Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 216
Filtrar
1.
J Med Genet ; 61(2): 117-124, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-37399313

RESUMO

BACKGROUND: Otosclerosis is a common cause of adult-onset progressive hearing loss, affecting 0.3%-0.4% of the population. It results from dysregulation of bone homeostasis in the otic capsule, most commonly leading to fixation of the stapes bone, impairing sound conduction through the middle ear. Otosclerosis has a well-known genetic predisposition including familial cases with apparent autosomal dominant mode of inheritance. While linkage analysis and genome-wide association studies suggested an association with several genomic loci and with genes encoding structural proteins involved in bone formation or metabolism, the molecular genetic pathophysiology of human otosclerosis is yet mostly unknown. METHODS: Whole-exome sequencing, linkage analysis, generation of CRISPR mutant mice, hearing tests and micro-CT. RESULTS: Through genetic studies of kindred with seven individuals affected by apparent autosomal dominant otosclerosis, we identified a disease-causing variant in SMARCA4, encoding a key component of the PBAF chromatin remodelling complex. We generated CRISPR-Cas9 transgenic mice carrying the human mutation in the mouse SMARCA4 orthologue. Mutant Smarca4+/E1548K mice exhibited marked hearing impairment demonstrated through acoustic startle response and auditory brainstem response tests. Isolated ossicles of the auditory bullae of mutant mice exhibited a highly irregular structure of the incus bone, and their in situ micro-CT studies demonstrated the anomalous structure of the incus bone, causing disruption in the ossicular chain. CONCLUSION: We demonstrate that otosclerosis can be caused by a variant in SMARCA4, with a similar phenotype of hearing impairment and abnormal bone formation in the auditory bullae in transgenic mice carrying the human mutation in the mouse SMARCA4 orthologue.


Assuntos
Perda Auditiva , Otosclerose , Adulto , Humanos , Camundongos , Animais , Otosclerose/genética , Otosclerose/cirurgia , Vesícula/complicações , Estudo de Associação Genômica Ampla , Reflexo de Sobressalto , Fenótipo , Camundongos Transgênicos , Mutação , DNA Helicases/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética
2.
J Hum Genet ; 68(9): 635-642, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37308566

RESUMO

Otosclerosis (OTSC) is a focal and diffuse bone disorder of the human middle ear characterized by abnormal bone growth and deposition at the stapes' footplate. This hinders the transmission of acoustic waves to the inner ear leading to subsequent conductive hearing loss. The plausible convections for the disease are genetic and environmental factors with yet an unraveled root cause. Recently, exome sequencing of European individuals with OTSC revealed rare pathogenic variants in the Serpin Peptidase Inhibitor, Clade F (SERPINF1) gene. Here, we sought to investigate the causal variants of SERPINF1 in the Indian population. The gene and protein expression was also evaluated in otosclerotic stapes to ameliorate our understanding of the potential effect of this gene in OTSC. A total of 230 OTSC patients and 230 healthy controls were genotyped by single-strand conformational polymorphism and Sanger sequencing methods. By comparing the case controls, we identified five rare variants (c.72 C > T, c.151 G > A, c.242 C > G, c.823 A > T, and c.826 T > A) only in patients. Four variants c.390 T > C (p = 0.048), c.440-39 C > T (p = 0.007), c.643 + 9 G > A (p = 0.035), and c.643 + 82 T > C (p = 0.005) were found to be significantly associated with the disease. Down-regulation of SERPINF1 transcript level in otosclerotic stapes was quantified by qRT-PCR, ddPCR and further validated by in situ hybridization. Similarly, reduced protein expression was observed by immunohistochemistry and immunofluorescence in otosclerotic stapes that corroborate with immunoblotting of patients' plasma samples. Our findings identified that SERPINF1 variants are associated with the disease. Furthermore, reduced expression of SERPINF1 in otosclerotic stapes might contribute to OTSC pathophysiology.


Assuntos
Otosclerose , Humanos , Suscetibilidade a Doenças/metabolismo , Suscetibilidade a Doenças/patologia , Genótipo , Otosclerose/genética , Otosclerose/patologia , Reação em Cadeia da Polimerase , Estribo/metabolismo , Estribo/patologia
3.
Acta Otolaryngol ; 143(3): 250-253, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36639139

RESUMO

BACKGROUND: Otosclerosis is a common ear disease that causes fixation of the stapes and conductive hearing impairment. However, the pathogenesis of otosclerosis is still unknown. Otosclerosis could be associated with the unique bony environment found in the otic capsule. Normal bone remodelling is almost completely absent around the inner ear after birth allowing degenerative changes and dead osteocytes to accumulate. High levels of inner ear anti resorptive osteoprotegerin (OPG) is most likely responsible for this capsular configuration. Studies have demonstrated how osteocyte lifespan variation creates occasional clusters of dead osteocytes, so-called cellular voids, at otosclerotic predilection sites in the human otic capsule. These cellular voids have been suggested as possible starting points of otosclerosis. AIM: To describe the cellular viability in otosclerotic lesions and compare it to that of cellular voids. MATERIALS AND METHODS: The study was based on unbiased stereological quantifications in undecalcified human temporal bones with otosclerosis. RESULTS: Osteocyte viability was found to vary within the otosclerotic lesions. Furthermore, the results presented here illustrate that inactive otosclerotic lesions consist of mainly dead interstitial bone, much like cellular voids. CONCLUSIONS AND SIGNIFICANCE: Focal degeneration in the otic capsule may play an important role in the pathogenesis of otosclerosis.


Assuntos
Orelha Interna , Osteócitos , Osteoprotegerina , Otosclerose , Humanos , Remodelação Óssea/genética , Remodelação Óssea/fisiologia , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Orelha Interna/metabolismo , Orelha Interna/patologia , Osteócitos/metabolismo , Osteócitos/patologia , Osteoprotegerina/genética , Osteoprotegerina/metabolismo , Otosclerose/etiologia , Otosclerose/genética , Otosclerose/metabolismo , Otosclerose/patologia , Estribo/metabolismo , Estribo/patologia , Osso Temporal/metabolismo , Osso Temporal/patologia
4.
Nat Commun ; 14(1): 157, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36653343

RESUMO

Otosclerosis is one of the most common causes of conductive hearing loss, affecting 0.3% of the population. It typically presents in adulthood and half of the patients have a positive family history. The pathophysiology of otosclerosis is poorly understood. A previous genome-wide association study (GWAS) identified a single association locus in an intronic region of RELN. Here, we report a meta-analysis of GWAS studies of otosclerosis in three population-based biobanks comprising 3504 cases and 861,198 controls. We identify 23 novel risk loci (p < 5 × 10-8) and report an association in RELN and three previously reported candidate gene or linkage regions (TGFB1, MEPE, and OTSC7). We demonstrate developmental stage-dependent immunostaining patterns of MEPE and RUNX2 in mouse otic capsules. In most association loci, the nearest protein-coding genes are implicated in bone remodelling, mineralization or severe skeletal disorders. We highlight multiple genes involved in transforming growth factor beta signalling for follow-up studies.


Assuntos
Estudo de Associação Genômica Ampla , Otosclerose , Animais , Camundongos , Otosclerose/genética , Bancos de Espécimes Biológicos , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença/genética
5.
Genes (Basel) ; 13(7)2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35885890

RESUMO

Bone diseases such as otosclerosis (conductive hearing loss) and osteoporosis (low bone mineral density) can result from the abnormal expression of genes that regulate cartilage and bone development. The forkhead box transcription factor FOXL1 has been identified as the causative gene in a family with autosomal dominant otosclerosis and has been reported as a candidate gene in GWAS meta-analyses for osteoporosis. This potentially indicates a novel role for foxl1 in chondrogenesis, osteogenesis, and bone remodelling. We created a foxl1 mutant zebrafish strain as a model for otosclerosis and osteoporosis and examined jaw bones that are homologous to the mammalian middle ear bones, and mineralization of the axial skeleton. We demonstrate that foxl1 regulates the expression of collagen genes such as collagen type 1 alpha 1a and collagen type 11 alpha 2, and results in a delay in jawbone mineralization, while the axial skeleton remains unchanged. foxl1 may also act with other forkhead genes such as foxc1a, as loss of foxl1 in a foxc1a mutant background increases the severity of jaw calcification phenotypes when compared to each mutant alone. Our zebrafish model demonstrates atypical cartilage formation and mineralization in the zebrafish craniofacial skeleton in foxl1 mutants and demonstrates that aberrant collagen expression may underlie the development of otosclerosis.


Assuntos
Osteoporose , Otosclerose , Animais , Biomarcadores/metabolismo , Cartilagem , Mamíferos , Mutação , Otosclerose/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
6.
PLoS One ; 17(6): e0269558, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35658052

RESUMO

Otosclerosis (OTSC) is the primary form of conductive hearing loss characterized by abnormal bone remodelling within the otic capsule of the human middle ear. A genetic association of the RELN SNP rs3914132 with OTSC has been identified in European population. Previously, we showed a trend towards association of this polymorphism with OTSC and identified a rare variant rs74503667 in a familial case. Here, we genotyped these variants in an Indian cohort composed of 254 OTSC cases and 262 controls. We detected a significant association of rs3914132 with OTSC (OR = 0.569, 95%CI = 0.386-0.838, p = 0.0041). To confirm this finding, we completed a meta-analysis which revealed a significant association of the rs3914132 polymorphism with OTSC (Z = 6.707, p<0.0001) across different ethnic populations. Linkage analysis found the evidence of linkage at RELN locus (LOD score 2.1059) in the OTSC family which has shown the transmission of rare variant rs74503667 in the affected individuals. To understand the role of RELN and its receptors in the development of OTSC, we went further to perform a functional analysis of RELN/reelin. Here we detected a reduced RELN (p = 0.0068) and VLDLR (p = 0.0348) mRNA levels in the otosclerotic stapes tissues. Furthermore, a reduced reelin protein expression by immunohistochemistry was confirmed in the otosclerotic tissues. Electrophoretic mobility shift assays for rs3914132 and rs74503667 variants revealed an altered binding of transcription factors in the mutated sequences which indicates the regulatory role of these variations in the RELN gene regulation. Subsequently, we showed by scanning electron microscopy a change in stapes bone morphology of otosclerotic patients. In conclusion, this study evidenced that the rare variation rs74503667 and the common polymorphism rs3914132 in the RELN gene and its reduced expressions that were associated with OTSC.


Assuntos
Otosclerose , Proteína Reelina/genética , Predisposição Genética para Doença , Genótipo , Humanos , Otosclerose/genética , Polimorfismo de Nucleotídeo Único
7.
J Int Adv Otol ; 18(2): 112-117, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35418358

RESUMO

BACKGROUND: Otosclerosis is a common conductive hearing loss resulting from abnormal bone metabolism. The c.788C>T variant in the transforming growth factor-beta 1 gene is associated with otosclerosis in all studied populations, except the Indian population. In this study, we predicted the functional effects of reported variants in transforming growth factor-beta 1 and analyzed the c.788C>T variant in a case-control cohort from India and in the genomes present in public databases. METHODS: Clinically confirmed otosclerosis cases (n=120) and controls (n=120) were recruited and genotyped by polymerase chain reactionrestriction fragment length polymorphism and DNA sequencing. In addition, Ensembl 1000 Genome, Ensembl NHLBI Exome, GnomAD, and Genome Asia 100K human genome databases were analyzed for allele frequency. RESULTS: Among the 3 variants studied, a significant functional effect was observed only for the c.788C>T variant. This variant was found in 1 case but absent in all others and controls. Odds ratio, 95% CI, and P-value under the dominant model were 1.00, 0.0197-50.8116, and 1.00, respectively. Analysis of genomic databases showed a frequency of 0-11.21% and 0-1.25% for the c.788C>T variant and the individuals homozygous for this variant, respectively. CONCLUSION: We did not find any genetic association between the c.788C>T variant and otosclerosis in the South Indian population; however, it was not monomorphic as had previously been reported from the Odisha population of Eastern India. Moreover, contrary to an earlier report that the c.788C>T variant was never found in a homozygous condition, homozygous individuals were found in the European, Asian, Latin American, and Ashkenazi Jews populations.


Assuntos
Otosclerose , Fator de Crescimento Transformador beta1 , Estudos de Casos e Controles , Predisposição Genética para Doença , Genótipo , Humanos , Índia , Otosclerose/genética , Polimorfismo de Nucleotídeo Único , Fator de Crescimento Transformador beta1/genética
8.
Hum Genet ; 141(3-4): 965-979, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34633540

RESUMO

Otosclerosis is a bone disorder of the otic capsule and common form of late-onset hearing impairment. Considered a complex disease, little is known about its pathogenesis. Over the past 20 years, ten autosomal dominant loci (OTSC1-10) have been mapped but no genes identified. Herein, we map a new OTSC locus to a 9.96 Mb region within the FOX gene cluster on 16q24.1 and identify a 15 bp coding deletion in Forkhead Box L1 co-segregating with otosclerosis in a Caucasian family. Pre-operative phenotype ranges from moderate to severe hearing loss to profound sensorineural loss requiring a cochlear implant. Mutant FOXL1 is both transcribed and translated and correctly locates to the cell nucleus. However, the deletion of 5 residues in the C-terminus of mutant FOXL1 causes a complete loss of transcriptional activity due to loss of secondary (alpha helix) structure. FOXL1 (rs764026385) was identified in a second unrelated case on a shared background. We conclude that FOXL1 (rs764026385) is pathogenic and causes autosomal dominant otosclerosis and propose a key inhibitory role for wildtype Foxl1 in bone remodelling in the otic capsule. New insights into the molecular pathology of otosclerosis from this study provide molecular targets for non-invasive therapeutic interventions.


Assuntos
Otosclerose , Fatores de Transcrição Forkhead/genética , Humanos , Otosclerose/genética
9.
Hum Genet ; 141(3-4): 951-963, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34410490

RESUMO

In this study, we investigated the association of ACAN variants with otosclerosis, a frequent cause of hearing loss among young adults. We sequenced the coding, 5'-UTR and 3'-UTR regions of ACAN in 1497 unrelated otosclerosis cases and 1437 matched controls from six different subpopulations. The association between variants in ACAN and the disease risk was tested through single variant and gene-based association tests. After correction for multiple testing, 14 variants were significantly associated with otosclerosis, ten of which represented independent association signals. Eight variants showed a consistent association across all subpopulations. Allelic odds ratios of the variants identified four predisposing and ten protective variants. Gene-based tests showed an association of very rare variants in the 3'-UTR with the phenotype. The associated exonic variants are all located in the CS domain of ACAN and include both protective and predisposing variants with a broad spectrum of effect sizes and population frequencies. This includes variants with strong effect size and low frequency, typical for monogenic diseases, to low effect size variants with high frequency, characteristic for common complex traits. This single-gene allelic spectrum with both protective and predisposing alleles is unique in the field of complex diseases. In conclusion, these findings are a significant advancement to the understanding of the etiology of otosclerosis.


Assuntos
Otosclerose , Regiões 3' não Traduzidas , Regiões 5' não Traduzidas , Agrecanas/genética , Suscetibilidade a Doenças , Frequência do Gene , Predisposição Genética para Doença , Humanos , Otosclerose/genética , Fenótipo , Polimorfismo de Nucleotídeo Único
10.
Hum Genet ; 141(3-4): 939-950, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34498117

RESUMO

Otosclerosis is a relatively common cause of hearing impairment, characterized by abnormal bone remodeling of the middle and inner ear. In about 50-60% of the patients, the disease is present in a familial form. In most of these families, otosclerosis seems to be caused by a small number of genetic factors (oligogenic) while only in a small number of families the disease seems to be truly monogenic. In the remaining patients a complex genetic form of otosclerosis is present. Several studies have aimed to identify the genetic factors underlying otosclerosis, which has led to the identification of eight published loci for monogenic otosclerosis, as well as several genes and one chromosomal region (11q13.1) with a clear association with otosclerosis. Implementation of next-generation sequencing (NGS) in otosclerosis research has led to the identification of pathogenic variants in MEPE, ACAN and SERPINF1, although the pathogenic role of the latter is under debate. In addition, a recent GWAS can be considered a breakthrough for otosclerosis as it identified several strong associations with otosclerosis and suggested new potential candidate genes. These recent findings are important for unraveling the genetic architecture of otosclerosis. More future studies will help to understand the complete pathogenesis of the disease.


Assuntos
Orelha Interna , Otosclerose , Humanos , Herança Multifatorial , Otosclerose/genética
11.
Ear Nose Throat J ; 100(5_suppl): 774S-780S, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32126815

RESUMO

BACKGROUND: Otosclerosis is a focal lesion of the inner ear. The role of genetic factors in the pathogenesis of otosclerosis has received increasing attention. We analyzed the clinical manifestations, inheritance pattern, and pathogenic genes in a family with otosclerosis. METHODS: We collected clinical data and generated a family pedigree. High-throughput second-generation sequencing technology was used to identify candidate genes by performing whole-exome sequencing of 7 members of the family, and Sanger sequencing was performed to validate candidate gene mutations in the 7 family members. RESULTS: Otosclerosis was characterized by autosomal dominant inheritance in this family. Whole-exome sequencing did not reveal mutation sites in known deafness-related genes. However, a c.2209A > G (p.T737A) mutation was detected in exon 6 of the SP1 gene, which is associated with the COL1A1 gene. This mutation was a pathogenic mutation, and Sanger sequencing confirmed that this mutation cosegregated with the clinical phenotype among the family members. CONCLUSIONS: The pattern of otosclerosis in this family is consistent with autosomal dominant inheritance, and the SP1 gene, harboring the c.2209A > G (p.T737A) mutation in exon 6, may be the causative gene of otosclerosis in this family.


Assuntos
Povo Asiático/genética , Otosclerose/genética , Fator de Transcrição Sp1/genética , Adolescente , Adulto , Idoso , Feminino , Perda Auditiva Condutiva/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Linhagem
12.
BMC Med Genet ; 21(1): 122, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32493243

RESUMO

BACKGROUND: Otosclerosis (OTSC) is among the most common causes of a late-onset hearing loss in adults and is characterized by an abnormal bone growth in the otic capsule. Alteration in the osteoprotegerin (OPG) expression has been suggested in the implication of OTSC pathogenesis. METHODS: A case-control association study of rs2228568, rs7844539, rs3102734 and rs2073618 single nucleotide polymorphisms (SNPs) in the OPG gene was performed in a Tunisian-North African population composed of 183 unrelated OTSC patients and 177 healthy subjects. In addition, a multilocus association and a meta-analysis of existing studies were conducted. RESULTS: Rs3102734 (p = 0.013) and rs2073618 (p = 0.007) were significantly associated with OTSC, which were predominantly detected in females after multiple corrections. Among the OPG studied SNPs, the haplotypes A-A-C-G (p = 0.0001) and A-A-C-C (p = 0.0004) were significantly associated with OTSC in females. Multilocus association revealed that the SNPs: rs2073618 in OPG, rs1800472 in TGFß1, rs39335, rs39350 and rs39374 in RELN, and rs494252 in chromosome 11 showed significant OTSC-associated alleles in Tunisian individuals. In addition, meta-analysis of the rs2073618 SNP in Tunisian, Indian and Italian populations revealed evidence of an association with OTSC (OR of 0.826, 95% CI [0.691-0.987], p = 0.035). CONCLUSIONS: Our findings suggest that rs3102734 and rs2073618 variants are associated with OTSC in North African ethnic Tunisian population. Meta-analysis of the rs2073618 in three different ethnic population groups indicated an association with OTSC.


Assuntos
Epistasia Genética , Loci Gênicos , Predisposição Genética para Doença , Osteoprotegerina/genética , Otosclerose/genética , Polimorfismo de Nucleotídeo Único , Alelos , Estudos de Casos e Controles , Mapeamento Cromossômico , Feminino , Frequência do Gene , Estudos de Associação Genética , Haplótipos , Humanos , Desequilíbrio de Ligação , Masculino , Modelos Biológicos , Razão de Chances , Otosclerose/diagnóstico , Proteína Reelina
13.
Genet Test Mol Biomarkers ; 24(6): 343-351, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32379989

RESUMO

Background: Otosclerosis (OTSC) is a genetically heterogeneous disorder, characterized by abnormal bone growth in the middle ear, affecting the stapes bone. Previous studies have shown that single nucleotide polymorphisms (SNPs) of the COL1A1, BMP2, and BMP4 genes are linked to susceptibility of OTSC, musculoskeletal degenerative diseases, and bone remodeling. Aims: To evaluate the genetic association and expression levels of COL1A1, BMP2, and BMP4 genes with OTSC in the Indian population. Methods: A total of 320 otosclerotic and 320 control samples were screened for four SNPs (rs1107946, rs11327935, rs2269336, and rs1800012) of the COL1A1 gene; rs3178250 of the BMP2 gene; and rs17563 of the BMP4 gene using single-strand conformation polymorphism analysis, and restriction fragment length polymorphism analyses. Genotypic, haplotypic, and linkage disequilibrium analyses were performed to assess the potential associations of these SNPs with OTSC. COL1A1, BMP2, and BMP4 mRNA expression levels were analyzed by semiquantitative RT-PCR and real-time PCR. Results: Genotypes of two SNPs, rs1800012 and rs17563, were found to be associated with OTSC (the rs1800012 GT genotype, p = 0.0022, OR = 0.481; and the rs17563 TC genotype, p = 0.0225, OR = 1.471). Haplotypic analyses revealed that the COL1A1 haplotype G-T-C-T (p = 0.021) was significantly increased among controls. Functional studies revealed an unexpected decrease in mRNA expression of COL1A1 but an increased expression of the BMP2 and BMP4 genes in otosclerotic stapes tissues. Conclusions: Our findings suggest that OTSC is a heterogeneous disorder, but that the GT genotype of the rs1800012 locus is protective and that the TC genotype at the rs17563 locus is a risk factor. In addition, our studies indicate that changes in the expression of the COL1A1, BMP2, and BMP4 genes may contribute to the genetic susceptibility of OTSC by regulating their mRNA levels.


Assuntos
Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 4/genética , Colágeno Tipo I/genética , Otosclerose/genética , RNA Mensageiro/biossíntese , Adulto , Idoso , Proteína Morfogenética Óssea 2/metabolismo , Proteína Morfogenética Óssea 4/metabolismo , Estudos de Casos e Controles , Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Feminino , Expressão Gênica , Estudos de Associação Genética/métodos , Ligação Genética , Predisposição Genética para Doença , Genótipo , Haplótipos/genética , Humanos , Masculino , Pessoa de Meia-Idade , Otosclerose/metabolismo , Polimorfismo de Nucleotídeo Único , RNA Mensageiro/genética , Fatores de Risco , Transcriptoma
14.
Otol Neurotol ; 40(6): 710-719, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31192899

RESUMO

HYPOTHESIS: Profiling of microRNA (miRNA) within perilymph samples collected at the time of stapedectomy can be used to identify active gene expression pathways in otosclerosis as compared with controls. BACKGROUND: miRNAs are small non-coding RNAs that effect gene expression by post-transcription regulation and silencing. Perilymph sampling allows for a novel way to collect material actively involved in the disease process. METHODS: Perilymph was collected at time of stapedectomy, underwent a microarray analysis, and significantly expressed miRNAs were correlated to known bone morphology pathways using a cochlear transcriptome library. To determine miRNA related specifically to otosclerosis, cochlear implant controls were used for statistical analysis. RESULTS: A total of 321 significantly expressed miRNAs were identified within the four otosclerosis perilymph samples. miRNAs associated with 23 genes involved in bone morphology pathways were significantly expressed. A significant difference in the otosclerotic samples as compared with control was noted in miRNA expression regulating HMGA2, ITGB3, SMO, CCND1, TP53, TP63, and RBL2 gene pathways. No significant difference was noted in miRNAs expression associated with ACE, RELN, COL1A1, and COL1A2 genes which were previously correlated with otosclerosis. CONCLUSIONS: Perilymph miRNA profiling obtained at the time of stapedectomy consistently identifies differentially expressed genes compared with controls. Perilymph miRNA sampling with cochlear transcriptome library cross-referencing can be successfully used to identify active gene expression pathways in otosclerosis.


Assuntos
MicroRNAs/metabolismo , Otosclerose/metabolismo , Perilinfa/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Expressão Gênica , Humanos , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Otosclerose/genética , Proteína Reelina
15.
Mol Genet Genomics ; 294(4): 1001-1006, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30968248

RESUMO

Otosclerosis is a common form of hearing loss (HL) due to abnormal remodeling of the otic capsule. The genetic causes of otosclerosis remain largely unidentified. Only mutations in a single gene, SERPINF1, were previously published in patients with familial otosclerosis. To unravel the contribution of genetic variation in this gene to otosclerosis, this gene was re-sequenced in a large population of otosclerosis patients and controls. Resequencing of the 5' and 3' UTRs, coding regions, and exon-intron boundaries of SERPINF1 was performed in 1604 unrelated otosclerosis patients and 1538 unscreened controls, and in 62 large otosclerosis families. Our study showed no enrichment of rare variants, stratified by type, in SERPINF1 in patients versus controls. Furthermore, the c.392C > A (p.Ala131Asp) variant, previously reported as pathogenic, was identified in three patients and four controls, not replicating its pathogenic nature. We could also not find evidence for a pathogenic role in otosclerosis for 5' UTR variants in the SERPINF1-012 transcript (ENST00000573763), described as the major transcript in human stapes. Furthermore, no rare variants were identified in the otosclerosis families. This study does not support a pathogenic role for variants in SERPINF1 as a cause of otosclerosis. Therefore, the etiology of the disease remains largely unknown and will undoubtedly be the focus of future studies.


Assuntos
Proteínas do Olho/genética , Fatores de Crescimento Neural/genética , Otosclerose/genética , Análise de Sequência de DNA/métodos , Serpinas/genética , Regiões 3' não Traduzidas , Regiões 5' não Traduzidas , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Linhagem
16.
Genet Med ; 21(5): 1199-1208, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30287925

RESUMO

PURPOSE: To characterize new molecular factors implicated in a hereditary congenital facial paresis (HCFP) family and otosclerosis. METHODS: We performed exome sequencing in a four-generation family presenting nonprogressive HCFP and mixed hearing loss (HL). MEPE was analyzed using either Sanger sequencing or molecular inversion probes combined with massive parallel sequencing in 89 otosclerosis families, 1604 unrelated affected subjects, and 1538 unscreened controls. RESULTS: Exome sequencing in the HCFP family led to the identification of a rare segregating heterozygous frameshift variant p.(Gln425Lysfs*38) in MEPE. As the HL phenotype in this family resembled otosclerosis, we performed variant burden and variance components analyses in a large otosclerosis cohort and demonstrated that nonsense and frameshift MEPE variants were significantly enriched in affected subjects (p = 0.0006-0.0060). CONCLUSION: MEPE exerts its function in bone homeostasis by two domains, an RGD and an acidic serine aspartate-rich MEPE-associated (ASARM) motif inhibiting respectively bone resorption and mineralization. All variants associated with otosclerosis are predicted to result in nonsense mediated decay or an ASARM-and-RGD-truncated MEPE. The HCFP variant is predicted to produce an ASARM-truncated MEPE with an intact RGD motif. This difference in effect on the protein corresponds with the presumed pathophysiology of both diseases, and provides a plausible molecular explanation for the distinct phenotypic outcome.


Assuntos
Proteínas da Matriz Extracelular/genética , Paralisia Facial/congênito , Glicoproteínas/genética , Otosclerose/genética , Fosfoproteínas/genética , Adulto , Osso e Ossos/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Paralisia Facial/etiologia , Paralisia Facial/genética , Paralisia Facial/metabolismo , Família , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/genética , Variação Genética/genética , Glicoproteínas/metabolismo , Perda Auditiva/genética , Heterozigoto , Humanos , Masculino , Linhagem , Fenótipo , Fosfoproteínas/metabolismo , Sequenciamento do Exoma/métodos
17.
Hum Genet ; 137(5): 357-363, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29728750

RESUMO

Otosclerosis is a common form of hearing loss which typically presents in young adults. The disease has a familial, monogenic form and a non-familial form with a more complex aetiology. A previous genome wide association study identified evidence that variants within RELN are associated with the condition. Other genes in which an association has been reported include BMP2, COL1A1, FGF2, PPP2R5B and TGFB1. However, follow up studies have often failed to replicate initial positive results. The aim of this study was to establish if an association exists between eight single nucleotide polymorphisms (SNPs) in these six previously implicated genes and otosclerosis in a British case-control cohort (n = 748). Evidence of an association between rs1800472 in TGFB1 and otosclerosis was found (p = 0.034), this association was strongest amongst non-familial cases (p = 0.011). No evidence of an association was detected with variants in COL1A1, FGF2, BMP2, and PPP2R5B. No association between variation in RELN and otosclerosis was observed in the whole cohort. However, a significant association (p = 0.0057) was detected between one RELN SNP (rs39399) and otosclerosis in familial patients. Additionally, we identify expression of one RELN transcript in 51 of 81 human stapes tested, clarifying previous conflicting data as to whether RELN is expressed in the affected tissue. Our findings strengthen the association of TGFB1 (rs1800472) with otosclerosis and support a relationship between RELN and familial otosclerosis only, which may explain previous variable replications.


Assuntos
Moléculas de Adesão Celular Neuronais/genética , Proteínas da Matriz Extracelular/genética , Estudos de Associação Genética , Proteínas do Tecido Nervoso/genética , Otosclerose/genética , Serina Endopeptidases/genética , Fator de Crescimento Transformador beta1/genética , Proteína Morfogenética Óssea 2/genética , Colágeno Tipo I/genética , Cadeia alfa 1 do Colágeno Tipo I , Feminino , Fator 2 de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica , Predisposição Genética para Doença , Genótipo , Humanos , Masculino , Proteínas de Membrana/genética , Otosclerose/fisiopatologia , Polimorfismo de Nucleotídeo Único/genética , Proteína Fosfatase 2/genética , Proteína Reelina , Reino Unido
18.
Otolaryngol Clin North Am ; 51(2): 305-318, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29502723

RESUMO

Over the past several years, with the evolution of genetic and molecular research, several etiologic factors have been implicated in the pathogenesis of otosclerosis. Overall, current evidence suggests that otosclerosis is a complex disease with a variety of potential pathways contributing to the development of abnormal bone remodeling in the otic capsule. These pathways involved in the pathogenesis of otosclerosis are influenced by both genetic and environmental factors.


Assuntos
Otosclerose/genética , Otosclerose/patologia , Remodelação Óssea/genética , Orelha Interna/patologia , Expressão Gênica/fisiologia , Predisposição Genética para Doença/genética , Humanos , Vírus do Sarampo/patogenicidade , Osteoprotegerina/genética , Otosclerose/etiologia , Ligante RANK/genética , Osso Temporal/patologia
19.
Sci Rep ; 6: 29572, 2016 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-27404893

RESUMO

Otosclerosis (OTSC) is defined by abnormal bone remodeling in the otic capsule of middle ear which leads to conductive hearing loss. In our previous study, we have identified a de novo heterozygous mutation -832G > A in the promoter of TGFB1 in an otosclerosis patient. In the present study, we progressively screened this mutation in a cohort of 254 cases and 262 controls. The family members of the patient positive for -832G > A variation were also screened and found inheritance of this variation only to her daughter. Interestingly, this variation is associated with a decreased level of the TGFB1 transcript in the patient compared to her parents and controls. In silico analysis of this mutation predicted the altered binding of two transcription factors v-Myb and MZF1 in the mutated promoter sequence. Further, functional analysis of this mutation using in vitro luciferase and electrophoretic mobility shift assays revealed that this variation is associated with decreased gene expression. In conclusion, this study established the fact that TGFB1 mutation -832G > A altered the TGFB1 promoter activity, which could affect the susceptibility to otosclerosis development. Further, systemic analysis of TGFB1 gene sequence and expression analysis of this gene might reveal its precise role in the pathogenesis of otosclerosis.


Assuntos
Predisposição Genética para Doença , Otosclerose/genética , Otosclerose/patologia , Mutação Puntual , Regiões Promotoras Genéticas , Fator de Crescimento Transformador beta1/biossíntese , Fator de Crescimento Transformador beta1/genética , Adulto , Feminino , Expressão Gênica , Testes Genéticos , Hereditariedade , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
20.
Hum Mol Genet ; 25(12): 2393-2403, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27056980

RESUMO

Otosclerosis is a relatively common heterogenous condition, characterized by abnormal bone remodelling in the otic capsule leading to fixation of the stapedial footplate and an associated conductive hearing loss. Although familial linkage and candidate gene association studies have been performed in recent years, little progress has been made in identifying disease-causing genes. Here, we used whole-exome sequencing in four families exhibiting dominantly inherited otosclerosis to identify 23 candidate variants (reduced to 9 after segregation analysis) for further investigation in a secondary cohort of 84 familial cases. Multiple mutations were found in the SERPINF1 (Serpin Peptidase Inhibitor, Clade F) gene which encodes PEDF (pigment epithelium-derived factor), a potent inhibitor of angiogenesis and known regulator of bone density. Six rare heterozygous SERPINF1 variants were found in seven patients in our familial otosclerosis cohort; three are missense mutations predicted to be deleterious to protein function. The other three variants are all located in the 5'-untranslated region (UTR) of an alternative spliced transcript SERPINF1-012 RNA-seq analysis demonstrated that this is the major SERPINF1 transcript in human stapes bone. Analysis of stapes from two patients with the 5'-UTR mutations showed that they had reduced expression of SERPINF1-012 All three 5'-UTR mutations are predicted to occur within transcription factor binding sites and reporter gene assays confirmed that they affect gene expression levels. Furthermore, RT-qPCR analysis of stapes bone cDNA showed that SERPINF1-012 expression is reduced in otosclerosis patients with and without SERPINF1 mutations, suggesting that it may be a common pathogenic pathway in the disease.


Assuntos
Remodelação Óssea/genética , Proteínas do Olho/genética , Predisposição Genética para Doença , Fatores de Crescimento Neural/genética , Otosclerose/genética , Serpinas/genética , Densidade Óssea/genética , Exoma/genética , Proteínas do Olho/biossíntese , Feminino , Regulação da Expressão Gênica , Heterozigoto , Humanos , Masculino , Mutação , Fatores de Crescimento Neural/biossíntese , Otosclerose/fisiopatologia , Linhagem , Análise de Sequência de DNA , Serpinas/biossíntese , Estribo/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA