Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.154
Filtrar
1.
Ecotoxicol Environ Saf ; 281: 116651, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38959790

RESUMO

Betamethasone has been extensively used in medicine in recent years and poses potential hazards to aquatic organisms. This study investigated the reproductive toxic effects of betamethasone exposure in fish, employing female Japanese medaka (Oryzias latipes) as a model. Betamethasone exposure at environmentally relevant concentrations (0, 20, 200, and 2000 ng/L) for a period of 15 weeks resulted in its high accumulation in the ovary, leading to abnormal oogenesis in female Japanese medaka. The production of gonadotropins (LH and FSH) in the pituitary gland was inhibited, and sex steroid biosynthesis in the ovary was significantly influenced at the transcriptional level. The imbalance of androgens and estrogens resulted in a decrease in the E2/T ratio and hepatic VTG synthesis, and the suppression of estrogen receptor signaling was also induced. Furthermore, betamethasone exposure delayed spawning and reduced fertility in the F0 generation, and had detrimental effects on the fertilization rate and hatchability of the F1 generation. Our results showed that environmental betamethasone had the potential to adversely affect female fertility and steroid hormone dynamics in fish.


Assuntos
Betametasona , Oryzias , Ovário , Reprodução , Poluentes Químicos da Água , Animais , Oryzias/fisiologia , Feminino , Betametasona/toxicidade , Poluentes Químicos da Água/toxicidade , Reprodução/efeitos dos fármacos , Ovário/efeitos dos fármacos , Hipófise/efeitos dos fármacos , Fertilidade/efeitos dos fármacos , Oogênese/efeitos dos fármacos , Exposição Ambiental , Hormônios Esteroides Gonadais
2.
Biol Lett ; 20(7): 20240159, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39044714

RESUMO

Rapid body colouration changes in some animals, such as chameleons and octopuses, serve dual functions: camouflage and intraspecific communication. It has been hypothesized that these colouration changes originally evolved to provide camouflage and subsequently were co-opted as social signals; however, experimental model systems that are suitable for studying such evolutionary processes are limited. Here, we investigated the relationship between rapid colouration changes of the blackened markings and aggressive behaviours in male Oryzias celebensis, an Indonesian medaka fish, under triadic relationships (two males and one female) or three males conditions with two different environmental backgrounds. In an algae-covered tank, mimicking the common laboratory rearing conditions, males with blackened markings exhibited more frequent attacks towards different conspecific individuals compared with non-blackened males and females. The blackened males were seldom attacked by non-blackened males and females. By contrast, neither aggressive behaviours nor black colouration changes were observed in the transparent background condition with a brighter environment. These indicated that the blackened markings in O. celebensis serve as a social signal depending on the environmental backgrounds. Considering that such colouration changes for camouflage are widely conserved among teleost fishes, the traits are likely to be co-opted for displaying social signals in O. celebensis.


Assuntos
Agressão , Oryzias , Pigmentação , Animais , Masculino , Feminino , Oryzias/fisiologia , Comportamento Social , Meio Ambiente
3.
Environ Sci Technol ; 58(29): 12921-12932, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38965053

RESUMO

Marine microalgae serve as an aquaculture bait. To enhance algal cell growth and breeding profits, high-intensity light conditions are standard for cultivating bait microalgae, potentially altering microalgal metabolite production. This research revealed that Thalassiosira pseudonana, when subjected to high-intensity light conditions, accumulated significant quantities of retinal (RAL) that transferred through the food chain and transformed into all-trans retinoic acid (atRA) in marine medaka. The study further explored the toxic effects on individual fish and specific tissues, as well as the mechanisms behind this toxicity. The accumulation of atRA in the liver, intestine, and spinal column resulted in structural damage and tissue inflammation, as well as oxidative stress. It also down-regulated the gene transcription levels of key pathways involved in immune function and growth. Furthermore, it disrupted the homeostasis of the intestinal microbial communities. The implications for wildlife and human health, which are influenced by the regulation of microalgal metabolite accumulation and their transfer via the food chain, require further investigation and could hold broader significance.


Assuntos
Cadeia Alimentar , Fígado , Oryzias , Animais , Oryzias/metabolismo , Fígado/metabolismo , Retinoides/metabolismo , Intestinos , Microalgas , Aquicultura
4.
Environ Sci Technol ; 58(29): 12933-12942, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39003765

RESUMO

Perfluoroethylcyclohexane sulfonate (PFECHS) is an emerging per- and polyfluoroalkyl substance used to replace perfluorooctane sulfonate (PFOS), mainly in aircraft hydraulic fluids. However, previous research indicates the potential neurotoxicity of this replacement chemical. In this study, marine medaka (Oryzias melastigma) was exposed to environmentally relevant concentrations of PFECHS (concentrations: 0, 0.08, 0.26, and 0.91 µg/L) from the embryonic stage for 90 days. After exposure, the brain and eyes of the medaka were collected to investigate the bioconcentration potential of PFECHS stereoisomers and their effects on the nervous systems. The determined bioconcentration factors (BCFs) of PFECHS ranged from 324 ± 97 to 435 ± 89 L/kg and from 454 ± 60 to 576 ± 86 L/kg in the brain and eyes of medaka, respectively. The BCFs of trans-PFECHS were higher than those of cis-PFECHS. PFECHS exposure significantly altered γ-aminobutyric acid (GABA) levels in the medaka brain and disrupted the GABAergic system, as revealed by proteomics, implying that PFECHS can disturb neural signal transduction like PFOS. PFECHS exposure resulted in significant alterations in multiple proteins associated with eye function in medaka. Abnormal locomotion was observed in PFECHS-exposed medaka larvae, which was rescued by adding exogenous GABA, suggesting the involvement of disrupted GABA signaling pathways in PFECHS neurotoxicity.


Assuntos
Oryzias , Animais , Oryzias/metabolismo , Poluentes Químicos da Água/toxicidade
5.
J Zhejiang Univ Sci B ; 25(7): 605-616, 2024 Jun 05.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-39011680

RESUMO

Neuropeptide Y receptor Y8 (NPY8R) is a fish-specific receptor with two subtypes, NPY8AR and NPY8BR. Changes in expression levels during physiological processes or in vivo regulation after ventricular injection suggest that NPY8BR plays an important role in feeding regulation; this has been found in only a few fish, at present. In order to better understand the physiological function of npy8br, especially in digestion, we used clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) technology to generate npy8br-/- Japanese medaka (Oryzias latipes). We found that the deletion of npy8br in medaka larvae affected their feeding and digestion ability, ultimately affecting their growth. Specifically, npy8br deficiency in medaka larvae resulted in decreased feed intake and decreased expression levels of orexigenic genes (npy and agrp). npy8br-/- medaka larvae fed for 10 d (10th day of feeding) still had incompletely digested brine shrimp (Artemia nauplii) in the digestive tract 8 h after feeding, the messenger RNA (mRNA) expression levels of digestion-related genes (amy, lpl, ctra, and ctrb) were significantly decreased, and the activity of amylase, trypsin, and lipase also significantly decreased. The deletion of npy8br in medaka larvae inhibited the growth and significantly decreased the expression of growth-related genes (gh and igf1). Hematoxylin and eosin (H&E) sections of intestinal tissue showed that npy8br-/- medaka larvae had damaged intestine, thinned intestinal wall, and shortened intestinal villi. So far, this is the first npy8br gene knockout model established in fish and the first demonstration that npy8br plays an important role in digestion.


Assuntos
Digestão , Técnicas de Inativação de Genes , Larva , Oryzias , Receptores de Neuropeptídeo Y , Animais , Oryzias/genética , Receptores de Neuropeptídeo Y/genética , Larva/genética , Sistemas CRISPR-Cas , Comportamento Alimentar , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo
6.
Chemosphere ; 362: 142796, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38972462

RESUMO

Bisphenol-A (BPA), a known endocrine-disrupting chemical (EDC) in plastics and resins, has been found to induce heritable health effects in fish and mammals, affecting directly exposed individuals and indirectly their progenies in subsequent generations. It is not clearly understood if subsequent generations of the BPA-exposed ancestors have increased sensitivity to the second hit by the chemicals of emerging concern. To understand this, the present study examined the effects of developmental exposure to perfluorooctanesulfonic acid (PFOS), which has been a global contaminant recently, in embryos whose ancestors were exposed to BPA. Two lineages of medaka (Oryzias latipes) were established: 1) the BPA lineage in which the F0 generation was exposed to 10 µg/L BPA during early development and 2) the control lineage with no BPA exposure in the F0 generation. These lineages were raised up to the F4 generation without further exposure. The embryos of the F4 generation were exposed to PFOS at 0, 0.002, 0.02, 0.2, 2, and 20 mg/L concentrations. Early developmental defects resulting in mortality, delayed hatching, teratogenic phenotypes, and altered gene expression were examined in both lineages. The expression level of genes encoding DNA methyltransferases and genes responsible for oxidative stress defense were determined. Following environmentally relevant PFOS exposure, organisms with a history of BPA exposure displayed significant changes in all categories of developmental defects mentioned above, including increased expression of genes related to oxidative stress, compared to individuals without BPA exposure. The present study provides initial evidence that a history of ancestral BPA exposure can alter sensitivity to developmental disorders following the second hit by PFOS exposure. The variable of ancestral BPA exposure could be considered in mechanistic, medical, and regulatory toxicology, and can also be applied to holistic environmental equity research.


Assuntos
Ácidos Alcanossulfônicos , Compostos Benzidrílicos , Embrião não Mamífero , Disruptores Endócrinos , Fluorocarbonos , Oryzias , Fenóis , Poluentes Químicos da Água , Animais , Oryzias/embriologia , Fluorocarbonos/toxicidade , Ácidos Alcanossulfônicos/toxicidade , Fenóis/toxicidade , Compostos Benzidrílicos/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Poluentes Químicos da Água/toxicidade , Desenvolvimento Embrionário/efeitos dos fármacos
7.
Aquat Toxicol ; 273: 107016, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38991362

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) accumulate and integrate into aquatic environments, raising concerns about the well-being and safety of aquatic ecosystems. Benzo[a]pyrene (BaP), a persistent PAH commonly detected in the environment, has been extensively studied. However, the broader multifaceted toxicity potential of BaP on the early life stages of marine fish during chronic exposure to environmentally relevant concentrations needs further exploration. To fill these knowledge gaps, this study assessed the in vivo biotoxicity of BaP (1, 4, and 8 µg/L) in marine medaka (Oryzias melastigma) during early development over a 30-day exposure period. The investigation included morphological, biochemical, and molecular-level analyses to capture the broader potential of BaP toxicity. Morphological analyses showed that exposure to BaP resulted in skeletal curvatures, heart anomalies, growth retardation, elevated mortality, delayed and reduced hatching rates. Biochemical analyses revealed that BaP exposure not only created oxidative stress but also disrupted the activities of antioxidant enzymes. This disturbance in redox balance was further explored by molecular level investigation. The transcriptional profiles revealed impaired oxidative phosphorylation (OXPHOS) and tricarboxylic acid (TCA) cycle pathways, which potentially inhibited the oxidative respiratory chain in fish following exposure to BaP, and reduced the production of adenosine triphosphate (ATP) and succinate dehydrogenase (SDH). Furthermore, this investigation indicated a potential connection to apoptosis, as demonstrated by fluorescence microscopy and histological analyses, and supported by an increase in the expression levels of related genes via real-time quantitative PCR. This study enhances our understanding of the molecular-level impacts of BaP's multifaceted toxicity in the early life stages of marine medaka, and the associated risks.


Assuntos
Benzo(a)pireno , Oryzias , Oxirredução , Poluentes Químicos da Água , Animais , Benzo(a)pireno/toxicidade , Oryzias/genética , Poluentes Químicos da Água/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos
8.
Sci Total Environ ; 948: 174789, 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-39047820

RESUMO

Carbaryl is widely used as a highly effective insecticide which harms the marine environment. This study aimed to assess the reproductive toxicity of chronic carbaryl exposure on female marine medaka and their female offspring. After a 180-day exposure from embryonic period to adulthood, females exhibited reduced attraction to males, decreased ovulation, increased gonadosomatic index and a higher proportion of mature and atretic follicles. These reproductive toxic effects of carbaryl may stem from changes in hormone levels and transcription levels of key genes along the HPG axis. Furthermore, maternal carbaryl exposure had detrimental effects on the offspring. F1 females showed the reproductive disorders similar to those observed in F0 females. The significant changes in the transcription levels of DNA methyltransferase and demethylase genes in the F0 and F1 generations of ovaries indicate changes in their DNA methylation levels. The changes in DNA methylation levels in F1 female marine medaka may lead to changes in the expression of certain reproductive key genes, such as an increase in the transcription level of cyp19a, which may be the reason for F1 reproductive toxicity. These findings indicate that maternal exposure may induce severe generational toxicity through alterations in DNA methylation levels. This study assesses the negative impacts of whole life-cycle carbaryl exposure on the reproductive and developmental processes of female marine medaka and its female offspring, while offering data to support the evaluation of the ecological risk posed by carbaryl in marine ecosystems.


Assuntos
Carbaril , Inseticidas , Oryzias , Reprodução , Poluentes Químicos da Água , Animais , Oryzias/fisiologia , Feminino , Carbaril/toxicidade , Reprodução/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Inseticidas/toxicidade , Exposição Materna/efeitos adversos , Metilação de DNA/efeitos dos fármacos , Masculino
9.
Sci Rep ; 14(1): 12665, 2024 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830927

RESUMO

Quantum dots, which won the Nobel Prize in Chemistry, have recently gained significant attention in precision medicine due to their unique properties, such as size-tunable emission, high photostability, efficient light absorption, and vibrant luminescence. Consequently, there is a growing demand to identify new types of quantum dots from various sources and explore their potential applications as stimuli-responsive biosensors, biomolecular imaging probes, and targeted drug delivery agents. Biomass-waste-derived carbon quantum dots (CQDs) are an attractive alternative to conventional QDs, which often require expensive and toxic precursors, as they offer several merits in eco-friendly synthesis, preparation from renewable sources, and cost-effective production. In this study, we evaluated three CQDs derived from biomass waste for their potential application as non-toxic bioimaging agents in various cell lines, including human dermal fibroblasts, HeLa, cardiomyocytes, induced pluripotent stem cells, and an in-vivo medaka fish (Oryzias latipes) model. Confocal microscopic studies revealed that CQDs could assist in visualizing inflammatory processes in the cells, as they were taken up more by cells treated with tumor necrosis factor-α than untreated cells. In addition, our quantitative real-time PCR gene expression analysis has revealed that citric acid-based CQDs can potentially reduce inflammatory markers such as Interleukin-6. Our studies suggest that CQDs have potential as theragnostic agents, which can simultaneously identify and modulate inflammatory markers and may lead to targeted therapy for immune system-associated diseases.


Assuntos
Biomassa , Carbono , Corantes Fluorescentes , Inflamação , Pontos Quânticos , Pontos Quânticos/química , Carbono/química , Humanos , Animais , Corantes Fluorescentes/química , Células HeLa , Inflamação/metabolismo , Oryzias , Fator de Necrose Tumoral alfa/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos
10.
Sci Total Environ ; 945: 174136, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38901578

RESUMO

Dioxins and the emerging dioxin-like compounds (DLCs) have recruited increasing concerns about their environmental contamination, toxicity, health impacts, and mechanisms. Based on the structural similarity of dioxins and many DLCs, their toxicity was predominantly mediated by the dioxin receptor (aryl hydrocarbon receptor, AHR) in animals (including human), which can be different in expression and function among species and then possibly produce the species-specific risk or toxicity. To date, characterizing the AHR of additional species other than human and rodents can increase the accuracy of toxicity/risk evaluation and increase knowledge about AHR biology. As a key model, the medaka AHR has not been clearly characterized. Through genome survey and phylogenetic analysis, we identified four AHRs (olaAHR1a, olaAHR1b, olaAHR2a, and olaAHR2b) and two ARNTs (olaARNT1 and olaARNT2). The medaka AHR pathway was conserved in expression in nine tested tissues, of which olaAHR2a represented the predominant subform with greater abundance. Medaka AHRs and ARNTs were functional and could be efficiently transactivated by the classical dioxin congener 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), although olaAHR1a did not seem to cooperate with olaARNT2. In terms of function/sensitivity, the EC50 values of medaka olaAHR1a (9.01 ± 1.43 nM), olaAHR1b (4.00 ± 1.10 nM), olaAHR2a (8.75 ± 3.34 nM), and olaAHR2b (3.06 ± 0.81 nM) showed slight differences; however, they were all at the nM level. The sensitivity of four medaka AHRs to TCDD was similar to that of zebrafish dreAHR2 (the dominant form, EC50 = 3.14 ± 4.19 nM), but these medaka AHRs were more sensitive than zebrafish dreAHR1b (EC50 = 27.05 ± 18.51 nM). The additional comparison also indicated that the EC50 values in various species were usually within the nM range, but AHRs of certain subforms/species can vary by one or two orders of magnitude. In summary, the present study will enhance the understanding of AHR and help improve research on the ecotoxicity of dioxins/DLCs.


Assuntos
Dioxinas , Oryzias , Receptores de Hidrocarboneto Arílico , Poluentes Químicos da Água , Peixe-Zebra , Animais , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Dioxinas/toxicidade , Poluentes Químicos da Água/toxicidade , Filogenia , Especificidade da Espécie
11.
Development ; 151(14)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38940461

RESUMO

The vertebral column is a characteristic structure of vertebrates. Genetic studies in mice have shown that Hox-mediated patterning plays a key role in specifying discrete anatomical regions of the vertebral column. Expression pattern analyses in several vertebrate embryos have provided correlative evidence that the anterior boundaries of Hox expression coincide with distinct anatomical vertebrae. However, because functional analyses have been limited to mice, it remains unclear which Hox genes actually function in vertebral patterning in other vertebrates. In this study, various zebrafish Hox mutants were generated for loss-of-function phenotypic analysis to functionally decipher the Hox code responsible for the zebrafish anterior vertebrae between the occipital and thoracic vertebrae. We found that Hox genes in HoxB- and HoxC-related clusters participate in regulating the morphology of the zebrafish anterior vertebrae. In addition, medaka hoxc6a was found to be responsible for anterior vertebral identity, as in zebrafish. Based on phenotypic similarities with Hoxc6 knockout mice, our results suggest that the Hox patterning system, including at least Hoxc6, may have been functionally established in the vertebral patterning of the common ancestor of ray-finned and lobe-finned fishes.


Assuntos
Padronização Corporal , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio , Coluna Vertebral , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/embriologia , Coluna Vertebral/embriologia , Padronização Corporal/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Genes Homeobox/genética , Oryzias/genética , Oryzias/embriologia , Camundongos
12.
Artigo em Inglês | MEDLINE | ID: mdl-38838796

RESUMO

Organophosphorus pesticides (OPs), such as chlorpyrifos (CPF), are the most commonly used pesticides worldwide. Considering that OPs will eventually enter aquatic ecosystems due to runoff from agricultural lands, accidental leakage, and other unforeseen emergencies, monitoring water pollution of those substances is crucial for environmental protection and public health. In this study, Japanese medaka (Oryzias latipes) were exposed to CPF (0.03, 0.06, and 0.12 mg/L) for 6 h, and the time-series variations in their locomotor behavior and vocal traits were investigated. Compared with that measured before exposure, significantly changed locomotor behavior and vocal traits in Japanese medaka exposed to CPF could be observed at 4 h after exposure and thereafter, and the pattern of behavioral changes depends on the CPF concentrations. Exposure to CPF also changed the frequency-sound pressure level curve of Japanese medaka at 6 h after exposure, especially at 0.12 mg/L. Moreover, CPF exposure could significantly inhibit the acetylcholinesterase (AChE) activity in the brains and eyes of medaka, which exhibited significant correlations with the variation of locomotor behavioral and vocal traits. Considering that inhibiting the AChE activity is the primary mechanism underlying the neurobehavioral toxicity of all OPs, our finding suggested that simultaneously monitoring changes in the locomotor behavioral and vocal traits has a high potential to reflect the pollution of organophosphorus substances.


Assuntos
Clorpirifos , Locomoção , Oryzias , Poluentes Químicos da Água , Animais , Oryzias/fisiologia , Clorpirifos/toxicidade , Poluentes Químicos da Água/toxicidade , Locomoção/efeitos dos fármacos , Vocalização Animal/efeitos dos fármacos , Acetilcolinesterase/metabolismo , Inseticidas/toxicidade , Praguicidas/toxicidade , Comportamento Animal/efeitos dos fármacos , Inibidores da Colinesterase/toxicidade , Encéfalo/efeitos dos fármacos
13.
Biochim Biophys Acta Gen Subj ; 1868(9): 130664, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38942152

RESUMO

BACKGROUND: Chinese medaka (Oryzias sinensis) is widely distributed in freshwater rivers in China. Similar to the medaka (Oryzias latipes), Chinese medaka has the characteristics of small size, rapid reproductive cycle, and strong adaptability, which makes it suitable as a model organism for studies in basic biology and environmental toxicology. Chinese medaka exhibits distinct sexual dimorphism. However, due to the lack of complete genomic information, the regulation of sex determination and differentiation-related genes in Chinese medaka remains unclear. METHODS: Chinese medaka dmrt1 (Osdmrt1) was cloned by PCR, and transgenic individuals of medaka [Tg(CMV:Osdmrt1)] overexpressing Osdmrt1 were generated to investigate the role of Osdmrt1 in sex determination. Western blot was used to validate the integration of the Osdmrt1 into the medaka genome. Tissue sectioning and HE staining were used to identify Tg(CMV:Osdmrt1) physiological gender and phenotype. qRT-PCR was used to analyze the expression of gonad-specific genes. RESULTS: Osdmrt1 was cloned and identified, and it shared similar evolutionary relationships with medaka dmrt1. Tg(CMV:Osdmrt1) exhibited partial sex reversal from female to male in the F2 generation, with genetically female individuals developing testes and producing functional sperm. Additionally, the secondary sexual characteristics of the transgenic females also changed to males. CONCLUSION: The Chinese medaka dmrt1 gene could convert females to males in medaka. GENERAL SIGNIFICANCE: These results not only elucidate the function of Chinese medaka dmrt1, but also accumulate knowledge for studying the function of economically important fish genes in model fish by transgenic technology.


Assuntos
Animais Geneticamente Modificados , Oryzias , Fatores de Transcrição , Animais , Oryzias/genética , Feminino , Masculino , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Processos de Determinação Sexual/genética , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , População do Leste Asiático
14.
Biochem Biophys Res Commun ; 724: 150227, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38870865

RESUMO

Sex determination mechanisms differ widely among vertebrates, particularly in fish species, where diverse sex chromosomes and sex-determining genes have evolved. However, the sex-differentiation pathways activated by these sex-determining genes appear to be conserved. Gonadal soma-derived growth factor (Gsdf) is one of the genes conserved across teleost fish, especially in medaka fishes of the genus Oryzias, and is implicated in testis differentiation and germ cell proliferation. However, its role in sex differentiation remains unclear. In this study, we investigated Gsdf function in Oryzias hubbsi, a species with a ZW sex-determination system. We confirmed its male-dominant expression, as in other species. However, histological analyses revealed no male-to-female sex reversal in Gsdf-knockout fish, contrary to findings in other medaka species. Genetic sex determination remained intact without Gsdf function, indicating a Gsdf-independent sex-differentiation pathway in O. hubbsi. Instead, Gsdf loss led to germ cell overproliferation in both sexes and accelerated onset of meiosis in testes, suggesting a role in germ cell proliferation. Notably, the feminizing effect of germ cells observed in O. latipes was absent, suggesting diverse germ cell-somatic cell relationships in Oryzias gonad development. Our study highlights species-specific variations in the molecular pathways governing sex determination and differentiation, emphasizing the need for further exploration to elucidate the complexities of sexual development.


Assuntos
Oryzias , Diferenciação Sexual , Animais , Oryzias/genética , Oryzias/crescimento & desenvolvimento , Masculino , Diferenciação Sexual/genética , Feminino , Processos de Determinação Sexual/genética , Testículo/metabolismo , Testículo/citologia , Testículo/crescimento & desenvolvimento , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Proliferação de Células , Diferenciação Celular/genética , Células Germinativas/metabolismo , Células Germinativas/citologia , Meiose/genética
15.
PLoS One ; 19(6): e0302092, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38941325

RESUMO

Medaka fish (Oryzias latipes) is a powerful model to study genetics underlying the developmental and functional traits of the vertebrate visual system. We established a simple and high-throughput optomotor response (OMR) assay utilizing medaka larvae to study visual functions including visual acuity and contrast sensitivity. Our assay presents multiple adjustable stripes in motion to individual fish in a linear arena. For that the OMR assay employs a tablet display and the Fish Stripes software to adjust speed, width, color, and contrast of the stripes. Our results demonstrated that optomotor responses were robustly induced by black and white stripes presented from below in the linear-pool-arena. We detected robust strain specific differences in the OMR when comparing long established medaka inbred strains. We observed an interesting training effect upon the initial exposure of larvae to thick stripes, which allowed them to better respond to narrower stripes. The OMR setup and protocol presented here provide an efficient tool for quantitative phenotype mapping, addressing visual acuity, trainability of cortical neurons, color sensitivity, locomotor response, retinal regeneration and others. Our open-source setup presented here provides a crucial prerequisite for ultimately addressing the genetic basis of those processes.


Assuntos
Larva , Oryzias , Animais , Oryzias/fisiologia , Larva/fisiologia , Acuidade Visual/fisiologia , Estimulação Luminosa , Sensibilidades de Contraste/fisiologia , Visão Ocular/fisiologia , Ensaios de Triagem em Larga Escala/métodos
16.
Proc Natl Acad Sci U S A ; 121(25): e2403809121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38861596

RESUMO

The dorsal and anal fins can vary widely in position and length along the anterior-posterior axis in teleost fishes. However, the molecular mechanisms underlying the diversification of these fins remain unknown. Here, we used genetic approaches in zebrafish and medaka, in which the relative positions of the dorsal and anal fins are opposite, to demonstrate the crucial role of hox genes in the patterning of the teleost posterior body, including the dorsal and anal fins. By the CRISPR-Cas9-induced frameshift mutations and positional cloning of spontaneous dorsalfinless medaka, we show that various hox mutants exhibit the absence of dorsal or anal fins, or a stepwise posterior extension of these fins, with vertebral abnormalities. Our results indicate that multiple hox genes, primarily from hoxc-related clusters, encompass the regions responsible for the dorsal and anal fin formation along the anterior-posterior axis. These results further suggest that shifts in the anterior boundaries of hox expression which vary among fish species, lead to diversification in the position and size of the dorsal and anal fins, similar to how modulations in Hox expression can alter the number of anatomically distinct vertebrae in tetrapods. Furthermore, we show that hox genes responsible for dorsal fin formation are different between zebrafish and medaka. Our results suggest that a novel mechanism has occurred during teleost evolution, in which the gene network responsible for fin formation might have switched to the regulation downstream of other hox genes, leading to the remarkable diversity in the dorsal fin position.


Assuntos
Nadadeiras de Animais , Genes Homeobox , Proteínas de Homeodomínio , Oryzias , Peixe-Zebra , Animais , Oryzias/genética , Peixe-Zebra/genética , Genes Homeobox/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Padronização Corporal/genética , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo
17.
Sci Rep ; 14(1): 14736, 2024 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926593

RESUMO

Japanese medaka (Oryzias latipes) has been used as a model organism in different research fields, including reproductive physiology. Sperm motility is the most important marker for male fertility in fish and, thus, reproduction success. However, because of small volume of ejaculate and short motility duration, it is still challenging to manage the sperm collection and analysis in small model fish. In the present study, we aimed to investigate sperm motility and to optimize sperm collection, short-term sperm storage, and cryopreservation in Japanese medaka (Oryzias latipes). Using two different approaches for sperm collection: testes dissection and abdominal massage, different housing conditions and activating the sperm with different activation solutions, we investigated immediate sperm motility. In the second part of this study, we used different osmolalities of immobilization solution, Hank's Balanced Salt Solution (HBSS) for sperm storage at 0, 2 and 3 h after sperm collection. Finally, the sperm were cryopreserved using methanol as cryoprotectant and HBSS as extender at two different osmolalities, and post-thaw sperm motility was investigated. The highest post-activating sperm motility was achieved in the groups activated by the extender at 300 mOsm/kg. The quality of sperm remained unaffected by co-housing with females or with males only. Furthermore, Hanks' Balanced Salt Solution (HBSS) with an osmolality of 600 mOsm/kg demonstrated its efficacy as a suitable extender for sperm storage, preserving motility and progressivity for 3 h. The highest post-thaw motility was around 35%. There were no significant differences between post-thaw motility in different groups. We also found that post-thaw incubation on ice can maintain the motility of the sperm for up to one hour after thawing.


Assuntos
Criopreservação , Oryzias , Preservação do Sêmen , Motilidade dos Espermatozoides , Espermatozoides , Animais , Oryzias/fisiologia , Masculino , Criopreservação/métodos , Espermatozoides/fisiologia , Preservação do Sêmen/métodos , Feminino , Crioprotetores/farmacologia
18.
Nat Commun ; 15(1): 5342, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937445

RESUMO

In vertebrates, folliculogenesis and ovulation are regulated by two distinct pituitary gonadotropins: follicle-stimulating hormone (FSH) and luteinizing hormone (LH). Currently, there is an intriguing consensus that a single hypothalamic neurohormone, gonadotropin-releasing hormone (GnRH), regulates the secretion of both FSH and LH, although the required timing and functions of FSH and LH are different. However, recent studies in many non-mammalian vertebrates indicated that GnRH is dispensable for FSH function. Here, by using medaka as a model teleost, we successfully identify cholecystokinin as the other gonadotropin regulator, FSH-releasing hormone (FSH-RH). Our histological and in vitro analyses demonstrate that hypothalamic cholecystokinin-expressing neurons directly affect FSH cells through the cholecystokinin receptor, Cck2rb, thereby increasing the expression and release of FSH. Remarkably, the knockout of this pathway minimizes FSH expression and results in a failure of folliculogenesis. Here, we propose the existence of the "dual GnRH model" in vertebrates that utilize both FSH-RH and LH-RH.


Assuntos
Hormônio Foliculoestimulante , Hormônio Liberador de Gonadotropina , Hipotálamo , Oryzias , Animais , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Liberador de Gonadotropina/genética , Hormônio Foliculoestimulante/metabolismo , Hormônio Foliculoestimulante/genética , Feminino , Oryzias/metabolismo , Oryzias/genética , Hipotálamo/metabolismo , Neurônios/metabolismo , Hormônio Luteinizante/metabolismo , Folículo Ovariano/metabolismo , Ovulação/genética
19.
Adv Sci (Weinh) ; 11(30): e2401110, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38864352

RESUMO

Multi-photon 3D laser printing has gathered much attention in recent years as a means of manufacturing biocompatible scaffolds that can modify and guide cellular behavior in vitro. However, in vivo tissue engineering efforts have been limited so far to the implantation of beforehand 3D printed biocompatible scaffolds and in vivo bioprinting of tissue constructs from bioinks containing cells, biomolecules, and printable hydrogel formulations. Thus, a comprehensive 3D laser printing platform for in vivo and in situ manufacturing of microimplants raised from synthetic polymer-based inks is currently missing. Here, a platform for minimal-invasive manufacturing of microimplants directly in the organism is presented by one-photon photopolymerization and multi-photon 3D laser printing. Employing a commercially available elastomeric ink giving rise to biocompatible synthetic polymer-based microimplants, first applicational examples of biological responses to in situ printed microimplants are demonstrated in the teleost fish Oryzias latipes and in embryos of the fruit fly Drosophila melanogaster. This provides a framework for future studies addressing the suitability of inks for in vivo 3D manufacturing. The platform bears great potential for the direct engineering of the intricate microarchitectures in a variety of tissues in model organisms and beyond.


Assuntos
Drosophila melanogaster , Lasers , Impressão Tridimensional , Engenharia Tecidual , Impressão Tridimensional/instrumentação , Animais , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Oryzias , Materiais Biocompatíveis , Bioimpressão/métodos , Tinta
20.
Aquat Toxicol ; 273: 106996, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38852546

RESUMO

Naphthenic acids (NAs) are important pollutants in marine crude oils and have obvious toxic effects on marine organisms. However, the effects of NAs on the intestine are largely unknown. Thus, we evaluated the effects of NAs exposure in the intestines of marine medaka. Fish were experimentally exposed to NAs (0.5 mg/L, 5 mg/L, and 10 mg/L) for 96 h and monitored for changes in intestinal histology, markers of oxidative stress, and intestinal microbiome responses. Significant mucosal damage, inflammation, and oxidative stress were observed in the intestines of marine medaka after exposure to NAs. In addition, significant changes in the gut microbiota were observed. Specifically, the relative abundance of Proteobacteria decreased, while that of Verrucomicrobiota increased in the high-concentration exposure group. In addition, nutrient synthesis and metabolism in the gut were affected. The results of this study contribute to a better understanding of the ecological risk of different concentrations of NAs to marine organisms. CAPSULE ABSTRACT: Changes in the gut microbial community of marine medaka (Oryzias melastigma) caused by naphthenic acids in the marine environment were investigated through the assessment of gut inflammatory factors and comprehensive analysis using 16S rDNA high-throughput sequencing. The results indicated the induction of intestinal inflammation and changes in the structural composition of the intestinal flora.


Assuntos
Ácidos Carboxílicos , Disbiose , Microbioma Gastrointestinal , Intestinos , Oryzias , Poluentes Químicos da Água , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Ácidos Carboxílicos/toxicidade , Disbiose/veterinária , Disbiose/induzido quimicamente , Intestinos/efeitos dos fármacos , Intestinos/patologia , Estresse Oxidativo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA