the angraecoids, and we estimate a new timeframe for angraecoid radiation based on a secondary calibration, and calculate diversification rates using a Bayesian approach. Coincident divergence dates between clades with identical geographical distributions in the angraecoids and the pantropical orchid genus Bulbophyllum suggest that the same events may have intervened in the dispersal of these two epiphytic groups between Asia, continental Africa, Madagascar and the Neotropics. The major angraecoid lineages probably began to differentiate in the Middle Miocene, and most genera and species emerged respectively around the Late Miocene-Pliocene boundary and the Pleistocene. Ancestral state reconstruction using maximum likelihood estimation revealed an eventful karyotypic history dominated by descending dysploidy. Karyotypic shifts seem to have paralleled cladogenesis in continental tropical Africa, where approximately 90% of the species have descended from at least one inferred transition from n = 17-18 to n = 25 during the Middle Miocene Climatic Transition, followed by some clade-specific descending and ascending dysploidy from the Late Miocene to the Pleistocene. Conversely, detected polyploidy is restricted to a few species lineages mostly originating during the Pleistocene. No increases in net diversification could be related to chromosome number changes, and the apparent net diversification was found to be highest in Madagascar, where karyotypic stasis predominates. Finally, shifts in chromosome number appear to have paralleled the evolution of rostellum structure, leaflessness, and conspicuous changes in floral colour.


Assuntos
Evolução Biológica , Especiação Genética , Cariótipo , Orchidaceae/classificação , Filogenia , África , Ásia , Teorema de Bayes , Funções Verossimilhança , Madagáscar , Orchidaceae/genética , Filogeografia , Plastídeos/genética
18.
Mol Phylogenet Evol ; 157: 107070, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33421614

RESUMO

Platanthera is one of the largest genera of temperate orchids in the Holarctic and exemplifies a lineage that has adaptively radiated into diverse habitats within North America, Asia, Europe, North Africa, Borneo, and Sarawak. Major centers of diversity in this genus are North America and eastern Asia. Despite its diversity, a thorough phylogenetic hypothesis for the genus is lacking because no studies have yet sampled taxa exhaustively or developed a robust molecular toolkit. While there is strong evidence that suggests monophyly of subgenus Limnorchis, most taxa in this group have not been included in a phylogenetic analysis. In this study, we developed a new toolkit for Platanthera consisting of genomic information from 617 low-copy nuclear loci. Using a targeted enrichment approach, we collected high-throughput sequence data in 23 accessions of nine of the 12 diploid species of subgenus Limnorchis and outgroup species across Platanthera. A maximum likelihood analysis resolved a strongly supported monophyletic clade for subgenus Limnorchis. Ancestral biogeographic reconstruction indicated that subgenus Limnorchis originated in western North America ca. 3-4.5 Mya from an ancestor that was widespread in western North America and eastern Asia and subsequently diversified in western North America, followed by dispersal of some species to eastern North America. Our results indicate complex biogeographic connections between Asia and North America, and therefore it suggests that Platanthera is a suitable system to test biogeographic hypotheses over time and space in the Holarctic. Our results are also expected to facilitate further study of diversification and biogeographic spread across Platanthera and lay the groundwork for understanding independent origins, biogeography, and morphological diversification of polyploid species within subgenus Limnorchis.


Assuntos
Orchidaceae/classificação , Orchidaceae/genética , Filogenia , Filogeografia , Análise de Sequência de DNA/métodos , Núcleo Celular/genética , DNA Mitocondrial/genética , Loci Gênicos , Especificidade da Espécie
19.
Mol Phylogenet Evol ; 157: 107062, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33387648

RESUMO

We explore the origins of the extraordinary plant diversity in the Qinghai-Tibetan Plateau (QTP) using Orchidinae (Orchidaceae) as a model. Our results indicate that six major clades in Orchidinae exhibited substantial variation in the temporal and spatial sequence of diversification. Our time-calibrated phylogenetic model suggests that the species-richness of Orchidinae arose through a combination of in situ diversification, colonisation, and local recruitment. There are multiple origins of species-richness of Orchidinae in the QTP, and pre-adaptations in clades from North Temperate and alpine regions were crucial for in situ diversification. The geographic analysis identified 29 dispersals from Asia, Africa and Europe into the QTP and 15 dispersals out. Most endemic species of Orchidinae evolved within the past six million years.


Assuntos
Adaptação Fisiológica , Ecossistema , Orchidaceae/classificação , Filogenia , Aclimatação , África , Ásia , Biodiversidade , Europa (Continente) , Tibet , Fatores de Tempo
20.
Mol Ecol Resour ; 21(4): 1118-1140, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33453072

RESUMO

With over 25,000 species, the drivers of diversity in the Orchidaceae remain to be fully understood. Here, we outline a multitiered sequence capture strategy aimed at capturing hundreds of loci to enable phylogenetic resolution from subtribe to subspecific levels in orchids of the tribe Diurideae. For the probe design, we mined subsets of 18 transcriptomes, to give five target sequence sets aimed at the tribe (Sets 1 & 2), subtribe (Set 3), and within subtribe levels (Sets 4 & 5). Analysis included alternative de novo and reference-guided assembly, before target sequence extraction, annotation and alignment, and application of a homology-aware k-mer block phylogenomic approach, prior to maximum likelihood and coalescence-based phylogenetic inference. Our evaluation considered 87 taxa in two test data sets: 67 samples spanning the tribe, and 72 samples involving 24 closely related Caladenia species. The tiered design achieved high target loci recovery (>89%), with the median number of recovered loci in Sets 1-5 as follows: 212, 219, 816, 1024, and 1009, respectively. Interestingly, as a first test of the homologous k-mer approach for targeted sequence capture data, our study revealed its potential for enabling robust phylogenetic species tree inferences. Specifically, we found matching, and in one case improved phylogenetic resolution within species complexes, compared to conventional phylogenetic analysis involving target gene extraction. Our findings indicate that a customized multitiered sequence capture strategy, in combination with promising yet underutilized phylogenomic approaches, will be effective for groups where interspecific divergence is recent, but information on deeper phylogenetic relationships is also required.


Assuntos
Evolução Biológica , Orchidaceae , Filogenia , Filogeografia , Orchidaceae/classificação , Orchidaceae/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA