Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 265
Filtrar
1.
Tissue Cell ; 88: 102412, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38776732

RESUMO

Tumor necrosis factor superfamily member 11 (TNFSF11), or receptor activator of nuclear factor-κB ligand (RANKL), is a crucial osteoclast-stimulating factor binding to RANK on osteoclast membranes. Mouse models are powerful tools for understanding the genetic mechanisms of related diseases. Here, we examined the utility of Tnfsf11 mutation in mice for understanding the mechanisms of bone remodeling and dysmorphology. The Tnfsf11gum mouse, discovered in 2011 at Jackson Laboratory, was used to study the genetic landscape associated with TNFSF11 inactivation in bone marrow tissues. Tnfsf11gum/+ and Tnfsf11+/+ mice were subjected to Micro-CT observation, ELISA analysis, histological evaluation, and massively-parallel mRNA sequencing (RNA-Seq) analysis. Tnfsf11gum/+ mice exhibited severe osteopetrotic changes in the bone marrow cavity, along with significantly lower serum RANKL levels and a reduced number of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts in the bone marrow compared to those in Tnfsf11+/+ mice. However, tooth eruption between Tnfsf11gum/+ and Tnfsf11+/+ mice did not differ. Furthermore, genes involved in osteoblast proliferation and differentiation, including Gli1, Slc35b2, Lrrc17, and Junb were differentially expressed. Heterozygous mutation of TNFSF11 was also associated with a slightly increased expression of genes involved in osteoclast proliferation and differentiation, including Tcirg1, Junb, Anxa2, and Atp6ap1. Overall, we demonstrate that single gene mutations in Tnfsf11 cause bone resorption instability without significantly altering the genes related to osteoblast and osteoclast activity in the bone marrow cavity, thus establishing an optimal resource as an experimental animal model for bone resorption in bone biology research.


Assuntos
Modelos Animais de Doenças , Osteoclastos , Osteopetrose , Ligante RANK , Animais , Osteopetrose/genética , Osteopetrose/patologia , Osteopetrose/metabolismo , Ligante RANK/metabolismo , Ligante RANK/genética , Camundongos , Osteoclastos/metabolismo , Osteoclastos/patologia , Mutação
2.
Stem Cell Res ; 76: 103330, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38335662

RESUMO

Infantile Malignant Osteopetrosis (IMO) is a rare, severe autosomal recessive form of osteopetrosis. Here, the peripheral blood mononuclear cells (PBMCs) extracted from a patient with IMO carrying a compound heterozygous mutation in T cell immune regulator 1, ATPase H + transporting V0 subunit a3 (TCIRG1) gene (c.242delC; c.1114C > T) were successfully reprogrammed using Sendai virus encoding the four Yamanaka factors. The generated hiPSCs, IMO-hiPSCs, displayed typical embryonic stem cell-like morphology and were verified by expression of pluripotency markers such as OCT4, SOX2, NANOG, TRA-1-60 and SSEA4, as well as in vivo and in vitro differentiation into derivatives of three germ layers.


Assuntos
Células-Tronco Pluripotentes Induzidas , Osteopetrose , ATPases Vacuolares Próton-Translocadoras , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Osteopetrose/metabolismo , Leucócitos Mononucleares/metabolismo , Mutação , Genes Homeobox , Diferenciação Celular , ATPases Vacuolares Próton-Translocadoras/genética
3.
Biomolecules ; 13(12)2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38136669

RESUMO

ClC-7 is a ubiquitously expressed voltage-gated Cl-/H+ exchanger that critically contributes to lysosomal ion homeostasis. Together with its ß-subunit Ostm1, ClC-7 localizes to lysosomes and to the ruffled border of osteoclasts, where it supports the acidification of the resorption lacuna. Loss of ClC-7 or Ostm1 leads to osteopetrosis accompanied by accumulation of storage material in lysosomes and neurodegeneration. Interestingly, not all osteopetrosis-causing CLCN7 mutations from patients are associated with a loss of ion transport. Some rather result in an acceleration of voltage-dependent ClC-7 activation. Recently, a gain-of-function variant, ClC-7Y715C, that yields larger ion currents upon heterologous expression, was identified in two patients with neurodegeneration, organomegaly and albinism. However, neither the patients nor a mouse model that carried the equivalent mutation developed osteopetrosis, although expression of ClC-7Y715C induced the formation of enlarged intracellular vacuoles. Here, we investigated how, in transfected cells with mutant ClC-7, the substitution of this tyrosine impinged on the morphology and function of lysosomes. Combinations of the tyrosine mutation with mutations that either uncouple Cl- from H+ counter-transport or strongly diminish overall ion currents were used to show that increased ClC-7 Cl-/H+ exchange activity is required for the formation of enlarged vacuoles by membrane fusion. Degradation of endocytosed material was reduced in these compartments and resulted in an accumulation of lysosomal storage material. In cells expressing the ClC-7 gain-of-function mutant, autophagic clearance was largely impaired, resulting in a build-up of autophagic material.


Assuntos
Osteopetrose , Camundongos , Animais , Humanos , Osteopetrose/genética , Osteopetrose/metabolismo , Mutação com Ganho de Função , Mutação , Lisossomos/metabolismo , Tirosina/metabolismo , Canais de Cloreto/genética , Canais de Cloreto/metabolismo
4.
J Physiol ; 601(24): 5635-5653, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37937509

RESUMO

ClC-6 and ClC-7 are closely related, intracellular Cl- /H+ antiporters belonging to the CLC family of channels and transporters. They localize to acidic late endosomes and lysosomes and probably function in ionic homeostasis of these contiguous compartments. ClC-7 transport function requires association with the accessory protein Ostm1, whereas ClC-6 transport does not. To elucidate their roles in endo-lysosomes, we measured Cl- - and pH-dependences of over-expressed wild-type ClC-6 and ClC-7, as well as disease-associated mutants, using high-resolution recording protocols. Lowering extracellular Cl- (corresponding to luminal Cl- in endo-lysosomes) reduced ClC-6 currents, whereas it increased transport activity of ClC-7/Ostm1. Low extracellular Cl- activated ClC-7/Ostm 1 under acidic extracellular conditions, as well as under conditions of low intracellular chloride. Activation is conserved in ClC-7Y713C , a variant displaying disrupted PI(3,5)P2 inhibition. Detailed biophysical analysis of disease-associated ClC-6 and ClC-7 gain-of-function (GoF) variants, ClC-6Y553C and ClC-7Y713C , and the ClC-7Y577C and ClC-6Y781C correlates, identified additional functional nuances distinguishing ClC-6 and ClC-7. ClC-7Y577C recapitulated GoF produced by ClC-6Y553C . ClC-6Y781C displayed transport activation qualitatively similar to ClC-7Y713C , although current density did not differ from that of wild-type ClC-6. Finally, rClC-7R760Q , homologous to hClC-7R762Q , an osteopetrosis variant with fast gating kinetics, appeared indifferent to extracellular Cl- , identifying altered Cl- sensitivity as a plausible mechanism underlying disease. Collectively, the present studies underscore the distinct roles of ClC-6 and ClC-7 within the context of their respective localization to late endosomes and lysosomes. In particular, we suggest the atypical inhibition of ClC-7 by luminal Cl- serves to limit excessive intraluminal Cl- accumulation. KEY POINTS: ClC-6 and ClC-7 are late endosomal and lysosomal 2 Cl- /1 H+ exchangers, respectively. When targeted to the plasma membrane, both activate slowly at positive voltages. ClC-6 activity is decreased in low extracellular (i.e. luminal) chloride, whereas ClC-7 is activated by low luminal chloride, even at acidic pH. The functional gain-of-function phenotypes of the ClC-6 and ClC-7 disease mutations ClC-6Y553C and ClC-7Y715C are maintained when introduced in their respective homologues, ClC-7Y577C and ClC-6Y781C , with all mutations retaining chloride dependence of the respective wild type (WT). An osteopetrosis mutation of ClC-7 displaying fast gating kinetics (R762Q) was less sensitive to extracellular chloride compared to WT. The opposing substrate dependences of ClC-6 and ClC-7 Cl- / H+ exchangers point to non-overlapping physiological functions, leading us to propose that inhibition of ClC-7 by luminal chloride and protons serves to prevent osmotic stress imposed by hyper-accumulation of chloride.


Assuntos
Canais de Cloreto , Cloretos , Osteopetrose , Humanos , Canais de Cloreto/fisiologia , Cloretos/metabolismo , Homeostase , Lisossomos/metabolismo , Osteopetrose/metabolismo , Prótons
5.
Front Biosci (Landmark Ed) ; 28(6): 131, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37395026

RESUMO

BACKGROUND: Osteopetrosis represents a rare genetic disease with a wide range of clinical and genetic heterogeneity, which results from osteoclast failure. Although up to 10 genes have been identified to be related with osteopetrosis, the pathogenesis of osteopetrosis remains foggy. Disease-specific induced pluripotent stem cells (iPSCs) and gene-corrected disease specific iPSCs provide a platform to generate attractive in vitro disease cell models and isogenic control cellular models respectively. The purpose of this study is to rescue the disease causative mutation in osteopetrosis specific induced pluripotent stem cells and provide isogenic control cellular models. METHODS: Based on our previously established osteopetrosis-specific iPSCs (ADO2-iPSCs), we repaired the point mutation R286W of the CLCN7 gene in ADO2-iPSCs by the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) mediated homologous recombination. RESULTS: The obtained gene corrected ADO2-iPSCs (GC-ADO2-iPSCs) were characterized in terms of hESC-like morphology, a normal karyotype, expression of pluripotency markers, homozygous repaired sequence of CLCN7 gene, and the ability to differentiate into cells of three germ layers. CONCLUSIONS: We successfully corrected the point mutation R286W of the CLCN7 gene in ADO2-iPSCs. This isogenic iPSC line is an ideal control cell model for deciphering the pathogenesis of osteopetrosis in future studies.


Assuntos
Células-Tronco Pluripotentes Induzidas , Osteopetrose , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Sistemas CRISPR-Cas , Osteopetrose/genética , Osteopetrose/terapia , Osteopetrose/metabolismo , Mutação , Canais de Cloreto/genética , Canais de Cloreto/metabolismo
6.
Int J Mol Sci ; 23(14)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35887342

RESUMO

The nuclear factor-κB (NF-κB) transcription factor family consists of five related proteins, RelA (p65), c-Rel, RelB, p50/p105 (NF-κB1), and p52/p100 (NF-κB2). These proteins are important not only for inflammation and the immune response but also for bone metabolism. Activation of NF-κB occurs via the classic and alternative pathways. Inflammatory cytokines, such as tumor necrosis factor (TNF)-α and interleukin (IL)-1ß, activate the former, and cytokines involved in lymph node formation, such as receptor activator of NF-κB ligand (RANKL) and CD40L, activate the latter. p50 and p52 double-knockout mice revealed severe osteopetrosis due to the total lack of osteoclasts, which are specialized cells for bone resorption. This finding suggests that the activation of NF-κB is required for osteoclast differentiation. The NF-κB signaling pathway is controlled by various regulators, including NF-κB essential modulator (NEMO), which is encoded by the IKBKG gene. In recent years, mutant forms of the IKBKG gene have been reported as causative genes of osteopetrosis, lymphedema, hypohidrotic ectodermal dysplasia, and immunodeficiency (OL-EDA-ID). In addition, a mutation in the RELA gene, encoding RelA, has been reported for the first time in newborns with high neonatal bone mass. Osteopetrosis is characterized by a diffuse increase in bone mass, ranging from a lethal form observed in newborns to an asymptomatic form that appears in adulthood. This review describes the genetic mutations in NF-κB signaling molecules that have been identified in patients with osteopetrosis.


Assuntos
NF-kappa B , Osteopetrose , Animais , Camundongos , Mutação , NF-kappa B/metabolismo , Osteoclastos/metabolismo , Osteopetrose/genética , Osteopetrose/metabolismo , Transdução de Sinais/genética , Fator de Necrose Tumoral alfa/metabolismo
7.
Bone ; 163: 116505, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35902071

RESUMO

Autosomal recessive osteopetroses (ARO) are rare genetic skeletal disorders of high clinical and molecular heterogeneity with an estimated frequency of 1:250,000 worldwide. The manifestations are diverse and although individually rare, the various forms contribute to the prevalence of a significant number of affected individuals with considerable morbidity and mortality. Among the ARO classification, the most severe form is the autosomal recessive-5 (OPTB5) osteopetrosis (OMIM 259720) that results from homozygous mutation in the OSTM1 gene (607649). OSTM1 mutations account for approximately 5 % of instances of autosomal recessive osteopetrosis and lead to a highly debilitating form of the disease in infancy and death within the first few years of life (Sobacchi et al., 2013) [1].


Assuntos
Proteínas de Membrana/metabolismo , Osteopetrose , Ubiquitina-Proteína Ligases/metabolismo , Homozigoto , Humanos , Mutação , Osteopetrose/genética , Osteopetrose/metabolismo
8.
Calcif Tissue Int ; 111(4): 430-444, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35618777

RESUMO

Osteopetrosis is a heterogeneous group of rare hereditary diseases characterized by increased bone mass of poor quality. Autosomal-dominant osteopetrosis type II (ADOII) is most often caused by mutation of the CLCN7 gene leading to impaired bone resorption. Autosomal recessive osteopetrosis (ARO) is a more severe form and is frequently accompanied by additional morbidities. We report an adult male presenting with classical clinical and radiological features of ADOII. Genetic analyses showed no amino-acid-converting mutation in CLCN7 but an apparent haploinsufficiency and suppression of CLCN7 mRNA levels in peripheral blood mononuclear cells. Next generation sequencing revealed low-frequency intronic homozygous variations in CLCN7, suggesting recessive inheritance. In silico analysis of an intronic duplication c.595-120_595-86dup revealed additional binding sites for Serine- and Arginine-rich Splicing Factors (SRSF), which is predicted to impair CLCN7 expression. Quantitative backscattered electron imaging and histomorphometric analyses revealed bone tissue and material abnormalities. Giant osteoclasts were present and additionally to lamellar bone, and abundant woven bone and mineralized cartilage were observed, together with increased frequency and thickness of cement lines. Bone mineralization density distribution (BMDD) analysis revealed markedly increased average mineral content of the dense bone (CaMean T-score + 10.1) and frequency of bone with highest mineral content (CaHigh T-score + 19.6), suggesting continued mineral accumulation and lack of bone remodelling. Osteocyte lacunae sections (OLS) characteristics were unremarkable except for an unusually circular shape. Together, our findings suggest that the reduced expression of CLCN7 mRNA in osteoclasts, and possibly also osteocytes, causes poorly remodelled bone with abnormal bone matrix with high mineral content. This together with the lack of adequate bone repair mechanisms makes the material brittle and prone to fracture. While the skeletal phenotype and medical history were suggestive of ADOII, genetic analysis revealed that this is a possible mild case of ARO due to deep intronic mutation.


Assuntos
Canais de Cloreto , Osteopetrose , Canais de Cloreto/genética , Homozigoto , Humanos , Leucócitos Mononucleares/metabolismo , Masculino , Mutação , Osteopetrose/diagnóstico , Osteopetrose/genética , Osteopetrose/metabolismo , Fenótipo , RNA Mensageiro
9.
Cells ; 11(3)2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35159175

RESUMO

CLC proteins comprise Cl- channels and anion/H+ antiporters involved in several fundamental physiological processes. ClC-7 is a lysosomal Cl-/H+ antiporter that together with its beta subunit Ostm1 has a critical role in the ionic homeostasis of lysosomes and of the osteoclasts' resorption lacuna, although the specific underlying mechanism has so far remained elusive. Mutations in ClC-7 cause osteopetrosis, but also a form of lysosomal storage disease and neurodegeneration. Interestingly, both loss-of- and gain-of-function mutations of ClC-7 can be pathogenic, but the mechanistic implications of this finding are still unclear. This review will focus on the recent advances in our understanding of the biophysical properties of ClC-7 and of its role in human diseases with a focus on osteopetrosis and neurodegeneration.


Assuntos
Reabsorção Óssea , Canais de Cloreto , Doenças por Armazenamento dos Lisossomos , Osteopetrose , Antiporters/genética , Antiporters/metabolismo , Reabsorção Óssea/metabolismo , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Humanos , Doenças por Armazenamento dos Lisossomos/metabolismo , Lisossomos/metabolismo , Osteopetrose/genética , Osteopetrose/metabolismo , Osteopetrose/patologia
10.
Int J Mol Sci ; 22(13)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203247

RESUMO

This review focuses on one of the 16 proteins composing the V-ATPase complex responsible for resorbing bone: the a3 subunit. The rationale for focusing on this biomolecule is that mutations in this one protein account for over 50% of osteopetrosis cases, highlighting its critical role in bone physiology. Despite its essential role in bone remodeling and its involvement in bone diseases, little is known about the way in which this subunit is targeted and regulated within osteoclasts. To this end, this review is broadened to include the three other mammalian paralogues (a1, a2 and a4) and the two yeast orthologs (Vph1p and Stv1p). By examining the literature on all of the paralogues/orthologs of the V-ATPase a subunit, we hope to provide insight into the molecular mechanisms and future research directions specific to a3. This review starts with an overview on bone, highlighting the role of V-ATPases in osteoclastic bone resorption. We then cover V-ATPases in other location/functions, highlighting the roles which the four mammalian a subunit paralogues might play in differential targeting and/or regulation. We review the ways in which the energy of ATP hydrolysis is converted into proton translocation, and go in depth into the diverse role of the a subunit, not only in proton translocation but also in lipid binding, cell signaling and human diseases. Finally, the therapeutic implication of targeting a3 specifically for bone diseases and cancer is discussed, with concluding remarks on future directions.


Assuntos
Osteoclastos/citologia , Osteoclastos/metabolismo , Osteopetrose/metabolismo , ATPases Vacuolares Próton-Translocadoras/química , ATPases Vacuolares Próton-Translocadoras/metabolismo , Animais , Reabsorção Óssea , Humanos , Mutação/genética
11.
PLoS Genet ; 17(6): e1009605, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34081701

RESUMO

Homozygous mutation of the Csf1r locus (Csf1rko) in mice, rats and humans leads to multiple postnatal developmental abnormalities. To enable analysis of the mechanisms underlying the phenotypic impacts of Csf1r mutation, we bred a rat Csf1rko allele to the inbred dark agouti (DA) genetic background and to a Csf1r-mApple reporter transgene. The Csf1rko led to almost complete loss of embryonic macrophages and ablation of most adult tissue macrophage populations. We extended previous analysis of the Csf1rko phenotype to early postnatal development to reveal impacts on musculoskeletal development and proliferation and morphogenesis in multiple organs. Expression profiling of 3-week old wild-type (WT) and Csf1rko livers identified 2760 differentially expressed genes associated with the loss of macrophages, severe hypoplasia, delayed hepatocyte maturation, disrupted lipid metabolism and the IGF1/IGF binding protein system. Older Csf1rko rats developed severe hepatic steatosis. Consistent with the developmental delay in the liver Csf1rko rats had greatly-reduced circulating IGF1. Transfer of WT bone marrow (BM) cells at weaning without conditioning repopulated resident macrophages in all organs, including microglia in the brain, and reversed the mutant phenotypes enabling long term survival and fertility. WT BM transfer restored osteoclasts, eliminated osteopetrosis, restored bone marrow cellularity and architecture and reversed granulocytosis and B cell deficiency. Csf1rko rats had an elevated circulating CSF1 concentration which was rapidly reduced to WT levels following BM transfer. However, CD43hi non-classical monocytes, absent in the Csf1rko, were not rescued and bone marrow progenitors remained unresponsive to CSF1. The results demonstrate that the Csf1rko phenotype is autonomous to BM-derived cells and indicate that BM contains a progenitor of tissue macrophages distinct from hematopoietic stem cells. The model provides a unique system in which to define the pathways of development of resident tissue macrophages and their local and systemic roles in growth and organ maturation.


Assuntos
Fígado Gorduroso/genética , Macrófagos/metabolismo , Anormalidades Musculoesqueléticas/genética , Desenvolvimento Musculoesquelético/genética , Osteopetrose/genética , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Animais , Medula Óssea/metabolismo , Medula Óssea/patologia , Transplante de Medula Óssea , Modelos Animais de Doenças , Embrião de Mamíferos , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Fígado Gorduroso/terapia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Genes Reporter , Humanos , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/deficiência , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/genética , Fator de Crescimento Insulin-Like I/deficiência , Fator de Crescimento Insulin-Like I/genética , Metabolismo dos Lipídeos , Fígado/metabolismo , Fígado/patologia , Macrófagos/patologia , Masculino , Anormalidades Musculoesqueléticas/metabolismo , Anormalidades Musculoesqueléticas/patologia , Anormalidades Musculoesqueléticas/terapia , Osteopetrose/metabolismo , Osteopetrose/patologia , Osteopetrose/terapia , Ratos , Ratos Transgênicos , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/deficiência
12.
Genesis ; 59(3): e23409, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33484096

RESUMO

Mutations in the osteopetrotic transmembrane protein 1 (Ostm1) gene are responsible for the most severe form of autosomal recessive osteopetrosis both in humans and in the gray lethal (gl/gl) mouse. This defect leads to increased bone mass with bone marrow occlusion and hematopoietic defects. To establish the expression profile of the mouse Ostm1 protein in vivo, homologous recombination in bacteria was designed to generate a V5-Ostm1 bacterial artificial chromosome (BAC) that was subsequently integrated in the mouse genome. Tissue expression of the transgene V5-Ostm1 RNA and protein in transgenic mice follow the endogenous expression profile. Immunohistochemistry analysis demonstrated expression in neuronal populations from central and peripheral nervous system and defined a unique cellular expression pattern. Importantly, together with appropriate protein post-translational modification, in vivo rescue of the osteopetrotic bone gl/gl phenotype in BAC V5-Ostm1 gl/gl mice is consistent with the expression of a fully functional and active protein. These mice represent a unique tool to unravel novel Ostm1 functions in individual tissue and neuronal cell populations and the V5-Ostm1 transgene represents an easy visual marker to monitor the expression of Ostm1 in vitro and in vivo.


Assuntos
Cromossomos Artificiais Bacterianos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Osteopetrose/genética , Osteopetrose/metabolismo , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Fenótipo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
13.
J Cell Physiol ; 236(6): 4207-4215, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33241559

RESUMO

SNX10 is a member of the phox homology domain-containing family of phosphoinositide-binding proteins. Intracellularly, SNX10 localizes to endosomes where it mediates intracellular trafficking, endosome organization, and protein localization to the centrosome and cilium. It is highly expressed in bone and the gut where it participates in bone mineral and calcium homeostasis through the regulation of osteoclastic bone resorption and gastric acid secretion, respectively. Not surprisingly, patients harboring mutations in SNX10 mutation manifest a phenotype of autosomal recessive osteopetrosis or malignant infantile osteopetrosis, which is clinically characterized by dense bones with increased cortical bone into the medullary space with bone marrow occlusion or depletion, bone marrow failure, and anemia. Accordingly, SNX10 mutant osteoclasts exhibit impaired bone resorptive capacity. Beyond the skeleton, there is emerging evidence implicating SNX10 in cancer development, metabolic disorders, inflammation, and chaperone-mediated autophagy. Understanding the structural basis through which SNX10 exerts its diverse biological functions in both cell and tissue-specific manners may therefore inform new therapeutic opportunities toward the treatment and management of SNX10-related diseases.


Assuntos
Endossomos/metabolismo , Neoplasias/metabolismo , Osteopetrose/metabolismo , Nexinas de Classificação/metabolismo , Animais , Endossomos/genética , Endossomos/patologia , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo , Doenças Metabólicas/patologia , Mutação , Neoplasias/genética , Neoplasias/patologia , Osteopetrose/genética , Osteopetrose/patologia , Conformação Proteica , Transporte Proteico , Nexinas de Classificação/química , Nexinas de Classificação/genética , Relação Estrutura-Atividade
14.
Sci Adv ; 6(33): eabb4747, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32851177

RESUMO

CLC family proteins translocate chloride ions across cell membranes to maintain the membrane potential, regulate the transepithelial Cl- transport, and control the intravesicular pH among different organelles. CLC-7/Ostm1 is an electrogenic Cl-/H+ antiporter that mainly resides in lysosomes and osteoclast ruffled membranes. Mutations in human CLC-7/Ostm1 lead to lysosomal storage disorders and severe osteopetrosis. Here, we present the cryo-electron microscopy (cryo-EM) structure of the human CLC-7/Ostm1 complex and reveal that the highly glycosylated Ostm1 functions like a lid positioned above CLC-7 and interacts extensively with CLC-7 within the membrane. Our complex structure reveals a functionally crucial domain interface between the amino terminus, TMD, and CBS domains of CLC-7. Structural analyses and electrophysiology studies suggest that the domain interaction interfaces affect the slow gating kinetics of CLC-7/Ostm1. Thus, our study deepens understanding of CLC-7/Ostm1 transporter and provides insights into the molecular basis of the disease-related mutations.


Assuntos
Osteopetrose , Antiporters/genética , Antiporters/metabolismo , Cloretos , Microscopia Crioeletrônica , Humanos , Lisossomos/metabolismo , Proteínas de Membrana/metabolismo , Mutação , Osteopetrose/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
15.
Biochim Biophys Acta Biomembr ; 1862(12): 183341, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32422136

RESUMO

The vacuolar H+-ATPases (V-ATPases) are essential, ATP-dependent proton pumps present in a variety of eukaryotic cellular membranes. Intracellularly, V-ATPase-dependent acidification functions in such processes as membrane traffic, protein degradation, autophagy and the coupled transport of small molecules. V-ATPases at the plasma membrane of certain specialized cells function in such processes as bone resorption, sperm maturation and urinary acidification. V-ATPases also function in disease processes such as pathogen entry and cancer cell invasiveness, while defects in V-ATPase genes are associated with disorders such as osteopetrosis, renal tubular acidosis and neurodegenerative diseases. This review highlights recent advances in our understanding of V-ATPase structure, mechanism, function and regulation, with an emphasis on the signaling pathways controlling V-ATPase assembly in mammalian cells. The role of V-ATPases in cancer and other human pathologies, and the prospects for therapeutic intervention, are also discussed.


Assuntos
Neoplasias/patologia , Doenças Neurodegenerativas/patologia , Osteopetrose/patologia , ATPases Vacuolares Próton-Translocadoras/metabolismo , Animais , Transporte Biológico , Membrana Celular/metabolismo , Humanos , Neoplasias/metabolismo , Doenças Neurodegenerativas/metabolismo , Osteopetrose/metabolismo , Transdução de Sinais , ATPases Vacuolares Próton-Translocadoras/química , ATPases Vacuolares Próton-Translocadoras/genética
16.
Sci Adv ; 6(10): eaax0938, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32181336

RESUMO

Bone structure and function are maintained by well-regulated bone metabolism and remodeling. Although the underlying molecular and cellular mechanisms are now being understood, physiological and pathological states of bone are still difficult to predict due to the complexity of intercellular signaling. We have now developed a novel in silico experimental platform, V-Bone, to integratively explore bone remodeling by linking complex microscopic molecular/cellular interactions to macroscopic tissue/organ adaptations. Mechano-biochemical couplings modeled in V-Bone relate bone adaptation to mechanical loading and reproduce metabolic bone diseases such as osteoporosis and osteopetrosis. V-Bone also enables in silico perturbation on a specific signaling molecule to observe bone metabolic dynamics over time. We also demonstrate that this platform provides a powerful way to predict in silico therapeutic effects of drugs against metabolic bone diseases. We anticipate that these in silico experiments will substantially accelerate research into bone metabolism and remodeling.


Assuntos
Remodelação Óssea/efeitos dos fármacos , Simulação por Computador , Modelos Biológicos , Osteopetrose , Osteoporose , Humanos , Osteopetrose/tratamento farmacológico , Osteopetrose/metabolismo , Osteopetrose/patologia , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Osteoporose/patologia
17.
J Cell Biochem ; 121(11): 4542-4557, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32048762

RESUMO

Perturbations in the balanced process of osteoblast-mediated bone formation and osteoclast-mediated bone resorption leading to excessive osteoclast formation and/or activity is the cause of many pathological bone conditions such as osteoporosis. The osteoclast is the only cell in the body capable of resorbing and degrading the mineralized bone matrix. Osteoclast formation from monocytic precursors is governed by the actions of two key cytokines macrophage-colony-stimulating factor and receptor activator of nuclear factor-κB ligand (RANKL). Binding of RANKL binding to receptor RANK initiates a series of downstream signaling responses leading to monocytic cell differentiation and fusion, and subsequent mature osteoclast bone resorption and survival. The phosphoinositide-3-kinase (PI3K)-protein kinase B (Akt) signaling cascade is one such pathway activated in response to RANKL. The 3-phosphoinositide-dependent protein kinase 1 (PDK1), is considered the master upstream lipid kinase of the PI3K-Akt cascade. PDK1 functions to phosphorylate and partially activate Akt, triggering the activation of downstream effectors. However, the role of PDK1 in osteoclasts has yet to be clearly defined. In this study, we specifically deleted the PDK1 gene in osteoclasts using the cathepsin-K promoter driven Cre-LoxP system. We found that the specific genetic ablation of PDK1 in osteoclasts leads to an osteoclast-poor osteopetrotic phenotype in mice. In vitro cellular assays further confirmed the impairment of osteoclast formation in response to RANKL by PDK1-deficient bone marrow macrophage (BMM) precursor cells. PDK1-deficient BMMs exhibited reduced ability to reorganize actin cytoskeleton to form a podosomal actin belt as a result of diminished capacity to fuse into giant multinucleated osteoclasts. Notably, biochemical analyses showed that PDK1 deficiency attenuated the phosphorylation of Akt and downstream effector GSK3ß, and reduced induction of NFATc1. GSK3ß is a reported negative regulator of NFATc1. GSK3ß activity is inhibited by Akt-dependent phosphorylation. Thus, our data provide clear genetic and mechanistic insights into the important role for PDK1 in osteoclasts.


Assuntos
Proteínas Quinases Dependentes de 3-Fosfoinositídeo/fisiologia , Reabsorção Óssea/patologia , Regulação da Expressão Gênica , Osteoclastos/patologia , Osteopetrose/patologia , Animais , Apoptose , Reabsorção Óssea/etiologia , Reabsorção Óssea/metabolismo , Proliferação de Células , Células Cultivadas , Feminino , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/metabolismo , Osteopetrose/etiologia , Osteopetrose/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ligante RANK/genética , Ligante RANK/metabolismo
18.
Int J Mol Sci ; 22(1)2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33396517

RESUMO

Osteopetrosis is a hereditary disorder characterized by sclerotic, thick, weak, and brittle bone. The biological behavior of mesenchymal cells obtained from osteopetrosis patients has not been well-studied. Isolated mesenchymal stem/stromal cells from dental pulp (DP-MSSCs) of recently extracted deciduous teeth from osteopetrosis (OP) patients and healthy controls (HCs) were compared. We evaluated whether the dental pulp of OP patients has a population of MSSCs with similar multilineage differentiation capability to DP-MSSCs of healthy subjects. Stem/progenitor cells were characterized using immunohistochemistry, flow cytometry, and proteomics. Our DP-MSSCs were strongly positive for CD44, CD73, CD105, and CD90. DP-MSSCs obtained from HC subjects and OP patients showed similar patterns of proliferation and differentiation as well as gene expression. Proteomic analysis identified 1499 unique proteins with 94.3% similarity in global protein fingerprints of HCs and OP patients. Interestingly, we observed subtle differences in expressed proteins of osteopetrosis disease-related in pathways, including MAPK, ERK 1/2, PI3K, and integrin, rather than in the stem cell signaling network. Our findings of similar protein expression signatures in DP-MSSCs of HC and OP patients are of paramount interest, and further in vivo validation study is needed. There is the possibility that OP patients could have their exfoliating deciduous teeth banked for future use in regenerative dentistry.


Assuntos
Acidose Tubular Renal/metabolismo , Acidose Tubular Renal/patologia , Biomarcadores/metabolismo , Anidrases Carbônicas/deficiência , Polpa Dentária/metabolismo , Células-Tronco Mesenquimais/metabolismo , Osteopetrose/metabolismo , Osteopetrose/patologia , Proteoma/análise , Distúrbios Congênitos do Ciclo da Ureia/metabolismo , Distúrbios Congênitos do Ciclo da Ureia/patologia , Adolescente , Biomarcadores/análise , Anidrases Carbônicas/metabolismo , Estudos de Casos e Controles , Diferenciação Celular , Proliferação de Células , Criança , Polpa Dentária/citologia , Feminino , Humanos , Masculino , Células-Tronco Mesenquimais/citologia
19.
Sci Rep ; 9(1): 19895, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882595

RESUMO

The anti-bone resorptive drugs denosumab, an anti-human-RANKL antibody, and zoledronic acid (ZOL), a nitrogen-containing bisphosphonate, have recently been applied for treatment of pediatric patients with bone diseases, though details regarding their effects in growing children have yet to be fully elucidated. In the present study, we administered these anti-resorptive drugs to mice from the age of 1 week and continued once-weekly injections for a total of 7 times. Mice that received the anti-RANKL antibody displayed normal growth and tooth eruption, though osteopetrotic bone volume gain in long and alveolar bones was noted, while there were nearly no osteoclasts and a normal of number osteoblasts observed. In contrast, ZOL significantly delayed body growth, tooth root formation, and tooth eruption, with increased osteoclast and decreased osteoblast numbers. These findings suggest regulation of tooth eruption via osteoblast differentiation by some types of anti-resorptive drugs.


Assuntos
Anticorpos/farmacologia , Ligante RANK/antagonistas & inibidores , Erupção Dentária/efeitos dos fármacos , Ácido Zoledrônico/farmacologia , Animais , Animais Recém-Nascidos , Humanos , Camundongos , Osteoblastos/metabolismo , Osteoblastos/patologia , Osteoclastos/metabolismo , Osteoclastos/patologia , Osteopetrose/tratamento farmacológico , Osteopetrose/metabolismo , Ligante RANK/metabolismo , Ratos
20.
Cell Prolif ; 52(6): e12693, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31560140

RESUMO

OBJECTIVES: Osteopetrosis is a rare inherited skeletal disease characterized by increased bone mineral density due to the loss of osteoclast function or differentiation potential. MATERIALS AND METHODS: The study involved a Chinese patient with osteopetrosis (the proband) and her immediate family members and 180 controls without osteopetrosis. Bone density of the femoral neck, lumbar spine and total body was measured using dual-energy x-ray absorptiometry. Osteoclast differentiation by the participants' peripheral blood mononuclear cells (PBMCs) was investigated using tartrate-resistant acid phosphatase (TRAP) staining. Osteoblast differentiation was examined with Alizarin Red S staining. Reverse transcription-quantitative PCR was used to amplify immunoglobulin superfamily member 23 (IGSF23), c-FOS and nuclear factor of activated T cells 1 (NFATC1). RESULTS: We found a homozygous mutation (c.295C>T) in the IGSF23 gene in two osteopetrosis samples. The mutation led to the formation of a stop codon, causing loss of the immunoglobulin-like domain and the whole transmembrane domain. PBMCs from the proband (IGSF23-/- ) exhibited poor ability for differentiating into mature osteoclasts in vitro. Overexpression of IGSF23 rescued the ability of IGSF23-/- PBMCs to differentiate into osteoclasts. Moreover, knockdown of IGSF23 reversed the bone loss in OVX mice by injecting AAV-shIGSF23 into mice femoral bone marrow cavity. Furthermore, we also found that the IGSF23 mutation led to decreased c-Fos and NFATC1 expression levels by inhibiting the mitogen-activated protein kinase signalling pathways. CONCLUSIONS: IGSF23-mediated osteoclast differentiation of PBMCs may serve as a potential target in osteoporosis therapy.


Assuntos
Imunoglobulinas/genética , Proteínas de Membrana/genética , Mutação/genética , Osteoblastos/metabolismo , Osteopetrose/genética , Osso e Ossos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Humanos , Leucócitos Mononucleares/metabolismo , Osteoclastos/metabolismo , Osteopetrose/metabolismo , Osteoporose/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA