Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 453
Filtrar
1.
Lasers Med Sci ; 39(1): 174, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38969931

RESUMO

PURPOSE: Laser irradiation activates a range of cellular processes in the periodontal components and promotes tissue repair. However, its effect on osteogenic differentiation of human cementoblast lineage cells remains unclear. This study aimed to examine the effects of high-frequency semiconductor laser irradiation on the osteogenic differentiation of human cementoblast lineage (HCEM) cells. METHODS: HCEM cells were cultured to reach 80% confluence and irradiated with a gallium-aluminum-arsenide (Ga-Al-As) semiconductor laser with a pulse width of 200 ns and wavelength of 910 at a dose of 0-2.0 J/cm2. The outcomes were assessed by analyzing the mRNA levels of alkaline phosphatase (ALP), runt-related transcription factor 2 (RUNX2), and type I collagen (COLL1) using real-time polymerase chain reaction (PCR) analysis 24 h after laser irradiation. Cell mineralization was evaluated using ALP activity, calcium deposition, and Alizarin Red staining. RESULTS: The laser-irradiated HCEM cells showed significantly enhanced gene expression levels of ALP, RUNX2, and COLL1 as well as ALP activity and calcium concentration in the culture medium compared with the non-irradiated cells. In addition, enhanced calcification deposits were confirmed in the laser-irradiated group compared with the non-irradiated group at 21 and 28 days after the induction of osteogenic differentiation. CONCLUSION: High-frequency semiconductor laser irradiation enhances the osteogenic differentiation potential of cultured HCEM cells, underscoring its potential utility for periodontal tissue regeneration.


Assuntos
Diferenciação Celular , Cemento Dentário , Lasers Semicondutores , Osteogênese , Humanos , Lasers Semicondutores/uso terapêutico , Diferenciação Celular/efeitos da radiação , Osteogênese/efeitos da radiação , Cemento Dentário/efeitos da radiação , Cemento Dentário/citologia , Fosfatase Alcalina/metabolismo , Células Cultivadas , Terapia com Luz de Baixa Intensidade/métodos , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo
2.
Biomater Adv ; 162: 213916, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38838618

RESUMO

The Ti6Al4V (TC4) alloy, a prevalent biomedical material in orthopedics, still faces limitation of the insufficient osseointegration. To improve the bioactivity of TC4, introducing the electric environment onto the TC4 surface may be an effective way in the view of the necessity of endogenous electric microenvironment in bone regeneration. Herein, a Volta potential pattern was engendered on the TC4 surface via parallel laser patterning, so as to promote the osteogenic differentiation of cells. A 15 W laser successfully transformed the original α + ß dual phase towards radially distributed lath-like martensite phase in the laser treated region. The atomic lattice distortion between the heterogeneous microstructures of the laser treated and untreated regions leads to a significant Volta potential fluctuation on the TC4 surface. The Volta potential pattern as well as the laser-engraved microgrooves respectively induced mutually orthogonal cell alignments. The hBMSCs osteogenic differentiation was significantly enhanced on the laser treated TC4 surfaces in comparison to the surface without the laser treatment. Moreover, a drastic Volta potential gradient on the TC4 surface (treated with 15 W power and 400 µm interval) resulted in the most pronounced osteogenic differentiation tendency compared to other groups. Modulating the electric environment on the TC4 surface by manipulating the phase transformation may provide an effective way in evoking favorable cell response of bone regeneration, thereby improving the bioactivity of TC4 implant.


Assuntos
Ligas , Diferenciação Celular , Lasers , Células-Tronco Mesenquimais , Osteogênese , Propriedades de Superfície , Titânio , Osteogênese/efeitos da radiação , Osteogênese/fisiologia , Ligas/química , Titânio/química , Humanos , Células-Tronco Mesenquimais/citologia , Células Cultivadas
3.
Lasers Med Sci ; 39(1): 158, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888695

RESUMO

Orthopedic surgeons face a significant challenge in treating critical-size femoral defects (CSFD) caused by osteoporosis (OP), trauma, infection, or bone tumor resections. In this study for the first time, the application of photobiomodulation (PBM) and bone marrow mesenchymal stem cell-conditioned medium (BM-MSC-CM) to improve the osteogenic characteristics of mineralized bone scaffold (MBS) in ovariectomy-induced osteoporotic (OVX) rats with a CSFD was tested. Five groups of OVX rats with CSFD were created: (1) Control (C); (2) MBS; (3) MBS + CM; (4) MBS + PBM; (5) MBS + CM + PBM. Computed tomography scans (CT scans), compression indentation tests, and histological and stereological analyses were carried out after euthanasia at 12 weeks following implantation surgery. The CT scan results showed that CSFD in the MBS + CM, MBS + PBM, and MBS + CM + PBM groups was significantly smaller compared to the control group (p = 0.01, p = 0.04, and p = 0.000, respectively). Moreover, the CSFD size was substantially smaller in the MBS + CM + PBM treatment group than in the MBS, MBS + CM, and MBS + PBM treatment groups (p = 0.004, p = 0.04, and p = 0.01, respectively). The MBS + PBM and MBS + CM + PBM treatments had significantly increased maximum force relative to the control group (p = 0.01 and p = 0.03, respectively). Bending stiffness significantly increased in MBS (p = 0.006), MBS + CM, MBS + PBM, and MBS + CM + PBM treatments (all p = 0.004) relative to the control group. All treatment groups had considerably higher new trabecular bone volume (NTBV) than the control group (all, p = 0.004). Combined therapies with MBS + PBM and MBS + CM + PBM substantially increased the NTBV relative to the MBS group (all, p = 0.004). The MBS + CM + PBM treatment had a markedly higher NTBV than the MBS + PBM (p = 0.006) and MBS + CM (p = 0.004) treatments. MBS + CM + PBM, MBS + PBM, and MBS + CM treatments significantly accelerated bone regeneration of CSFD in OVX rats. PBM + CM enhanced the osteogenesis of the MBS compared to other treatment groups.


Assuntos
Terapia com Luz de Baixa Intensidade , Células-Tronco Mesenquimais , Animais , Ratos , Terapia com Luz de Baixa Intensidade/métodos , Meios de Cultivo Condicionados , Feminino , Ratos Sprague-Dawley , Fêmur/efeitos da radiação , Fêmur/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Osteoporose/radioterapia , Osteoporose/terapia , Ovariectomia , Alicerces Teciduais , Osteogênese/efeitos da radiação , Regeneração Óssea/efeitos da radiação
4.
Photobiomodul Photomed Laser Surg ; 42(4): 306-313, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38546858

RESUMO

Background: This investigation set out to compare the impacts of low-level diode laser (LLDL) and red light-emitting diode (LED) on the survival of human dental pulp stem cells (hDPSCs) and osteogenic/odontogenic differentiation. Methods and materials: In this ex vivo experimental study, the experimental groups underwent the irradiation of LLDL (4 J/cm2 energy density) and red LED in the osteogenic medium. Survival of hDPSCs was assessed after 24 and 48 h (n = 9) using the methyl thiazolyl tetrazolium (MTT) assay. The assessment of osteogenic/odontogenic differentiation was conducted using alizarin red staining (ARS; three repetitions). The investigation of osteogenic and odontogenic gene expression was performed at two time points, specifically 24 and 48 h (n = 12). This analysis was performed utilizing real-time reverse-transcription polymerase chain reaction (RT-PCR). The groups were compared at each time point using SPSS version 24. To analyze the data, the Mann-Whitney U test, analysis of variance, Tukey's test, and t-test were utilized. Results: The MTT assay showed that LLDL significantly decreased the survival of hDPSCs after 48 h, compared with other groups (p < 0.05). The qualitative results of ARS revealed that LLDL and red LED increased the osteogenic differentiation of hDPSCs. LLDL and red LED both upregulated the expression of osteogenic/odontogenic genes, including bone sialoprotein (BSP), alkaline phosphatase (ALP), dentin matrix protein 1 (DMP1), and dentin sialophosphoprotein (DSPP), in hDPSCs. The LLDL group exhibited a higher level of gene upregulation (p < 0.0001). Conclusions: The cell survival of hDPSCs was reduced, despite an increase in osteogenic/odontogenic activity. Clinical relevance: Introduction of noninvasive methods in regenerative endodontic treatments.


Assuntos
Diferenciação Celular , Sobrevivência Celular , Polpa Dentária , Lasers Semicondutores , Terapia com Luz de Baixa Intensidade , Odontogênese , Osteogênese , Células-Tronco , Humanos , Polpa Dentária/citologia , Polpa Dentária/efeitos da radiação , Diferenciação Celular/efeitos da radiação , Osteogênese/efeitos da radiação , Células-Tronco/efeitos da radiação , Células-Tronco/citologia , Sobrevivência Celular/efeitos da radiação , Odontogênese/efeitos da radiação , Células Cultivadas , Luz Vermelha
5.
Bioelectromagnetics ; 45(5): 226-234, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38546158

RESUMO

Pulsed electromagnetic field (PEMF) stimulation has been widely applied clinically to promote bone healing; however, its detailed mechanism of action, particularly in endochondral ossification, remains elusive, and long-term stimulation is required for its satisfactory effect. The aim of this study was to investigate the involvement of the mammalian target of rapamycin (mTOR) pathway in chondrocyte differentiation and proliferation using a mouse prechondroblast cell line (ATDC5), and establish an efficient PEMF stimulation strategy for endochondral ossification. The changes in cell differentiation (gene expression levels of aggrecan, type II collagen, and type X collagen) and proliferation (cellular uptake of bromodeoxyuridine [BrdU]) in ATDC5 cells in the presence or absence of rapamycin, an mTOR inhibitor, was measured. The effects of continuous and intermittent PEMF stimulation on changes in cell differentiation and proliferation were compared. Rapamycin significantly suppressed the induction of cell differentiation markers and the cell proliferation activity. Furthermore, only intermittent PEMF stimulation continuously activated the mTOR pathway in ATDC5 cells, significantly promoting cell proliferation. These results demonstrate the involvement of the mTOR pathway in chondrocyte differentiation and proliferation and suggest that intermittent PEMF stimulation could be effective as a stimulus for endochondral ossification during fracture healing process, thereby reducing stimulation time.


Assuntos
Diferenciação Celular , Proliferação de Células , Condrócitos , Campos Eletromagnéticos , Osteogênese , Serina-Treonina Quinases TOR , Animais , Camundongos , Osteogênese/efeitos da radiação , Condrócitos/citologia , Condrócitos/metabolismo , Condrócitos/fisiologia , Linhagem Celular , Serina-Treonina Quinases TOR/metabolismo , Sirolimo/farmacologia , Cartilagem/metabolismo , Cartilagem/citologia , Cartilagem/fisiologia , Transdução de Sinais , Regulação da Expressão Gênica/efeitos da radiação
6.
Lasers Med Sci ; 37(9): 3681-3692, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36227520

RESUMO

The effect of near infrared (NIR) laser irradiation on proliferation and osteogenic differentiation of buccal fat pad-derived stem cells and the role of transient receptor potential (TRP) channels was investigated in the current research. After stem cell isolation, a 940 nm laser with 0.1 W, 3 J/cm2 was used in pulsed and continuous mode for irradiation in 3 sessions once every 48 h. The cells were cultured in the following groups: non-osteogenic differentiation medium/primary medium (PM) and osteogenic medium (OM) groups with laser-irradiated (L +), without irradiation (L -), laser treated + Capsazepine inhibitor (L + Cap), and laser treated + Skf96365 inhibitor (L + Skf). Alizarin Red staining and RT-PCR were used to assess osteogenic differentiation and evaluate RUNX2, Osterix, and ALP gene expression levels. The pulsed setting showed the best viability results (P < 0.05) and was used for osteogenic differentiation evaluations. The results of Alizarin red staining were not statistically different between the four groups. Osterix and ALP expression increased in the (L +) group. This upregulation abrogated in the presence of Capsazepine, TRPV1 inhibitor (L + Cap); however, no significant effect was observed with Skf96365 (L + Skf).


Assuntos
Tecido Adiposo , Células-Tronco , Canais de Potencial de Receptor Transitório , Humanos , Tecido Adiposo/efeitos da radiação , Diferenciação Celular/genética , Diferenciação Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Células Cultivadas , Osteogênese/genética , Osteogênese/efeitos da radiação , Células-Tronco/efeitos da radiação , Canais de Potencial de Receptor Transitório/metabolismo , Raios Infravermelhos
7.
Lasers Med Sci ; 37(9): 3509-3516, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36066778

RESUMO

Low-level laser therapy (LLLT) also known as photobiomodulation is a treatment to change cellular biological activity. The exact effects of LLLT remain unclear due to the different irradiation protocols. The purpose of this study was to investigate the effects of LLLT by three different irradiation methods on the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) in vitro. BMSCs were inoculated in 24-well plates and then irradiated or not (control) with a laser using three different irradiation methods. The irradiation methods were spot irradiation, covering irradiation, and scanning irradiation according to different spot areas (0.07 cm2 or 1.96 cm2) and irradiation areas (0.35 cm2 or 1.96 cm2), respectively. The laser was applied three times at energy densities of 4 J/cm2. The cell proliferation by CCK-8. ALP activity assay, alizarin red, and quantitative real-time polymerase chain reaction (RT-PCR) were performed to assess osteogenic differentiation and mineralization. Increases in cell proliferation was obvious following irradiation, especially for covering irradiation. The ALP activity was significantly increased in irradiated groups compared with non-irradiated control. The level of mineralization was obviously improved following irradiation, particularly for covering irradiation. RT-PCR detected significantly higher expression of ALP, OPN, OCN, and RUNX-2 in the group covering than in the others, and control is the lowest. The presented results indicate that the biostimulative effects of LLLT on BMSCs was influenced by t he irradiation method, and the covering irradiation is more favorable method to promote the proliferation and osteogenic differentiation of BMSCs.


Assuntos
Terapia com Luz de Baixa Intensidade , Células-Tronco Mesenquimais , Osteogênese/genética , Osteogênese/efeitos da radiação , Células da Medula Óssea , Células-Tronco Mesenquimais/efeitos da radiação , Diferenciação Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Células Cultivadas
8.
J Photochem Photobiol B ; 233: 112472, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35660312

RESUMO

Human dental pulp stem cells (hDPSCs) have attracted tremendous attention in tissue regeneration engineering due to their excellent multidirectional differentiation potential. Photobiomodulation (PBM) using low-level light-emitting diodes (LEDs) or lasers has been proved to promote the osteogenesis of mesenchymal stem cells. However, the effect of LEDs on osteogenic differentiation of hDPSCs has little published data. In this work, the effect of blue LEDs with different energy densities of 2, 4, 6, 8, 10 J/cm2 on osteogenic differentiation of hDPSCs was examined by using in vitro ALP staining, ALP activity, mineralization, and real-time PCR. The results showed that compared with the control group, osteogenic differentiation was significantly enhanced in blue LEDs treated groups. As the energy density increased, the level of osteogenesis initially increased and then decreased reaching the highest level at 6 J/cm2. Transient receptor potential vanilloid 1 (TRPV1), a Ca2+ ion channel, was believed to be a potential player in osteogenesis by photobiomodulation. By immunofluorescence assay, calcium influx assay, PCR, and ALP staining, it was shown that blue LEDs irradiation can increase the activity of TRPV1 and intracellular calcium levels similarly to the agonist of TRPV1 capsaicin. Additionally, pretreatment with capsazepine, a selective TRPV1 inhibitor, was able to abrogate the osteogenic effect of blue LEDs. In conclusion, these findings proposed that blue LEDs can promote the osteogenesis of hDPSCs within the appropriate range (4-8 J/cm2) during culture of osteogenic medium, and TRPV1/Ca2+ may be an essential signaling pathway involved in blue LEDs-induced osteogenesis, providing new insights for the use of hDPSCs in tissue regeneration engineering.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Cálcio/metabolismo , Diferenciação Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Células Cultivadas , Polpa Dentária , Humanos , Osteogênese/efeitos da radiação
9.
Biomed Mater ; 17(2)2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35042197

RESUMO

The biological aging of titanium implants affects the service lifetime negatively in clinical applications, and Ultraviolet (UV) irradiation is an applicable method to overcome the biological aging. This study investigated the changes in surface characteristics and biological properties of bioactive titanium surfaces with different structure and topography after Ultraviolet C (UVC) irradiation. The bioactive titanium surfaces were prepared by anodizing (AO), sandblasting and acid-etching (SLA), acid-alkali etching (AA), alkali-heat etching (AH) methods. Samples were stored at dark for 7 weeks to simulate biological aging process and then irradiated by UVC for 2 h. The results showed that the hydroxyl groups (Ti-OH) on surfaces, which are crucial to enhance the biological properties, were easier to be generated on AO surfaces by UVC-irradiation, owing to a mixture of anatase and rutile on surfaces. UVC-irradiation had the strongest effect on AO surfaces to enhance the bioactivity in bone-like apatite deposition and better biocompatibility in mesenchymal stem cells (MSCs) attachment and proliferation. Therefore, titanium surfaces with a mixture phase of anatase and rutile have the potential to effectively utilize the benefits of UVC-irradiation to overcome the negative effects of the biological aging and have a promising clinical application prospect.


Assuntos
Envelhecimento , Titânio , Raios Ultravioleta , Envelhecimento/efeitos dos fármacos , Envelhecimento/efeitos da radiação , Animais , Células Cultivadas , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Osteogênese/efeitos da radiação , Coelhos , Propriedades de Superfície
10.
Minerva Dent Oral Sci ; 71(5): 255-261, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34609114

RESUMO

BACKGROUND: Electromagnetic waves can cause biological effects on repair process. Due to the proximity of the jawbone and the soft tissue around it in a part of the face with which it has the closest contact during the cell phone use, this study aims to investigate the effect of mobile waves on socket healing after tooth extraction in rats. METHODS: This experimental study was conducted on 32 rats. The case group was exposed to a 900 MHz frequency electromagnetic field for 30 min/d. Sacrificed eight rats from the case group and 7 rats from the control group on day 14, and 8 rats from the case group and 7 rats from the control group were sacrificed on day 28 at the end of the radiation period and CBCT and microscopic examinations on the maxillary bones and soft tissue were performed. RESULTS: According to the findings, the healing process was significantly different in two groups in terms of the percentage of new bone formation on day 14 after the end of radiation (P=0.014). The other measured parameters including the degree of inflammation, thickness of the formed bone, number of osteoblasts and Gray Scale had no significant difference between the two groups in any of the 14-day and 28-day intervals. CONCLUSIONS: The results of this study showed that intermittent exposure to high frequency electromagnetic fields over a period of 20 hours has no significant effect on the healing process of alveolar socket after tooth extraction in rats.


Assuntos
Telefone Celular , Alvéolo Dental , Ratos , Animais , Extração Dentária , Ligamento Periodontal , Osteogênese/efeitos da radiação
11.
Lasers Med Sci ; 37(3): 1993-2003, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34787763

RESUMO

This study aims to evaluate the impact of red LED irradiation on the viability, proliferation, colonogenic potential, markers expression along with osteogenic and chondrogenic differentiation of dental pulp stem cells. DPSCs were isolated from sound human permanent teeth using enzymatic digestion method and seeded with regular culture media. Cells at P4 were irradiated using red LED Light (627 nm, 2 J/cm2) and examined for growth kinetics, and multilineage differentiation using the appropriate differentiation media. The irradiated groups showed an increase in cellular growth rates, cell viability, clonogenic potential, and decrease in population doubling time compared to the control group. Cells of the irradiated groups showed enhanced differentiation towards osteogenic and chondrogenic lineages as revealed by histochemical staining using alizarin red and alcian blue stains. Photobiomodulation is an emerging promising element of tissue engineering triad besides stem cells, scaffolds, and growth factors.


Assuntos
Terapia com Luz de Baixa Intensidade , Diferenciação Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Células Cultivadas , Polpa Dentária , Humanos , Cinética , Osteogênese/efeitos da radiação , Células-Tronco
12.
Exp Cell Res ; 410(1): 112944, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34822810

RESUMO

Photo-functionalization of titanium orthopedic/prosthetic implants using ultraviolet illumination is known to improve osteogenesis. Therefore, in this study, we aimed to examine the influence of vacuum ultraviolet (VUV)-treated titanium surfaces on osteoblast cell adhesion, activity, and differentiation. Osteoblastic cells were cultured on titanium substrates treated with various VUV treatment conditions (0, 6.2, 18.7, and 37.4 J/cm2) and their behavior was evaluated. The results revealed that cell adhesion was increased whereas cell activity and differentiation ability were decreased upon cell culture on VUV-treated substrates. In particular, cell activity and differentiation ability were dramatically suppressed with 18.7 J/cm2 VUV irradiation. Within the limitations of this cell-based experiment, we clarified the VUV treatment conditions in which cell adhesion was improved but cell activity and differentiation ability were suppressed. These results indicate that VUV-treatment can be used to influence cell growth properties and can be used to accelerate or suppress cell differentiation on implant substrates.


Assuntos
Diferenciação Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Osteogênese/efeitos dos fármacos , Titânio/farmacologia , Adesão Celular/efeitos dos fármacos , Adesão Celular/efeitos da radiação , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Humanos , Osteoblastos/efeitos dos fármacos , Osteoblastos/efeitos da radiação , Osteogênese/genética , Osteogênese/efeitos da radiação , Especificidade por Substrato , Propriedades de Superfície/efeitos dos fármacos , Propriedades de Superfície/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Vácuo
13.
Int J Mol Sci ; 22(21)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34769141

RESUMO

Space is a high-stress environment. One major risk factor for the astronauts when they leave the Earth's magnetic field is exposure to ionizing radiation from galactic cosmic rays (GCR). Several adverse changes occur in mammalian anatomy and physiology in space, including bone loss. In this study, we assessed the effects of simplified GCR exposure on skeletal health in vivo. Three months following exposure to 0.5 Gy total body simulated GCR, blood, bone marrow and tissue were collected from 9 months old male mice. The key findings from our cell and tissue analysis are (1) GCR induced femoral trabecular bone loss in adult mice but had no effect on spinal trabecular bone. (2) GCR increased circulating osteoclast differentiation markers and osteoclast formation but did not alter new bone formation or osteoblast differentiation. (3) Steady-state levels of mitochondrial reactive oxygen species, mitochondrial and non-mitochondrial respiration were increased without any changes in mitochondrial mass in pre-osteoclasts after GCR exposure. (4) Alterations in substrate utilization following GCR exposure in pre-osteoclasts suggested a metabolic rewiring of mitochondria. Taken together, targeting radiation-mediated mitochondrial metabolic reprogramming of osteoclasts could be speculated as a viable therapeutic strategy for space travel induced bone loss.


Assuntos
Osso Esponjoso/efeitos da radiação , Radiação Cósmica/efeitos adversos , Mitocôndrias/efeitos da radiação , Osteoclastos/efeitos da radiação , Osteogênese/efeitos da radiação , Animais , Masculino , Camundongos Endogâmicos BALB C , Mitocôndrias/metabolismo
14.
Eur Rev Med Pharmacol Sci ; 25(20): 6319-6325, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34730212

RESUMO

OBJECTIVE: To evaluate the effect of near infra-red gallium-aluminium-arsenide (GaAlAs) diode laser (805 nm) irradiation on proliferation and differentiation of rat femoral bone marrow-derived mesenchymal stem cells (BMSCs) cultured in osteogenic medium. MATERIALS AND METHODS: BMSCs were obtained from femurs of 60 Sprague Dawley rats (200 gm). The control group comprised isolated BMSCs supplemented with an osteogenic differentiation medium. On the other hand, in the experimental group, the BMSCs were irradiated with a near-infrared laser in addition to an osteogenic differentiation medium. The experimental group was irradiated with a soft tissue laser comprising of allium-aluminium-arsenic (Ga-Al-Ar) Diode at a near-infrared wavelength of 805 nm in continuous mode. The different output powers applied were 0.5 W, 1.0 W, 1.5 W and 2.0 W respectively. Various energy levels of 1, 4, 7 and 10 J were used for irradiation. Alkaline phosphatase (ALP) assay and Alizarin staining were performed to confirm osteogenic differentiation. Statistical analysis was done using a one-way ANOVA and a p-value of <0.05 was considered significant. RESULTS: According to our findings, 1.27 J/cm2 was the optimal energy density value that significantly increased the BMSC proliferation at the output of 1.5 W with the power density of 1.27 W/cm2. On 1.27 J/cm2, there was a significant difference compared to the control group on the first day, and the osteogenic differentiation increased significantly on the 4th day compared to the 1st day. CONCLUSIONS: According to our findings, 1.27 J/cm2 was the optimal energy density value that significantly increased the BMSC proliferation at the output of 1.5 W with the power density of 1.27 W/cm2.


Assuntos
Diferenciação Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Terapia com Luz de Baixa Intensidade/métodos , Células-Tronco Mesenquimais/efeitos da radiação , Animais , Lasers Semicondutores , Células-Tronco Mesenquimais/citologia , Osteogênese/efeitos da radiação , Ratos , Ratos Sprague-Dawley
15.
Sci Rep ; 11(1): 19114, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34580378

RESUMO

Bone fracture is a growing public health burden and there is a clinical need for non-invasive therapies to aid in the fracture healing process. Previous studies have demonstrated the utility of electromagnetic (EM) fields in promoting bone repair; however, its underlying mechanism of action is unclear. Interestingly, there is a growing body of literature describing positive effects of an EM field on mitochondria. In our own work, we have previously demonstrated that differentiation of osteoprogenitors into osteoblasts involves activation of mitochondrial oxidative phosphorylation (OxPhos). Therefore, it was reasonable to propose that EM field therapy exerts bone anabolic effects via stimulation of mitochondrial OxPhos. In this study, we show that application of a low intensity constant EM field source on osteogenic cells in vitro resulted in increased mitochondrial membrane potential and respiratory complex I activity and induced osteogenic differentiation. In the presence of mitochondrial inhibitor antimycin A, the osteoinductive effect was reversed, confirming that this effect was mediated via increased OxPhos activity. Using a mouse tibial bone fracture model in vivo, we show that application of a low intensity constant EM field source enhanced fracture repair via improved biomechanical properties and increased callus bone mineralization. Overall, this study provides supporting evidence that EM field therapy promotes bone fracture repair through mitochondrial OxPhos activation.


Assuntos
Consolidação da Fratura/efeitos da radiação , Fraturas Ósseas/terapia , Magnetoterapia/métodos , Mitocôndrias/efeitos da radiação , Animais , Diferenciação Celular/efeitos da radiação , Linhagem Celular , Fraturas Ósseas/patologia , Humanos , Potencial da Membrana Mitocondrial/efeitos da radiação , Camundongos , Mitocôndrias/fisiologia , Osteoblastos/fisiologia , Osteoblastos/efeitos da radiação , Osteogênese/efeitos da radiação , Fosforilação Oxidativa/efeitos da radiação
16.
Adv Mater ; 33(41): e2102926, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34396595

RESUMO

Preventing deep bacterial infection and simultaneously enhancing osteogenic differentiation are in great demand for osteomyelitis. Microwave (MW) dynamic therapy is attracting attention due to its excellent penetration ability, but the mechanism of MW-induced reactive oxygen species (ROS) is still unknown. Herein, MW-responsive engineered pseudo-macrophages (M-Fe3 O4 /Au nanoparticles (NPs)) are fabricated to clear Staphylococcus aureus infections and induce M2 polarization of macrophages to improve osteogenic differentiation of bone marrow mesenchymal stem cells (MSCs) under MW irradiation. Fe3 O4 /Au NPs can generate ·O2 - and heat under MW irradiation in a saline solution, and the mechanism is put forward via finite element modeling and density functional theory calculations. Due to the gap plasmon, electromagnetic hotspots are produced at Fe3 O4 -Au interface at 2.45 GHz. Because of these induced electromagnetic hotspots, the sodium species is field-ionized and subsequently reacts with oxygen to produce ·O2 - . Meanwhile, the Fe3 O4 /Au NPs have a stronger ability than Fe3 O4 NPs to fix oxygen, favoring the production of ROS. Additionally, MW-treated macrophages diminish to secrete inflammatory cytokines, resulting in the decrease of ROS production in MSCs and thus enhancing their osteogenic differentiation. These engineered pseudo-macrophages will be promising for effectively treating bacterial infections and promoting osteoblast differentiation simultaneously in deep tissues under MW irradiation.


Assuntos
Nanopartículas de Magnetita/química , Micro-Ondas , Osteomielite/terapia , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/efeitos da radiação , Citocinas/metabolismo , Teoria da Densidade Funcional , Óxido Ferroso-Férrico/química , Ouro/química , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Nanopartículas de Magnetita/toxicidade , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Osteogênese/efeitos dos fármacos , Osteogênese/efeitos da radiação , Osteomielite/imunologia , Células RAW 264.7 , Coelhos , Espécies Reativas de Oxigênio/metabolismo , Staphylococcus aureus/efeitos dos fármacos
17.
Int J Mol Sci ; 22(12)2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208563

RESUMO

Bone exhibits piezoelectric properties. Thus, electrical stimulations such as pulsed electromagnetic fields (PEMFs) and stimuli-responsive piezoelectric properties of scaffolds have been investigated separately to evaluate their efficacy in supporting osteogenesis. However, current understanding of cells responding under the combined influence of PEMF and piezoelectric properties in scaffolds is still lacking. Therefore, in this study, we fabricated piezoelectric scaffolds by functionalization of polycaprolactone-tricalcium phosphate (PCL-TCP) films with a polyvinylidene fluoride (PVDF) coating that is self-polarized by a modified breath-figure technique. The osteoinductive properties of these PVDF-coated PCL-TCP films on MC3T3-E1 cells were studied under the stimulation of PEMF. Piezoelectric and ferroelectric characterization demonstrated that scaffolds with piezoelectric coefficient d33 = -1.2 pC/N were obtained at a powder dissolution temperature of 100 °C and coating relative humidity (RH) of 56%. DNA quantification showed that cell proliferation was significantly enhanced by PEMF as low as 0.6 mT and 50 Hz. Hydroxyapatite staining showed that cell mineralization was significantly enhanced by incorporation of PVDF coating. Gene expression study showed that the combination of PEMF and PVDF coating promoted late osteogenic gene expression marker most significantly. Collectively, our results suggest that the synergistic effects of PEMF and piezoelectric scaffolds on osteogenesis provide a promising alternative strategy for electrically augmented osteoinduction. The piezoelectric response of PVDF by PEMF, which could provide mechanical strain, is particularly interesting as it could deliver local mechanical stimulation to osteogenic cells using PEMF.


Assuntos
Fosfatos de Cálcio , Materiais Revestidos Biocompatíveis , Campos Eletromagnéticos , Osteogênese , Poliésteres , Polivinil , Alicerces Teciduais , Regeneração Óssea , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Materiais Revestidos Biocompatíveis/química , Expressão Gênica , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Osteogênese/efeitos da radiação , Poliésteres/química , Poliésteres/farmacologia , Polivinil/química , Solventes , Engenharia Tecidual , Difração de Raios X
18.
Int J Mol Sci ; 22(14)2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34299021

RESUMO

In this article, we provide an extensive review of the recent literature of the signaling pathways modulated by Pulsed Electromagnetic Fields (PEMFs) and PEMFs clinical application. A review of the literature was performed on two medical electronic databases (PubMed and Embase) from 3 to 5 March 2021. Three authors performed the evaluation of the studies and the data extraction. All studies for this review were selected following these inclusion criteria: studies written in English, studies available in full text and studies published in peer-reviewed journal. Molecular biology, identifying cell membrane receptors and pathways involved in bone healing, and studying PEMFs target of action are giving a solid basis for clinical applications of PEMFs. However, further biology studies and clinical trials with clear and standardized parameters (intensity, frequency, dose, duration, type of coil) are required to clarify the precise dose-response relationship and to understand the real applications in clinical practice of PEMFs.


Assuntos
Fraturas Ósseas/radioterapia , Magnetoterapia/métodos , Osteogênese/efeitos da radiação , Transdução de Sinais/efeitos da radiação , Células-Tronco/efeitos da radiação , Bases de Dados Factuais , Campos Eletromagnéticos , Humanos , Osteogênese/genética , Transdução de Sinais/genética , Células-Tronco/metabolismo
19.
Nanomedicine ; 37: 102435, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34186257

RESUMO

The biological behaviors of magnetic graphene oxide (MGO) in a static magnetic field (SMF) are unknown. The current study is to investigate the cellular behaviors, osteogenesis and the mechanism in BMSCs treated with MGO combined with an SMF. Results showed that the synthetic MGO particles were bio-compatible and could significantly improve the osteogenesis of BMSCs under SMFs, as verified by elevated alkaline phosphatase activity, mineralized nodule formation, and expressions of mRNA and protein levels. Under SMF at the same intensity, the addition of graphene oxide to Fe3O4 could increase the osteogenic ability of BMSCs. The Wnt/ß-catenin pathway was indicated to be related to the MGO-driven osteogenic behavior of the BMSCs under SMF. Taken together, our findings suggested that MGO under an SMF could promote osteogenesis in BMSCs through the Wnt/ß-catenin pathway and hence should attract more attention for practical applications in bone tissue regeneration.


Assuntos
Grafite/farmacologia , Campos Magnéticos , Nanopartículas de Magnetita/química , Osteogênese/genética , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/efeitos da radiação , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos da radiação , Grafite/química , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos da radiação , Osteogênese/efeitos dos fármacos , Osteogênese/efeitos da radiação , Ratos , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/efeitos da radiação
20.
Radiat Res ; 195(6): 590-595, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33826738

RESUMO

Mouse models are widely used in the study of musculoskeletal radiobiology both in vivo and in vitro. Two of the most commonly used mouse strains are C57BL/6 and BALB/c. However, little is known about their equivalence in response to ionizing radiation. In this study we compare the responses of marrow stromal cells derived from both of these strains to X rays in vitro at passages 0 and 2. Colony-forming efficiency was significantly higher in BALB/c marrow stromal cells at passage 0. Radiation-induced decreases in colony-forming unit (CFU) formation at passage 0 were comparable across both strains at 0-2 Gy, but BALB/c stromal cells were more radiosensitive than C57BL/6 stromal cells at 3-7 Gy. Osteogenic differentiation at passage 2 was not affected by radiation for either strain. This work demonstrates that commonly used inbred mouse strains differ in their early-passage marrow stromal cell responses to X rays, including self-renewal and differentiation potential. This variability is an important point to consider when selecting an animal model for in vivo or in vitro study.


Assuntos
Células da Medula Óssea/citologia , Tolerância a Radiação , Células Estromais/citologia , Células Estromais/efeitos da radiação , Animais , Diferenciação Celular/efeitos da radiação , Autorrenovação Celular/efeitos da radiação , Relação Dose-Resposta à Radiação , Camundongos , Osteogênese/efeitos da radiação , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA