Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 277
Filtrar
1.
J Agric Food Chem ; 72(32): 17706-17729, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39090814

RESUMO

Numerous studies worldwide have evaluated pesticide residues detected in urine. This review serves as a contribution to this field by presenting an overview of scientific research studies published from 2001 to 2023, including details of study characteristics and research scope. Encompassing 72 papers, the review further delves into addressing key challenges in study design and method used such as sampling and analytical approaches, results adjustments, risk assessment, estimations, and results evaluation. The review explores urinary concentrations and detection frequency of metabolites of organophosphates and pyrethroids, as well as herbicides such as 2,4-D and glyphosate and their metabolites, across various studies. The association of the results with demographic and lifestyle variables were explored. While farmers generally have higher pesticide exposure, adopting organic farming practices can reduce the levels of pesticides detected in their urine. Residence close to agricultural areas has shown high exposure in some cases. Dietary exposure is especially high among people adopting a conventionally grown plant-rich dietary pattern. A higher detection level and frequency of detection are generally found in females and children compared to males. The implications of transitioning to organic and sustainable plant-rich diets for reducing pesticide exposure and potential health benefits for both adults and children require further investigation.


Assuntos
Resíduos de Praguicidas , Resíduos de Praguicidas/urina , Humanos , Feminino , Exposição Ambiental , Masculino , Organofosfatos/urina , Organofosfatos/metabolismo , Piretrinas/urina
2.
Sci Total Environ ; 949: 175122, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39084390

RESUMO

The aim was to study associations between dialkylphosphates (DAPs), organophosphate (OP) metabolites in urine, biomarkers of OP insecticide exposure, and respiratory symptoms among children in upper northern Thailand. We recruited junior high school children in randomly selected schools in four cities (N = 337), with repeated data collection in wet and dry seasons. Urine was collected and analyzed for six OP metabolites, with creatinine adjustment. Total DAP was expressed as sum of DAPs. Data on respiratory symptoms was collected by a standardized questionnaire. Associations were analyzed by multiple logistic regression. Totally 11.3 % lived in farm families. Total DAPs concentration was higher in dry season (p = 0.002) but did not differ between farm and non-farm children. Total DAPs in wet season was associated with current wheeze (p = 0.019), current asthma attacks (p = 0.012) and attacks of breathlessness in last 12 months (p = 0.021). Total DAPs in dry season was associated with current wheeze (p = 0.042), and associations between DAPs and respiratory symptoms were stronger for dimethylphosphate metabolites (DMPs) than for diethylphosphate metabolites (DEPs). DMPs are produced by certain OP pesticides. Biomass burning inside or outside the home, and dampness or mold at home, enhanced the association between total DAPs and attacks of breathlessness. In conclusion, OP pesticide exposure, measured as urinary DAPs, was higher in dry season and similar in farm and non-farm children. OPs exposure, especially to DMP related pesticides, can increase asthmatic symptoms, especially in wet season. Combined exposure to OP and smoke from biomass burning, or dampness and mold, can further increase the prevalence of attacks of breathlessness. There is a need to reduce OP insecticide and biomass smoke exposure among Thai children. Since different pesticides can be used in different seasons, studies on respiratory health effects of OPs pesticide exposure should be done in different seasons.


Assuntos
Exposição Ambiental , Inseticidas , Organofosfatos , Estações do Ano , Humanos , Tailândia/epidemiologia , Inseticidas/urina , Organofosfatos/urina , Masculino , Exposição Ambiental/estatística & dados numéricos , Feminino , Criança , Biomassa , Adolescente , Poluentes Atmosféricos/análise , Doenças Respiratórias/epidemiologia , Doenças Respiratórias/induzido quimicamente , Sons Respiratórios
3.
Ecotoxicol Environ Saf ; 281: 116625, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38908056

RESUMO

Humans are extensively exposed to organophosphate flame retardants (OPFRs), an emerging group of organic contaminants with potential nephrotoxicity. Nevertheless, the estimated daily intake (EDI) and prognostic impacts of OPFRs have not been assessed in individuals with chronic kidney disease (CKD). In this 2-year longitudinal study of 169 patients with CKD, we calculated the EDIs of five OPFR triesters from urinary biomonitoring data of their degradation products and analyzed the effects of OPFR exposure on adverse renal outcomes and renal function deterioration. Our analysis demonstrated universal OPFR exposure in the CKD population, with a median EDIΣOPFR of 360.45 ng/kg body weight/day (interquartile range, 198.35-775.94). Additionally, our study revealed that high tris(2-chloroethyl) phosphate (TCEP) exposure independently correlated with composite adverse events and composite renal events (hazard ratio [95 % confidence interval; CI]: 4.616 [1.060-20.096], p = 0.042; 3.053 [1.075-8.674], p = 0.036) and served as an independent predictor for renal function deterioration throughout the study period, with a decline in estimated glomerular filtration rate of 4.127 mL/min/1.73 m2 (95 % CI, -8.127--0.126; p = 0.043) per log ng/kg body weight/day of EDITCEP. Furthermore, the EDITCEP and EDIΣOPFR were positively associated with elevations in urinary 8-hydroxy-2'-deoxyguanosine and kidney injury molecule-1 during the study period, indicating the roles of oxidative damage and renal tubular injury in the nephrotoxicity of OPFR exposure. To conclude, our findings highlight the widespread OPFR exposure and its possible nephrotoxicity in the CKD population.


Assuntos
Retardadores de Chama , Organofosfatos , Insuficiência Renal Crônica , Humanos , Retardadores de Chama/toxicidade , Estudos Longitudinais , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/urina , Masculino , Feminino , Pessoa de Meia-Idade , Organofosfatos/toxicidade , Organofosfatos/urina , Idoso , Adulto , Rim/efeitos dos fármacos , Exposição Ambiental/estatística & dados numéricos , Compostos Organofosforados/urina , Compostos Organofosforados/toxicidade , Monitoramento Ambiental , Poluentes Ambientais/toxicidade , Poluentes Ambientais/urina
4.
J Chromatogr A ; 1730: 465054, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38901297

RESUMO

An accurate and sensitive method for the determination of a total of 23 pesticides and their metabolites in human urine has been optimised. The methodology is based on a previously published method based on solid-phase extraction with methanol and acetone followed by ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) in the selected reaction mode (SRM) with both positive and negative electrospray ionization (ESI+/-). The detection settings of the previous method, which allowed to determine the metabolites from 6 organophosphate and 2 pyrethroid pesticides, were optimised in order to include further pesticide groups, such as 11 neonicotinoids, 3 carbamates/thiocarbamates and 2 triazoles. The 5-windows method enduring 22 min was optimized with acceptable results in relation to accuracy (recoveries >75 %), precision (coefficients of variation <26 %) and linearity (R2> 0.9915). The limits of detection ranged between 0.012 ng/mL and 0.058 ng/mL. Samples from the German External Quality Assessment Scheme (G-EQUAS) encompassing 2 pyrethroids, 2 organophosphate and one neonicotinoid (6-chloronicotinic acid, a common metabolite of imidacloprid and acetamiprid) were analysed, and the latter, included in this newest optimization, provided good reference results. The method is optimal as a human biomonitoring tool for health risk assessment in large population surveys.


Assuntos
Carbamatos , Praguicidas , Piretrinas , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Humanos , Cromatografia Líquida de Alta Pressão/métodos , Piretrinas/urina , Piretrinas/metabolismo , Carbamatos/urina , Praguicidas/urina , Limite de Detecção , Triazóis/urina , Reprodutibilidade dos Testes , Organofosfatos/urina , Organofosfatos/metabolismo , Extração em Fase Sólida , Tiocarbamatos/química , Tiocarbamatos/metabolismo , Tiocarbamatos/urina , Neonicotinoides/urina , Neonicotinoides/metabolismo , Espectrometria de Massa com Cromatografia Líquida
5.
Neurotoxicology ; 103: 206-214, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38908438

RESUMO

BACKGROUND: Early life exposure to organophosphate (OP) pesticides is linked with adverse neurodevelopment and brain function in children. However, we have limited knowledge of how these exposures affect functional connectivity, a measure of interaction between brain regions. To address this gap, we examined the association between early life OP pesticide exposure and functional connectivity in adolescents. METHODS: We administered functional near-infrared spectroscopy (fNIRS) to 291 young adults with measured prenatal or childhood dialkylphosphates (DAPs) in the Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS) study, a longitudinal study of women recruited during pregnancy and their offspring. We measured DAPs in urinary samples collected from mothers during pregnancy (13 and 26 weeks) and children in early life (ages 6 months, 1, 2, 3, and 5 years). Youth underwent fNIRS while they performed executive function and semantic language tasks during their 18-year-old visit. We used covariate-adjusted regression models to estimate the associations of prenatal and childhood DAPs with functional connectivity between the frontal, temporal, and parietal regions, and a mediation model to examine the role of functional connectivity in the relationship between DAPs and task performance. RESULTS: We observed null associations of prenatal and childhood DAP concentrations and functional connectivity for the entire sample. However, when we looked for sex differences, we observed an association between childhood DAPs and functional connectivity for the right interior frontal and premotor cortex after correcting for the false discovery rate, among males, but not females. In addition, functional connectivity appeared to mediate an inverse association between DAPs and working memory accuracy among males. CONCLUSION: In CHAMACOS, a secondary analysis showed that adolescent males with elevated childhood OP pesticide exposure may have altered brain regional connectivity. This altered neurofunctional pattern in males may partially mediate working memory impairment associated with childhood DAP exposure.


Assuntos
Memória de Curto Prazo , Praguicidas , Efeitos Tardios da Exposição Pré-Natal , Humanos , Feminino , Adolescente , Masculino , Memória de Curto Prazo/efeitos dos fármacos , Praguicidas/toxicidade , Praguicidas/efeitos adversos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Estudos Longitudinais , Encéfalo/efeitos dos fármacos , Encéfalo/diagnóstico por imagem , Espectroscopia de Luz Próxima ao Infravermelho , Pré-Escolar , Lactente , Adulto Jovem , Compostos Organofosforados/urina , Compostos Organofosforados/toxicidade , Compostos Organofosforados/efeitos adversos , Organofosfatos/toxicidade , Organofosfatos/efeitos adversos , Organofosfatos/urina , Exposição Ambiental/efeitos adversos
6.
Ecotoxicol Environ Saf ; 278: 116414, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38714086

RESUMO

BACKGROUND: Organophosphate esters (OPEs) are used extensively as flame retardants and plasticizers. Laboratory studies have shown that OPEs exhibit osteotoxicity by inhibiting osteoblast differentiation; however, little is known about how OPEs exposure is associated with bone health in humans. OBJECTIVES: We conducted a cross-sectional study to investigate the association between OPEs exposure and bone mineral density (BMD) in adults in the United States using data from the 2011-2018 National Health and Nutrition Examination Survey (NHANES). METHODS: Multivariate linear regression models were used to assess the association between concentrations of individual OPE metabolites and BMDs. We also used the Bayesian kernel machine regression (BKMR) and quantile g-computation (qgcomp) models to estimate joint associations between OPE mixture exposure and BMDs. All the analyses were stratified according to gender. RESULTS: A total of 3546 participants (median age, 40 years [IQR, 30-50 years]; 50.11% male) were included in this study. Five urinary OPE metabolites with a detection rate of > 50% were analyzed. After adjusting for the potential confounders, OPE metabolite concentrations were associated with decreased total-body BMD and lumbar spine BMD in males, although some associations only reached significance for bis(1-chloro-2-propyl) phosphate (BCPP), dibutyl phosphate (DBUP), and bis(2-chloroethyl) phosphate (BCEP) (ß = -0.013, 95% CI: -0.026, -0.001 for BCPP and total-body BMD; ß = -0.022, 95% CI: -0.043, -0.0001 for DBUP and lumbar spine BMD; ß=-0.018, 95% CI: -0.034, -0.002 for BCEP and lumbar spine BMD). OPE mixture exposure was also inversely associated with BMD in males, as demonstrated in the BMKR and qgcomp models. CONCLUSIONS: This study provides preliminary evidence that urinary OPE metabolite concentrations are inversely associated with BMD. The results also suggested that males were more vulnerable than females. However, further studies are required to confirm these findings.


Assuntos
Densidade Óssea , Inquéritos Nutricionais , Organofosfatos , Humanos , Adulto , Masculino , Densidade Óssea/efeitos dos fármacos , Feminino , Pessoa de Meia-Idade , Estados Unidos , Estudos Transversais , Organofosfatos/urina , Organofosfatos/toxicidade , Ésteres , Retardadores de Chama/toxicidade , Exposição Ambiental/estatística & dados numéricos , Poluentes Ambientais/urina
7.
Sci Total Environ ; 939: 173563, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38810742

RESUMO

Halogenated organophosphate esters (OPEs) are increasingly used as flame retardants to replace polybrominated diphenyl ethers (PBDEs), which have been phased out due to their confirmed persistence, toxicity, and ability to undergo long range atmospheric transport. Non-halogenated OPEs are primarily used as plasticizers. While human exposure to PBDEs in the Canadian Arctic is well documented, it is not the case for OPEs. To assess the exposure to OPEs in Inuit living in Nunavik (northern Québec, Canada), we measured 16 metabolites of halogenated and non-halogenated OPEs in pooled urine samples from the last population health survey conducted in Nunavik, the Qanuilirpitaa? 2017 Inuit Health Survey (Q2017). Urine samples (n = 1266) were pooled into 30 pools by sex (female; male), age groups (16-19; 20-29; 30-39; 40-59; 60+ years old) and regions (Hudson Bay; Hudson Strait; Ungava Bay). Q2017 geometric means and 95 % confidence intervals were compared with data from the Canadian Health Measures Survey Cycle 6 (2018-2019) (CHMS). Halogenated OPEs were systematically detected and generally found at higher concentrations than non-halogenated OPEs in both Q2017 and CHMS. Furthermore, urinary levels of BCIPP and BDCIPP (halogenated) were lower in Q2017 compared to CHMS while concentrations of DPhP, DpCP and DoCP (non-halogenated) were similar between Q2017 and CHMS. Across the 16 metabolites measured in Q2017, BCIPHIPP (halogenated) had the highest levels (geometric mean: 1.40 µg/g creatinine). This metabolite was not measured in CHMS and should be included in future surveys. Overall, our results show that Inuit in Nunavik are exposed to lower or similar OPEs levels than the rest of the general Canadian population suggesting that the main current exposure to OPEs may be from consumer goods containing flame retardants and imported from the south rather than long-range atmospheric transport to the Arctic.


Assuntos
Exposição Ambiental , Retardadores de Chama , Inuíte , Organofosfatos , Humanos , Adulto , Feminino , Masculino , Organofosfatos/urina , Pessoa de Meia-Idade , Adulto Jovem , Exposição Ambiental/estatística & dados numéricos , Exposição Ambiental/análise , Retardadores de Chama/análise , Quebeque , Adolescente , Poluentes Ambientais/urina , Ésteres
8.
Chemosphere ; 360: 142406, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38782132

RESUMO

Organophosphate esters (OPEs) are extensively used as additives in various products, including electronic equipment, which becomes e-waste when obsolete. Nevertheless, no study has evaluated OPEs exposure levels and the related health risks among e-waste workers in Hong Kong. Therefore, 201 first-spot morning urine samples were collected from 101 e-waste workers and 100 office workers to compare eight urinary OPE metabolites (mOPEs) levels in these groups. The concentrations of six mOPEs were similar in e-waste workers and office workers, except for significantly higher levels of diphenyl phosphate (DPHP) in e-waste workers and bis(1-chloro-2propyl) phosphate (BCIPP) in office workers. Spearman correlation analysis showed that most non-chlorinated mOPEs were correlated with each other in e-waste workers (i.e., nine out of ten pairs, including di-p-cresyl phosphate (DpCP) and di-o-cresyl phosphate (DoCP), DpCP and bis(2-butoxyethyl) phosphate (BBOEP), DpCP and DPHP, DpCP and dibutyl phosphate (DBP), DoCP and BBOEP, DoCP and DPHP, DoCP and DBP, BBOEP and DPHP, DPHP and DBP), indicating that handling e-waste could be the exposure source of specific OPEs. The median values of estimated daily intake (EDI) and hazard quotient (HQ) suggested that the health risks from OPEs exposures were under the recommended thresholds. However, linear regression models, Quantile g-computation, and Bayesian kernel machine regression found that urinary mOPEs elevated 8-hydroxy-2-deoxyguanosine (8-OhdG) levels individually or as a mixture, in which DPHP contributed prominently. In conclusion, although e-waste might not elevate the internal OPEs levels among the participating Hong Kong e-waste workers, attention should be paid to the potential DNA damage stimulated by OPEs under the currently recommended thresholds.


Assuntos
Dano ao DNA , Resíduo Eletrônico , Exposição Ocupacional , Organofosfatos , Humanos , Hong Kong , Organofosfatos/urina , Organofosfatos/análise , Medição de Risco , Exposição Ocupacional/análise , Adulto , Masculino , Pessoa de Meia-Idade , Ésteres/análise , Feminino , Adulto Jovem
9.
Environ Res ; 255: 119214, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38788790

RESUMO

Several studies have reported immune modulation by organophosphate (OP) pesticides, but the relationship between OP exposure and SARS-CoV-2 infection is yet to be studied. We used two different measures of OP pesticide exposure (urinary biomarkers (N = 154) and residential proximity to OP applications (N = 292)) to examine the association of early-childhood and lifetime exposure to OPs and risk of infection of SARS-CoV-2 using antibody data. Our study population consisted of young adults (ages 18-21 years) from the Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS) Study, a longitudinal cohort of families from a California agricultural region. Urinary biomarkers reflected exposure from in utero to age 5 years. Residential proximity reflected exposures between in utero and age 16 years. SARS-CoV-2 antibodies in blood samples collected between June 2022 and January 2023 were detected via two enzyme linked immunosorbent assays, each designed to bind to different SARS-CoV-2 antigens. We performed logistic regression for each measure of pesticide exposure, adjusting for covariates from demographic data and self-reported questionnaire data. We found increased odds of SARS-CoV-2 infection among participants with higher urinary biomarkers of OPs in utero (OR = 1.94, 95% CI: 0.71, 5,58) and from age 0-5 (OR = 1.90, 95% CI: 0.54, 6.95).


Assuntos
COVID-19 , Exposição Ambiental , Praguicidas , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , Feminino , Adulto Jovem , Adolescente , Exposição Ambiental/efeitos adversos , Praguicidas/urina , Masculino , California/epidemiologia , Gravidez , Adulto , Anticorpos Antivirais/sangue , Biomarcadores/urina , Biomarcadores/sangue , Organofosfatos/urina , Estudos Longitudinais
10.
Sci Total Environ ; 927: 172187, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38582107

RESUMO

Plasticizers (PLs) and organophosphate flame retardants (OPFRs) are ubiquitous in the environment due to their widespread use and potential for leaching from consumer products. Environmental exposure is a critical aspect of the human exposome, revealing complex interactions between environmental contaminants and potential health effects. Silicone wristbands (SWBs) have emerged as a novel and non-invasive sampling device for assessing personal external exposure. In this study, SWBs were used as a proxy to estimate personal dermal adsorption (EDdermal) to PLs and OPFRs in Belgian participants for one week; four morning urine samples were also collected and analyzed for estimated daily intake (EDI). The results of the SWBs samples showed that all the participants were exposed to these chemicals, and the exposure was found to be highest for the legacy and alternative plasticizers (LP and AP), followed by the legacy and emerging OPFRs (LOPFR and EOPFR). In urine samples, the highest levels were observed for metabolites of diethyl phthalate (DEP), di-isobutyl phthalate (DiBP) and di-n-butyl phthalate (DnBP) among LPs and di(2-ethylhexyl) terephthalate (DEHT) for APs. Outliers among the participants indicated that there were other sources of exposure that were not identified. Results showed a significant correlation between EDdermal and EDI for DiBP, tris (2-butoxyethyl) phosphate (TBOEP) and triphenyl phosphate (TPhP). These correlations indicated their suitability for predicting exposure via SWB monitoring for total chemical exposure. The results of this pilot study advance our understanding of SWB sampling and its relevance for predicting aggregate environmental chemical exposures, while highlighting the potential of SWBs as low-cost, non-invasive personal samplers for future research. This innovative approach has the potential to advance the assessment of environmental exposures and their impact on public health.


Assuntos
Exposição Ambiental , Monitoramento Ambiental , Retardadores de Chama , Organofosfatos , Plastificantes , Silicones , Retardadores de Chama/análise , Plastificantes/análise , Humanos , Exposição Ambiental/estatística & dados numéricos , Exposição Ambiental/análise , Organofosfatos/urina , Bélgica , Adulto , Poluentes Ambientais/urina , Masculino , Feminino
11.
Arch Environ Contam Toxicol ; 86(4): 335-345, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38664242

RESUMO

In recent years, organophosphate esters (OPEs) have become one of the most common additives in various consumer products worldwide, therefore the exposure and impact of OPEs on human health are drawing a lot of attention. In this study, three metabolites of OPEs including bis(1,3-dichloro-2-propyl) phosphate (BDCIPP), diphenyl phosphate (DPhP) and diethyl phosphate (DEP) were investigated in first-morning void urine samples taken from a population (age range: 3-76 years old) in Hanoi, Vietnam. The most dominant urinary OPE metabolite was DEP with the geometric mean of specific gravity adjust (SG-adjusted) concentration were 1960 ng mL-1 and detected frequency (DF) of 98%. Followed by DPhP (8.01 ng mL-1, DF: 100%) and BDCIPP (2.18 ng mL-1, DF: 51%). The results indicated that gender and age might have associations with the OPE metabolites variation in urine samples. The levels of OPE metabolites in urine samples from females were slightly higher than in males. An increase in age seems to have an association with a decrease in DPhP levels in urine. Exposure doses of parent OPEs were evaluated from the unadjusted urinary concentration of corresponding OPE metabolite. The estimated exposure doses of triethyl phosphate (TEP) (mean: 534,000 ng kg-1 d-1) were significantly higher than its corresponding reference dose, suggesting the high potential risk from the current exposure doses of TEP to human health. The results of this work provided the initial information on the occurrence of three OPE metabolites in urine from Hanoi, Vietnam and estimated exposure dose of corresponding parent OPEs.


Assuntos
Exposição Ambiental , Ésteres , Organofosfatos , Humanos , Vietnã , Organofosfatos/urina , Pessoa de Meia-Idade , Adulto , Masculino , Feminino , Criança , Adolescente , Idoso , Pré-Escolar , Adulto Jovem , Exposição Ambiental/análise , Poluentes Ambientais/urina , Monitoramento Ambiental
12.
Int J Hyg Environ Health ; 258: 114336, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460461

RESUMO

BACKGROUND: Previous studies have suggested that prenatal exposure to organophosphate flame retardants (OPFRs) may have adverse effect on early neurodevelopment, but limited data are available in China, and the overall effects of OPFRs mixture are still unclear. OBJECTIVE: This study aimed to investigate the association between prenatal exposure to OPFR metabolites mixture and the neurodevelopment of 1-year-old infants. METHODS: A total of 270 mother-infant pairs were recruited from the Laizhou Wan (Bay) Birth Cohort in China. Ten OPFR metabolites were measured in maternal urine. Neurodevelopment of 1-year-old infants was assessed using the Gesell Developmental Schedules (GDS) and presented by the developmental quotient (DQ) score. Multivariate linear regression and weighted quantile sum (WQS) regression models were conducted to estimate the association of prenatal exposure to seven individual OPFR metabolites and their mixture with infant neurodevelopment. RESULTS: The positive rates of seven OPFR metabolites in the urine of pregnant women were greater than 70% with the median concentration ranged within 0.13-3.53 µg/g creatinine. The multivariate linear regression model showed significant negative associations between bis (1-chloro-2-propyl) phosphate (BCIPP), din-butyl phosphate (DnBP), and total OPFR metabolites exposure and neurodevelopment in all infants. Results from the WQS model consistently revealed that the OPFR metabolites mixture was inversely associated with infant neurodevelopment. Each quartile increased in the seven OPFR metabolites mixture was associated with a 1.59 decrease (95% CI: 2.96, -0.21) in gross motor DQ scores, a 1.41 decrease (95% CI: 2.38, -0.43) in adaptive DQ scores, and a 1.08 decrease (95% CI: 2.15, -0.02) in social DQ scores, among which BCIPP, bis (1, 3-dichloro-2-propyl) phosphate (BDCIPP) and DnBP were the main contributors. CONCLUSION: Prenatal exposure to a mixture of OPFRs was negatively associated with early infant neurodevelopment, particularly in gross motor, adaptive, and social domains.


Assuntos
2,4-Dinitrofenol/análogos & derivados , Retardadores de Chama , Efeitos Tardios da Exposição Pré-Natal , Lactente , Humanos , Feminino , Gravidez , Estudos Prospectivos , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Organofosfatos/urina , Fosfatos , China/epidemiologia
13.
Ecotoxicol Environ Saf ; 273: 116139, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38428240

RESUMO

The thyroid gland is susceptible to chemical exposure such as organophosphate insecticides (OPIs). With the ubiquitous nature of these products, humans are simultaneously exposed to a multitude of chemicals. This study aimed to evaluate the association between an individual and a mixture of OPI metabolites and changes in serum thyroid hormone (TH) concentrations. The analyzed data were 1,434 participants from the United States National Health and Nutrition Examination Surveys (NHANES) cycle 2007-2008. Generalized linear model (GLM) regression, weighted quantile sum (WQS), and adaptive least absolute shrinkage and selection operator (adaptive LASSO) regression were used to investigate the associations between urinary OPI metabolites and altered serum THs. In GLM, all of the five urinary OPI metabolites were inversely associated with free triiodothyronine (FT3) among the male subjects; meanwhile, higher thyroglobulin (Tg) was related to dimethylphosphate (DMP). Moreover, in WQS models, the metabolite mixture induced FT3 down-regulation (ß = -0.209 (95% CI: -0.310, -0.114)), and caused an increased Tg concentration (ß = 0.120 (95% CI: 0.024, 0.212)), however, any significant association was observed among female participants. Consistently, the weighted index and LASSO coefficient demonstrated dimethylthiophosphate (DMTP) as the strongest metabolite in the FT3 model (mean weight= 3.449e-01 and ß =-0.022, respectively), and dimethylphosphate (DMP) represented the highest association in the Tg model (mean weight= 9.873e-01 and ß =-0.020, respectively). Further research is required to confirm our results and investigate the clinical impacts of these disruptions.


Assuntos
Inseticidas , Compostos Organofosforados , Adulto , Humanos , Masculino , Feminino , Estados Unidos , Inseticidas/toxicidade , Inquéritos Nutricionais , Hormônios Tireóideos , Organofosfatos/toxicidade , Organofosfatos/urina
14.
Front Endocrinol (Lausanne) ; 15: 1329247, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38405137

RESUMO

Background: Organophosphate esters (OPEs) may interfere with thyroid function, but the relationship between OPEs and thyroid disease remains unclear. This study aims to elucidate the relationship between OPEs exposure and thyroid disease risk in the general population in the United States. Method: Data were obtained from the 2011-2014 National Health and Nutrition Examination Survey cycle. All participants were tested for seven OPE metabolites in their urine and answered questions about whether they had thyroid disease through questionnaires. Logistic regression was employed to analyze the association between exposure to individual OPE metabolites and thyroid disease. Weighted Quantile Sum (WQS) regression modeling was utilized to assess exposure to mixed OPE metabolites and risk of thyroid disease. Bayesian kernel machine regression(BKMR) models to analyze the overall mixed effect of OPE metabolites. Result: A total of 2,449 participants were included in the study, 228 of whom had a history of thyroid disease. Bis(1,3-dichloro-2-propyl) phos (BDCPP), Diphenyl phosphate (DPHP) and Bis(2-chloroethyl) phosphate (BCEP) were the top three metabolites with the highest detection rates of 91.75%, 90.77% and 86.57%, respectively. In multivariate logistic regression models, after adjustment for confounding variables, individuals with the highest tertile level of BCEP were significantly and positively associated with increased risk of thyroid disease (OR=1.57, 95% CI=1.04-2.36), using the lowest tertile level as reference. In the positive WQS regression model, after correcting for confounding variables, mixed exposure to OPE metabolites was significantly positively associated with increased risk of thyroid disease (OR=1.03, 95% CI=1.01-1.06), with BCEP and DPHP having high weights. In the BKMR model, the overall effect of mixed exposure to OPE metabolites was not statistically significant, but univariate exposure response trends showed that the risk of thyroid disease decreased and then increased as BCEP exposure levels increased. Conclusion: The study revealed a significant association between exposure to OPE metabolites and an increased risk of thyroid disease, with BCEP emerging as the primary contributor. The risk of thyroid disease exhibits a J-shaped pattern, whereby the risk initially decreases and subsequently increases with rising levels of BCEP exposure. Additional studies are required to validate the association between OPEs and thyroid diseases.


Assuntos
Retardadores de Chama , Doenças da Glândula Tireoide , Adulto , Humanos , Estados Unidos/epidemiologia , Inquéritos Nutricionais , Teorema de Bayes , Organofosfatos/efeitos adversos , Organofosfatos/urina , Doenças da Glândula Tireoide/induzido quimicamente , Doenças da Glândula Tireoide/epidemiologia , Fosfatos , Ésteres
15.
Biomed Chromatogr ; 38(3): e5746, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37723598

RESUMO

The general population and workers are exposed to organophosphate insecticides, one of the leading chemical classes of pesticides used in rural and urban areas. This paper aims to conduct an integrative review of the most used analytical methods for identifying and quantifying dialkylphosphate-which are metabolites of organophosphate insecticides-in the urine of exposed workers, discussing their advantages, limitations and applicability. Searches utilized the PubMed, the Scientific Electronic Library Online and the Brazilian Digital Library of Theses and Dissertations databases between 2000 and 2021. Twenty-five studies were selected. The extraction methods most used were liquid-liquid extraction (LLE) (36%) and solid-phase extraction (SPE) (36%), with the SPE being more economical in terms of time and amount of solvents needed, and presenting the best percentage of recovery of analytes, when compared with LLE. Nineteen studies (76%) used the gas chromatography method of separation, and among these, 12 records (63%) indicated mass spectrometry used as a detection technology (analyzer). Studies demonstrate that dialkylphosphates are sensitive and representative exposure biomarkers for environmental and occupational organophosphate exposure.


Assuntos
Inseticidas , Praguicidas , Humanos , Inseticidas/análise , Cromatografia Gasosa-Espectrometria de Massas , Compostos Organofosforados/análise , Organofosfatos/urina
16.
Environ Res ; 242: 117756, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38016496

RESUMO

BACKGROUND: Early life exposure to organophosphate (OP) pesticides has been linked with poorer neurodevelopment from infancy to adolescence. In our Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS) birth cohort, we previously reported that residential proximity to OP use during pregnancy was associated with altered cortical activation using functional near infrared spectroscopy (fNIRS) in a small subset (n = 95) of participants at age 16 years. METHODS: We administered fNIRS to 291 CHAMACOS young adults at the 18-year visit. Using covariate-adjusted regression models, we estimated associations of prenatal and childhood urinary dialkylphosphates (DAPs), non-specific OP metabolites, with cortical activation in the frontal, temporal, and parietal regions of the brain during tasks of executive function and semantic language. RESULTS: There were some suggestive associations for prenatal DAPs with altered activation patterns in both the inferior frontal and inferior parietal lobes of the left hemisphere during a task of cognitive flexibility (ß per ten-fold increase in DAPs = 3.37; 95% CI: -0.02, 6.77 and ß = 3.43; 95% CI: 0.64, 6.22, respectively) and the inferior and superior frontal pole/dorsolateral prefrontal cortex of the right hemisphere during the letter retrieval working memory task (ß = -3.10; 95% CI: -6.43, 0.22 and ß = -3.67; 95% CI: -7.94, 0.59, respectively). We did not observe alterations in cortical activation with prenatal DAPs during a semantic language task or with childhood DAPs during any task. DISCUSSION: We observed associations of prenatal OP concentrations with mild alterations in cortical activation during tasks of executive function. Associations with childhood exposure were null. This is reasonably consistent with studies of prenatal OPs and neuropsychological measures of attention and executive function found in CHAMACOS and other birth cohorts.


Assuntos
Inseticidas , Praguicidas , Efeitos Tardios da Exposição Pré-Natal , Adolescente , Criança , Feminino , Humanos , Gravidez , Encéfalo/diagnóstico por imagem , Neuroimagem Funcional , Exposição Materna/efeitos adversos , Organofosfatos/toxicidade , Organofosfatos/urina , Compostos Organofosforados/toxicidade , Praguicidas/toxicidade , Praguicidas/urina , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente
17.
Sci Total Environ ; 912: 169565, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38145670

RESUMO

Exposure to insecticides may be associated with increased oxidative stress (OS), but few studies have assessed the associations of OS biomarkers (OSBs) with exposure to multiple insecticides and their mixture, especially in pregnant women who are a vulnerable population. In the present study, 1,094 Chinese pregnant women were recruited and a total of 3,282 urine samples were collected at their three trimesters to measure eight metabolites of organophosphates, three metabolites of pyrethroids, nine typical neonicotinoids/their metabolites, and three OSBs of DNA damage (8-OHdG), RNA damage (8-OHG), and lipid peroxidation (HNE-MA). Among the twenty target insecticide metabolites, sixteen of them were frequently detected; thirteen of them were detected in over 86% of all the urine samples except for imidacloprid (IMI, detection frequency: 72.9%), desnitro-imidacloprid (DN-IMI, 70.0%), and clothianidin (CLO, 79.6%). The reproducibility of their concentrations across the three trimesters was poor to fair (intraclass correlation coefficients <0.50). Multiparity and warm season were related to higher urinary levels of some insecticide metabolites, while higher education level and inadequate weight gain during pregnancy were significantly associated with lower concentrations of certain insecticide metabolites. Linear mixed model analyses suggested that almost all the frequently detected insecticide metabolites [other than 3-phenoxybenzoic acid (3-PBA)] were significantly associated with elevated levels of the three OSBs (8-OHdG, 8-OHG, and HNE-MA), where the percent change (Δ%) ranged 8.10-36.0% for 8-OHdG, 8.49-34.7% for 8-OHG, and 5.92-182% for HNE-MA, respectively, with each interquartile ratio (IQR)-fold increase in the concentrations of the individual exposure biomarkers. Weighted quantile sum models demonstrated that the insecticide metabolite mixture was positively associated with the three OSBs. Overall, urinary desmethyl-clothianidin (DM-CLO) and 3,5,6-trichloro-2-pyridinol (TCPy) were the top insecticide exposure biomarkers contributing to the association with 8-OHdG and 8-OHG levels, while PNP contributed the most to the association with HNE-MA levels. These findings suggested that gestational exposure to organophosphates, pyrethroids, neonicotinoids, their transformation products, and their mixture may increase oxidative damage to lipids, RNA, and DNA during pregnancy.


Assuntos
Benzoatos , Guanidinas , Inseticidas , Nitrocompostos , Piretrinas , Tiazóis , Humanos , Feminino , Gravidez , Inseticidas/análise , Piretrinas/urina , Gestantes , Organofosfatos/urina , Reprodutibilidade dos Testes , Neonicotinoides , Biomarcadores/urina , Estresse Oxidativo , RNA
18.
Environ Int ; 181: 108297, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37939438

RESUMO

INTRODUCTION: In this study, we aimed to characterise exposure to pyrethroids, organophosphates, and tebuconazole through multiple pathways in 110 parent-child pairs participating in the CELSPAC-SPECIMEn study. METHODS: First, we estimated the daily intake (EDI) of pesticides based on measured urinary metabolites. Second, we compared EDI with estimated pesticide intake from food. We used multiple linear regression to identify the main predictors of urinary pesticide concentrations. We also assessed the relationship between urinary pesticide concentrations and organic and non-organic food consumption while controlling for a range of factors. Finally, we employed a model to estimate inhalation and dermal exposure due to spray drift and volatilization after assuming pesticide application in crop fields. RESULTS: EDI was often higher in children in comparison to adults, especially in the winter season. A comparison of food intake estimates and EDI suggested diet as a critical pathway of tebuconazole exposure, less so in the case of organophosphates. Regression models showed that consumption per g of peaches/apricots was associated with an increase of 0.37% CI [0.23% to 0.51%] in urinary tebuconazole metabolite concentrations. Consumption of white bread was associated with an increase of 0.21% CI [0.08% to 0.35%], and consumption of organic strawberries was inversely associated (-61.52% CI [-79.34% to -28.32%]), with urinary pyrethroid metabolite concentrations. Inhalation and dermal exposure seemed to represent a relatively small contribution to pesticide exposure as compared to dietary intake. CONCLUSION: In our study population, findings indicate diet plays a significant role in exposure to the analysed pesticides. We found an influence of potential exposure due to spray drift and volatilization among the subpopulation residing near presumably sprayed crop fields to be minimal in comparison. However, the lack of data indicating actual spraying occurred during the critical 24-hour period prior to urine sample collection could be a significant contributing factor.


Assuntos
Praguicidas , Piretrinas , Humanos , Adulto , Praguicidas/análise , República Tcheca , Exposição Ambiental/análise , Piretrinas/urina , Organofosfatos/urina
19.
Ecotoxicol Environ Saf ; 268: 115690, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37976933

RESUMO

The longitudinal associations of urinary concentrations of diphenyl phosphate (DPHP), bis(2-chloroethyl) phosphate (BCEP), and bis(1,3-dichloro-2-propyl) phosphate (BDCPP) with all-cause, cardiovascular, and cancer mortality in a population of adults aged 40 years and older are still unclear. A total of 3238 participants were included in this cohort study. Urinary BCEP levels were positively associated with all-cause mortality and cardiovascular mortality. Specifically, a logarithmic increase in BCEP concentration was related to a 26 % higher risk of all-cause mortality and a 32 % higher risk of cardiovascular mortality. No significant associations were observed for DPHP and BDCPP in relation to mortality. Doseresponse analysis confirmed the linear associations of BCEP with all-cause and cardiovascular mortality and the nonlinear inverted U-shaped association between DPHP exposure and all-cause mortality. Notably, the economic burden associated with BCEP exposure was estimated, and it was shown that concentrations in the third tertile of BCEP exposure incurred approximately 507 billion dollars of financial burden for all-cause mortality and approximately 717 billion dollars for cardiovascular mortality. These results highlight the importance of addressing exposure to BCEP and its potential health impacts on the population. More research is warranted to explore the underlying mechanisms and develop strategies for reducing exposure to this harmful chemical.


Assuntos
Doenças Cardiovasculares , Retardadores de Chama , Humanos , Adulto , Pessoa de Meia-Idade , Organofosfatos/toxicidade , Organofosfatos/urina , Retardadores de Chama/toxicidade , Retardadores de Chama/análise , Estudos de Coortes , Causas de Morte , Fosfatos
20.
Front Public Health ; 11: 1186848, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026372

RESUMO

Background: The relationship between exposure to organophosphate esters (OPEs) and the risk of developing overactive bladder (OAB) is uncertain. The purpose of this study is to examine the potential link between urinary metabolites of organophosphate esters and OAB. Method: Data from the National Health and Nutrition Examination Survey (NHANES) database of the 2011-2016 cycles were utilized. Four urinary metabolites of organophosphate esters: diphenyl phosphate (DPHP), bis (1,3-dichloro-2-propyl) phosphate (BDCPP), bis (2-chloroethyl) phosphate (BCEP), and dibutyl phosphate (DBUP) were included in the study. Multivariate logistic regression and restricted cubic spline (RCS) were used to evaluate the relationship between urinary OPEs metabolites and OAB. Interaction analysis was conducted on subgroups to confirm the findings. Results: A total of 3,443 United States (US) adults aged 20 years or older were included in the study, of whom 597 participants were considered to have OAB. After adjusting for potential confounding factors, we found a positive association between DPHP and the risk of overactive bladder. The risk of overactive bladder increased with increasing DPHP concentrations compared with quartile 1 (quartile 2, OR = 1.19, 95% CI, 0.82-1.73, P = 0.34; quartile 3, OR = 1.67, 95% CI, 1.10-2.53, P = 0.02; Q4, OR = 1.75, 95% CI, 1.26-2.43, P = 0.002). However, after dividing the participants by gender, only the female group retained consistent results. Additionally, restricted cubic spline analysis revealed a nonlinear dose-response correlation between DPHP and OAB in female participants. In the subgroup analysis based on age, race, body mass index (BMI), recreational activity, smoking status, drinking status, hypertension, diabetes, and stroke, the interaction analysis revealed that the findings were uniform. Conclusion: Our findings indicate that exposure to DPHP could elevate the risk of OAB in US adult females. Further experimental studies are needed to explore the underlying mechanism in the future.


Assuntos
Bexiga Urinária Hiperativa , Humanos , Adulto , Estados Unidos/epidemiologia , Feminino , Estudos Transversais , Inquéritos Nutricionais , Bexiga Urinária Hiperativa/epidemiologia , Organofosfatos/efeitos adversos , Organofosfatos/urina , Fosfatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA