Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.000
Filtrar
1.
Cryobiology ; 115: 104865, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38367796

RESUMO

The collector urchin, Tripneustes gratilla, is an ecologically important member of the grazing community of Hawai'i's coral reefs. Beyond its ability to maintain balance between native seaweeds and corals, T. gratilla has also been used as a food source and a biocontrol agent against alien invasive algae species. Due to overexploitation, habitat degradation, and other stressors, their populations face local extirpation. However, artificial reproductive techniques, such as cryopreservation, could provide more consistent seedstock throughout the year to supplement aquaculture efforts. Although the sperm and larvae of temperate urchins have been successfully cryopreserved, tropical urchins living on coral reefs have not. Here, we investigated the urchin embryos' tolerance to various cryoprotectants and cooling rates to develop a cryopreservation protocol for T. gratilla. We found that using 1 M Me2SO with a cooling rate of 9.7 °C/min on gastrula stage embryos produced the best results with survival rates of up to 85.5% and up to 50.8% maturation to the 4-arm echinopluteus stage, assessed three days after thawing. Continued research could see cryopreservation added to the repertoire of artificial reproductive techniques for T. gratilla, thereby assisting in the preservation of this ecologically important urchin, all while augmenting aquaculture efforts that contribute to coral reef restoration.


Assuntos
Criopreservação , Crioprotetores , Ouriços-do-Mar , Animais , Criopreservação/métodos , Ouriços-do-Mar/embriologia , Crioprotetores/farmacologia , Embrião não Mamífero , Recifes de Corais , Dimetil Sulfóxido/farmacologia
2.
Dev Biol ; 483: 128-142, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35038441

RESUMO

Brachyury is a T-box family transcription factor and plays pivotal roles in morphogenesis. In sea urchin embryos, Brachyury is expressed in the invaginating endoderm, and in the oral ectoderm of the invaginating mouth opening. The oral ectoderm is hypothesized to serve as a signaling center for oral (ventral)-aboral (dorsal) axis formation and to function as a ventral organizer. Our previous results of a single-cell RNA-seq (scRNA-seq) atlas of early Strongylocentrotus purpuratus embryos categorized the constituent cells into 22 clusters, in which the endoderm consists of three clusters and the oral ectoderm four clusters (Foster et al., 2020). Here we examined which clusters of cells expressed Brachyury in relation to the morphogenesis and the identity of the ventral organizer. Our results showed that cells of all three endoderm clusters expressed Brachyury in blastulae. Based on expression profiles of genes involved in the gene regulatory networks (GRNs) of sea urchin embryos, the three clusters are distinguishable, two likely derived from the Veg2 tier and one from the Veg1 tier. On the other hand, of the four oral-ectoderm clusters, cells of two clusters expressed Brachyury at the gastrula stage and genes that are responsible for the ventral organizer at the late blastula stage, but the other two clusters did not. At a single-cell level, most cells of the two oral-ectoderm clusters expressed organizer-related genes, nearly a half of which coincidently expressed Brachyury. This suggests that the ventral organizer contains Brachyury-positive cells which invaginate to form the stomodeum. This scRNA-seq study therefore highlights significant roles of Brachyury-expressing cells in body-plan formation of early sea urchin embryos, though cellular and molecular mechanisms for how Brachyury functions in these processes remain to be elucidated in future studies.


Assuntos
Ectoderma/citologia , Ectoderma/metabolismo , Desenvolvimento Embrionário/genética , Proteínas Fetais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , RNA-Seq/métodos , Ouriços-do-Mar/embriologia , Ouriços-do-Mar/genética , Análise de Célula Única/métodos , Proteínas com Domínio T/metabolismo , Animais , Blástula/metabolismo , Ectoderma/embriologia , Endoderma/embriologia , Endoderma/metabolismo , Gástrula/metabolismo , Redes Reguladoras de Genes , Transdução de Sinais/genética
3.
Dev Biol ; 482: 28-33, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34863708

RESUMO

Primordial germ cells (PGCs) are specified by diverse mechanisms in early development. In some animals, PGCs are specified via inheritance of maternal determinants, while in others, in a process thought to represent the ancestral mode, PGC fate is induced by cell interactions. Although the terminal factors expressed in specified germ cells are widely conserved, the mechanisms by which these factors are regulated can be widely diverse. Here we show that a post-translational mechanism of germ cell specification is conserved between two echinoderm species thought to employ divergent germ line segregation strategies. Sea urchins segregate their germ line early by an inherited mechanism. The DEAD-box RNA - helicase Vasa, a conserved germline factor, becomes enriched in the PGCs by degradation in future somatic cells by the E3-ubiquitin-ligase Gustavus (Gustafson et al., 2011). This post-translational activity occurs early in development, substantially prior to gastrulation. Here we test this process in germ cell specification of sea star embryos, which use inductive signaling mechanisms after gastrulation for PGC fate determination. We find that Vasa-GFP protein becomes restricted to the PGCs in the sea star even though the injected mRNA is present throughout the embryo. Gustavus depletion, however, results in uniform accumulation of the protein. These data demonstrate that Gustavus-mediated Vasa turnover in somatic cells is conserved between species with otherwise divergent PGC specification mechanisms. Since Gustavus was originally identified in Drosophila melanogaster to have similar functions in Vasa regulation (Kugler et al., 2010), we conclude that this node of Vasa regulation in PGC formation is ancestral and evolutionarily transposable from the ancestral, induced PGC specification program to an inherited PGC specification mechanism.


Assuntos
RNA Helicases DEAD-box/metabolismo , Células Germinativas/citologia , Ouriços-do-Mar/embriologia , Estrelas-do-Mar/embriologia , Ubiquitina-Proteína Ligases/metabolismo , Animais , Sistemas CRISPR-Cas/genética , Técnicas de Cultura Embrionária , Embrião não Mamífero/embriologia , Processamento de Proteína Pós-Traducional
4.
Dev Biol ; 482: 1-6, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34818531

RESUMO

Wnt signalling plays an eminent role in development, stem cell growth, and tissue homeostasis. Much of what we know about Wnt signalling, we owe to research in developmental biology. Here I review some salient discoveries in the older literature, beginning with the Lithium experiments in sea urchin by Curt Herbst in the 1890ies, when unknown to him he observed the gradual effects of Wnt overactivation upon embryonic axis formation. After revisiting key discoveries into Wingless signalling in Drosophila, I examine the role that the Xenopus embryo has played as model system in this regard. Not only were components of the Wnt cascade dissected and secreted Wnt antagonists discovered in Xenopus, but it also played a key role in unveiling the evolutionary conserved role of Wnt signalling in primary body axis formation. I conclude that Xenopus developmental biology has played a major role in elucidating the mechanisms of embryonic Wnt signalling.


Assuntos
Padronização Corporal/fisiologia , Drosophila/embriologia , Ouriços-do-Mar/embriologia , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/fisiologia , Xenopus laevis/embriologia , Animais , Drosophila/metabolismo , Desenvolvimento Embrionário/fisiologia , Ouriços-do-Mar/metabolismo , Xenopus laevis/metabolismo
5.
PLoS One ; 16(12): e0252845, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34962917

RESUMO

The cytokinetic contractile ring (CR) was first described some 50 years ago, however our understanding of the assembly and structure of the animal cell CR remains incomplete. We recently reported that mature CRs in sea urchin embryos contain myosin II mini-filaments organized into aligned concatenated arrays, and that in early CRs myosin II formed discrete clusters that transformed into the linearized structure over time. The present study extends our previous work by addressing the hypothesis that these myosin II clusters also contain the crucial scaffolding proteins anillin and septin, known to help link actin, myosin II, RhoA, and the membrane during cytokinesis. Super-resolution imaging of cortices from dividing embryos indicates that within each cluster, anillin and septin2 occupy a centralized position relative to the myosin II mini-filaments. As CR formation progresses, the myosin II, septin and anillin containing clusters enlarge and coalesce into patchy and faintly linear patterns. Our super-resolution images provide the initial visualization of anillin and septin nanostructure within an animal cell CR, including evidence of a septin filament-like network. Furthermore, Latrunculin-treated embryos indicated that the localization of septin or anillin to the myosin II clusters in the early CR was not dependent on actin filaments. These results highlight the structural progression of the CR in sea urchin embryos from an array of clusters to a linearized purse string, the association of anillin and septin with this process, and provide the visualization of an apparent septin filament network with the CR structure of an animal cell.


Assuntos
Proteínas Contráteis/metabolismo , Citocinese , Embrião não Mamífero/metabolismo , Miosina Tipo II/metabolismo , Ouriços-do-Mar/embriologia , Ouriços-do-Mar/metabolismo , Septinas/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Anticorpos/metabolismo , Proteínas Contráteis/química , Proteínas Contráteis/imunologia , Imageamento Tridimensional , Domínios Proteicos , Septinas/imunologia , Proteínas rho de Ligação ao GTP/metabolismo
6.
J Struct Biol ; 213(4): 107797, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34530133

RESUMO

Biomineralization is the process in which soft organic tissues use minerals to produce shells, skeletons and teeth for various functions such as protection and physical support. The ability of the cells to control the time and place of crystal nucleation as well as crystal orientation and stiffness is far beyond the state-of-the art of human technologies. Thus, understanding the biological control of biomineralization will promote our understanding of embryo development as well as provide novel approaches for material engineering. Sea urchin larval skeletogenesis offers an excellent platform for functional analyses of both the molecular control system and mineral uptake and deposition. Here we describe the current understanding of the genetic, molecular and cellular processes that underlie sea urchin larval skeletogenesis. We portray the regulatory genes that define the specification of the skeletogenic cells and drive the various morphogenetic processes that occur in the skeletogenic lineage, including: epithelial to mesenchymal transition, cell migration, spicule cavity formation and mineral deposition into the spicule cavity. We describe recent characterizations of the size, motion and mineral concentration of the calcium-bearing vesicles in the skeletogenic cells. We review the distinct specification states within the skeletogenic lineage that drive localized skeletal growth at the tips of the spicules. Finally, we discuss the surprising similarity between the regulatory network and cellular processes that drive sea urchin skeletogenesis and those that control vertebrate vascularization. Overall, we illustrate the novel insights on the biological regulation and evolution of biomineralization, gained from studies of the sea urchin larval skeletogenesis.


Assuntos
Biomineralização/genética , Calcificação Fisiológica/genética , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Morfogênese/genética , Ouriços-do-Mar/genética , Animais , Movimento Celular/genética , Embrião não Mamífero/citologia , Embrião não Mamífero/embriologia , Transição Epitelial-Mesenquimal/genética , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Ouriços-do-Mar/embriologia , Ouriços-do-Mar/metabolismo
7.
Cells Dev ; 167: 203716, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34245941

RESUMO

Early in animal development many cells are conditionally specified based on observations that those cells can be directed toward alternate fates. The endomesoderm is so named because early specification produces cells that often have been observed to simultaneously express both early endoderm and mesoderm transcription factors. Experiments with these cells demonstrate that their progeny can directed entirely toward endoderm or mesoderm, whereas normally they establish both germ layers. This review examines the mechanisms that initiate the conditional endomesoderm state, its metastability, and the mechanisms that resolve that state into definitive endoderm and mesoderm.


Assuntos
Padronização Corporal , Endoderma/embriologia , Mesoderma/embriologia , Animais , Humanos , Modelos Biológicos , Ouriços-do-Mar/embriologia , Transdução de Sinais
8.
Dev Biol ; 478: 13-24, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34147471

RESUMO

Differential protein regulation is a critical biological process that regulates cellular activity and controls cell fate determination. It is especially important during early embryogenesis when post-transcriptional events predominate differential fate specification in many organisms. Light-induced approaches have been a powerful technology to interrogate protein functions with temporal and spatial precision, even at subcellular levels within a cell by controlling laser irradiation on the confocal microscope. However, application and efficacy of these tools need to be tested for each model system or for the cell type of interest because of the complex nature of each system. Here, we introduce two types of light-induced approaches to track and control proteins at a subcellular level in the developing embryo of the sea urchin. We found that the photoconvertible fluorescent protein Kaede is highly efficient to distinguish pre-existing and newly synthesized proteins with no apparent phototoxicity, even when interrogating proteins associated with the mitotic spindle. Further, chromophore-assisted light inactivation (CALI) using miniSOG successfully inactivated target proteins of interest in the vegetal cortex and selectively delayed or inhibited asymmetric cell division. Overall, these light-induced manipulations serve as important molecular tools to identify protein function for for subcellular interrogations in developing embryos.


Assuntos
Divisão Celular , Embrião não Mamífero/metabolismo , Proteínas/metabolismo , Ouriços-do-Mar/embriologia , Animais , Divisão Celular Assimétrica , Inativação Luminosa Assistida por Cromóforo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Embrião não Mamífero/citologia , Desenvolvimento Embrionário , Luz , Proteínas Luminescentes/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Ouriços-do-Mar/citologia , Ouriços-do-Mar/metabolismo , Análise Espaço-Temporal , Fuso Acromático/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
9.
Nat Commun ; 12(1): 4032, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34188050

RESUMO

In animals, body axis patterning is based on the concentration-dependent interpretation of graded morphogen signals, which enables correct positioning of the anatomical structures. The most ancient axis patterning system acting across animal phyla relies on ß-catenin signaling, which directs gastrulation, and patterns the main body axis. However, within Bilateria, the patterning logic varies significantly between protostomes and deuterostomes. To deduce the ancestral principles of ß-catenin-dependent axial patterning, we investigate the oral-aboral axis patterning in the sea anemone Nematostella-a member of the bilaterian sister group Cnidaria. Here we elucidate the regulatory logic by which more orally expressed ß-catenin targets repress more aborally expressed ß-catenin targets, and progressively restrict the initially global, maternally provided aboral identity. Similar regulatory logic of ß-catenin-dependent patterning in Nematostella and deuterostomes suggests a common evolutionary origin of these processes and the equivalence of the cnidarian oral-aboral and the bilaterian posterior-anterior body axes.


Assuntos
Padronização Corporal/fisiologia , Anêmonas-do-Mar/embriologia , Ouriços-do-Mar/embriologia , beta Catenina/metabolismo , Animais , Padronização Corporal/genética , Gastrulação/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Anêmonas-do-Mar/anatomia & histologia , Ouriços-do-Mar/anatomia & histologia , Transdução de Sinais , Proteína Wnt1/genética , Proteína Wnt2/genética , beta Catenina/genética
10.
Dev Dyn ; 250(12): 1828-1833, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34042247

RESUMO

BACKGROUND: Sea urchins are model organisms for studying the spatial-temporal control of gene activity during development. The Southern California species, Lytechinus pictus, has a sequenced genome and can be raised in the laboratory from egg to egg in 4 to 5 months. RESULTS: Here, we present new techniques for generating parthenogenetic larvae of this species and include a gallery of photomicrographs of morphologically abnormal larvae that could be used for transcriptomic analysis. CONCLUSIONS: Comparison of gene expression in parthenogenotes to larvae produced by fertilization could provide novel insights into gene expression controls contributed by sperm in this important model organism. Knowledge gained from transcriptomics of sea urchin parthenogenotes could contribute to parthenogenetic studies of mammalian embryos.


Assuntos
Técnicas Genéticas , Lytechinus , Partenogênese/fisiologia , Animais , Embrião não Mamífero , Feminino , Fertilização/genética , Perfilação da Expressão Gênica/métodos , Perfilação da Expressão Gênica/tendências , Regulação da Expressão Gênica no Desenvolvimento , Técnicas Genéticas/tendências , Invenções , Ionóforos/metabolismo , Larva , Lytechinus/embriologia , Lytechinus/genética , Lytechinus/crescimento & desenvolvimento , Masculino , Partenogênese/genética , Ouriços-do-Mar/embriologia , Ouriços-do-Mar/genética , Ouriços-do-Mar/crescimento & desenvolvimento
11.
Development ; 148(7)2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33688076

RESUMO

Activation of Wnt/ß-catenin (cWnt) signaling at the future posterior end of early bilaterian embryos is a highly conserved mechanism for establishing the anterior-posterior (AP) axis. Moreover, inhibition of cWnt at the anterior end is required for development of anterior structures in many deuterostome taxa. This phenomenon, which occurs around the time of gastrulation, has been fairly well characterized, but the significance of intracellular inhibition of cWnt signaling in cleavage-stage deuterostome embryos for normal AP patterning is less well understood. To investigate this process in an invertebrate deuterostome, we defined Axin function in early sea urchin embryos. Axin is ubiquitously expressed at relatively high levels in early embryos and functional analysis revealed that Axin suppresses posterior cell fates in anterior blastomeres by blocking ectopic cWnt activation in these cells. Structure-function analysis of sea urchin Axin demonstrated that only its GSK-3ß-binding domain is required for cWnt inhibition. These observations and results in other deuterostomes suggest that Axin plays a crucial conserved role in embryonic AP patterning by preventing cWnt activation in multipotent early blastomeres, thus protecting them from assuming ectopic cell fates.


Assuntos
Proteína Axina/genética , Proteína Axina/metabolismo , Ouriços-do-Mar/embriologia , Ouriços-do-Mar/genética , Ouriços-do-Mar/fisiologia , Animais , Blastômeros/metabolismo , Embrião não Mamífero/metabolismo , Gastrulação , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Glicogênio Sintase Quinase 3 beta/química , Glicogênio Sintase Quinase 3 beta/metabolismo , Lytechinus , Strongylocentrotus purpuratus , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/fisiologia , beta Catenina/metabolismo
12.
PLoS Comput Biol ; 17(1): e1007994, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33497383

RESUMO

At very early embryonic stages, when embryos are composed of just a few cells, establishing the correct packing arrangements (contacts) between cells is essential for the proper development of the organism. As early as the 4-cell stage, the observed cellular packings in different species are distinct and, in many cases, differ from the equilibrium packings expected for simple adherent and deformable particles. It is unclear what are the specific roles that different physical parameters, such as the forces between blastomeres, their division times, orientation of cell division and embryonic confinement, play in the control of these packing configurations. Here we simulate the non-equilibrium dynamics of cells in early embryos and systematically study how these different parameters affect embryonic packings at the 4-cell stage. In the absence of embryo confinement, we find that cellular packings are not robust, with multiple packing configurations simultaneously possible and very sensitive to parameter changes. Our results indicate that the geometry of the embryo confinement determines the packing configurations at the 4-cell stage, removing degeneracy in the possible packing configurations and overriding division rules in most cases. Overall, these results indicate that physical confinement of the embryo is essential to robustly specify proper cellular arrangements at very early developmental stages.


Assuntos
Fenômenos Biomecânicos/fisiologia , Blastômeros , Desenvolvimento Embrionário/fisiologia , Animais , Blastômeros/citologia , Blastômeros/fisiologia , Caenorhabditis elegans/embriologia , Comunicação Celular/fisiologia , Divisão Celular/fisiologia , Biologia Computacional , Camundongos , Modelos Biológicos , Ouriços-do-Mar/embriologia
13.
Dev Biol ; 475: 131-144, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33484706

RESUMO

Coup-TF, a member of the nuclear receptor super-family, is present in the pool of maternal mRNAs and proteins in the sea urchin egg. The presence of this protein seems to be essential for the execution of the early developmental program, leading to all three embryonic layers. Our results demonstrate that Pl-Coup-TF morphants, i.e. Pl-Coup-TF morpholino knockdown embryos, resemble blastulae that lack archenteron at 24 hpf (hours post fertilization), a stage at which normal embryos reach the end of gastrulation in Paracentrotus lividus. At 48 hpf, when normal embryos reach the pluteus larva stage, the morphants are seemingly underdeveloped and lack the characteristic skeletal rods. Nevertheless, the morphant embryos express vegetal endomesodermal marker genes, such as Pl-Blimp1, Pl-Endo16, Pl-Alx1 and Pl-Tbr as judged by in situ hybridization experiments. The anterior neuroectoderm genes, Pl-FoxQ2, Pl-Six3 and Pl-Pax6, are also expressed in the morphant embryos, but Pl-Hbn and Pl-Fez mRNAs, which encode proteins significant for the differentiation of serotonergic neurons, are not detected. Consequently, Pl-Coup-TF morphants at 48 hpf lack serotonergic neurons, whereas normal 48 hpf plutei exhibit the formation of two bilateral pairs of such neurons in the apical organ. Furthermore, genes indicative of the ciliary band formation, Pl-Hnf6, Pl-Dri, Pl-FoxG and Pl-Otx, are not expressed in Pl-Coup-TF morphants, suggesting the disruption of this neurogenic territory as well. In addition, the Pl-SynB gene, a marker of differentiated neurons, is silent leading to the hypothesis that Pl-Coup-TF morphants might lack all types of neurons. On the contrary, the genes expressing signaling molecules, which establish the ventral/dorsal axis, Pl-Nodal and Pl-Lefty show the characteristic ventral lateral expression pattern, Pl-Bmp2/4, which activates the dorsal ectoderm GRN is down-regulated and Pl-Chordin is aberrantly over-expressed in the entire ectoderm. The identity of ectodermal cells in Pl-Coup-TF morphant embryos, was probed for expression of the ventral marker Pl-Gsc which was over-expressed and dorsal markers, Pl-IrxA and Pl-Hox7, which were silent. Therefore, we propose that maternal Pl-Coup-TF is essential for correct dissemination of the early embryonic signaling along both animal/vegetal and ventral/dorsal axes. Limiting Pl-Coup-TF's quantity, results in an embryo without digestive and nervous systems, skeleton and ciliary band that cannot survive past the initial 48 h of development.


Assuntos
Padronização Corporal/genética , Fatores de Transcrição COUP/metabolismo , Paracentrotus/embriologia , Animais , Blástula/metabolismo , Fatores de Transcrição COUP/genética , Fatores de Transcrição COUP/fisiologia , Diferenciação Celular/genética , Ectoderma/metabolismo , Embrião não Mamífero/metabolismo , Expressão Gênica/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Fator de Acasalamento/genética , Fator de Acasalamento/metabolismo , Placa Neural/metabolismo , Paracentrotus/genética , Ouriços-do-Mar/embriologia , Ouriços-do-Mar/metabolismo , Transdução de Sinais/fisiologia
14.
Dev Biol ; 472: 115-124, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33460641

RESUMO

Directed intercellular movement of diverse small molecules, including metabolites, signal molecules and xenobiotics, is a key feature of multicellularity. Networks of small molecule transporters (SMTs), including several ATP Binding Cassette (ABC) transporters, are central to this process. While small molecule transporters are well described in differentiated organs, little is known about their patterns of expression in early embryogenesis. Here we report the pattern of ABC-type SMT expression and activity during the early development of sea urchins. Of the six major ABCs in this embryo (ABCB1, -B4, -C1, -C4, -C5 and -G2), three expression patterns were observed: 1) ABCB1 and ABCC1 are first expressed ubiquitously, and then become enriched in endoderm and ectoderm-derived structures. 2) ABCC4 and ABCC5 are restricted to a ring of mesoderm in the blastula and ABCC4 is later expressed in the coelomic pouches, the embryonic niche of the primordial germ cells. 3) ABCB4 and ABCG2 are expressed exclusively in endoderm-fated cells. Assays with fluorescent substrates and inhibitors of transporters revealed a ring of ABCC4 efflux activity emanating from ABCC4+ mesodermal cells. Similarly, ABCB1 and ABCB4 efflux activity was observed in the developing gut, prior to the onset of feeding. This study reveals the early establishment of unique territories of small molecule transport during embryogenesis. A pattern of ABCC4/C5 expression is consistent with signaling functions during gut invagination and germ line development, while a later pattern of ABCB1/B4 and ABCG2 is consistent with roles in the embryonic gut. This work provides a conceptual framework with which to examine the function and evolution of SMT networks and to define the specific developmental pathways that drive the expression of these genes.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Endoderma/metabolismo , Mesoderma/metabolismo , Ouriços-do-Mar/embriologia , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Transporte Biológico , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ , Mucosa Intestinal/metabolismo , Intestinos/embriologia , Ouriços-do-Mar/genética , Ouriços-do-Mar/metabolismo , Transdução de Sinais
15.
Curr Opin Hematol ; 28(1): 1-10, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33229891

RESUMO

PURPOSE OF REVIEW: This historical perspective reviews how work of Eric H. Davidson was a catalyst and exemplar for explaining haematopoietic cell fate determination through gene regulation. RECENT FINDINGS: Researchers studying blood and immune cells pioneered many of the early mechanistic investigations of mammalian gene regulatory processes. These efforts included the characterization of complex gene regulatory sequences exemplified by the globin and T-cell/B-cell receptor gene loci, as well as the identification of many key regulatory transcription factors through the fine mapping of chromosome translocation breakpoints in leukaemia patients. As the repertoire of known regulators expanded, assembly into gene regulatory network models became increasingly important, not only to account for the truism that regulatory genes do not function in isolation but also to devise new ways of extracting biologically meaningful insights from even more complex information. Here we explore how Eric H. Davidson's pioneering studies of gene regulatory network control in nonvertebrate model organisms have had an important and lasting impact on research into blood and immune cell development. SUMMARY: The intellectual framework developed by Davidson continues to contribute to haematopoietic research, and his insistence on demonstrating logic and causality still challenges the frontier of research today.


Assuntos
Redes Reguladoras de Genes , Hematopoese , Animais , Humanos , Modelos Genéticos , Elementos Reguladores de Transcrição , Ouriços-do-Mar/embriologia , Ouriços-do-Mar/genética
16.
Methods Mol Biol ; 2219: 253-265, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33074546

RESUMO

Cis-regulatory elements (CREs) and transcription factors (TFs) associated with them determine temporal and spatial domains of gene expression. Therefore, identification of these CREs and TFs is crucial to elucidating transcriptional programs across taxa. With chromatin accessibility facilitating transcription factor access to DNA, the identification of regions of open chromatin sheds light both on the function of the regulatory elements and their evolution, thus allowing the recognition of potential CREs. Buenrostro and colleagues have developed a novel method for exploring chromatin accessibility: assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq), which can be used for the purpose of identifying putative CREs. This method was shown to have considerable advantages when compared to traditional methods such as sequence conservation analyses or functional assays. Here we present the adaptation of the ATAC-seq method to echinoderm species and discuss how it can be used for CRE discovery.


Assuntos
Cromatina/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Ouriços-do-Mar/embriologia , Animais , DNA/genética , Fertilização in vitro/métodos , Reação em Cadeia da Polimerase/métodos , Sequências Reguladoras de Ácido Nucleico , Ouriços-do-Mar/genética , Strongylocentrotus/embriologia , Strongylocentrotus/genética
17.
Nat Commun ; 11(1): 6235, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33277483

RESUMO

The extensive array of morphological diversity among animal taxa represents the product of millions of years of evolution. Morphology is the output of development, therefore phenotypic evolution arises from changes to the topology of the gene regulatory networks (GRNs) that control the highly coordinated process of embryogenesis. A particular challenge in understanding the origins of animal diversity lies in determining how GRNs incorporate novelty while preserving the overall stability of the network, and hence, embryonic viability. Here we assemble a comprehensive GRN for endomesoderm specification in the sea star from zygote through gastrulation that corresponds to the GRN for sea urchin development of equivalent territories and stages. Comparison of the GRNs identifies how novelty is incorporated in early development. We show how the GRN is resilient to the introduction of a transcription factor, pmar1, the inclusion of which leads to a switch between two stable modes of Delta-Notch signaling. Signaling pathways can function in multiple modes and we propose that GRN changes that lead to switches between modes may be a common evolutionary mechanism for changes in embryogenesis. Our data additionally proposes a model in which evolutionarily conserved network motifs, or kernels, may function throughout development to stabilize these signaling transitions.


Assuntos
Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Ouriços-do-Mar/genética , Estrelas-do-Mar/genética , Animais , Embrião não Mamífero/embriologia , Evolução Molecular , Gastrulação/genética , Mesoderma/embriologia , Mesoderma/metabolismo , Modelos Genéticos , Ouriços-do-Mar/embriologia , Especificidade da Espécie , Estrelas-do-Mar/embriologia , Fatores de Transcrição/genética
18.
Environ Toxicol Chem ; 39(12): 2527-2539, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32946126

RESUMO

Antarctic marine environments are at risk from petroleum fuel spills as shipping activities in the Southern Ocean increase. Knowledge of the sensitivity of Antarctic species to fuels under environmentally realistic exposure conditions is lacking. We determined the toxicity of 3 fuels, Special Antarctic Blend diesel (SAB), marine gas oil (MGO), and intermediate fuel oil (IFO 180) to a common Antarctic sea urchin, Sterechinus neumayeri. Sensitivity was estimated for early developmental stages from fertilization to the early 4-arm pluteus in toxicity tests of up to 24 d duration. The effects of the water accommodated fractions (WAFs) of fuels were investigated under different exposure scenarios to determine the relative sensitivity of stages and of different exposure regimes. Sensitivity to fuel WAFs increased through development. Both MGO and IFO 180 were more toxic than SAB, with median effect concentration values for the most sensitive pluteus stage of 3.5, 6.5, and 252 µg/L total hydrocarbon content, respectively. Exposure to a single pulse during fertilization and early embryonic development showed toxicity patterns similar to those observed from continuous exposure. The results show that exposure to fuel WAFs during critical early life stages affects the subsequent viability of larvae, with consequent implications for reproductive success. The sensitivity estimates for S. neumayeri that we generated can be utilized in risk assessments for the management of Antarctic marine ecosystems. Environ Toxicol Chem 2020;39:2527-2539. © 2020 SETAC.


Assuntos
Fertilização/efeitos dos fármacos , Óleos Combustíveis/toxicidade , Petróleo/toxicidade , Ouriços-do-Mar/embriologia , Ouriços-do-Mar/fisiologia , Animais , Regiões Antárticas , Desenvolvimento Embrionário/efeitos dos fármacos , Hidrocarbonetos/toxicidade , Larva/efeitos dos fármacos , Poluição por Petróleo , Ouriços-do-Mar/efeitos dos fármacos , Testes de Toxicidade , Água , Poluentes Químicos da Água/toxicidade
19.
Environ Toxicol Chem ; 39(9): 1746-1754, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32539159

RESUMO

Human-dominated waterways contain thousands of chemicals. Determining which chemical is the most important stressor is important, yet very challenging. The Toxicity Identification Evaluation (TIE) procedure from the US Environmental Protection Agency uses a series of chemical and physical manipulations to fractionate compounds within a matrix and systematically identify potential toxicants through laboratory bioassay testing. Although this may provide useful information, it lacks ecological realism because it is subject to laboratory-related artifacts and is resource intensive. The in situ Toxicity Identification Evaluation (iTIE) technology was developed to improve this approach and has undergone a number of modifications over the past several years. The novel prototype 3 consists of an array of iTIE ambient water fractionation units. Each unit is connected to a peristaltic pumping system with an organism exposure chamber that receives water from a resin chamber to chemically fractionate test site water. Test organisms included freshwater and marine standard toxicity test species. Postfractionation waters are collected for subsequent chemical analyses. Currently, the resins allow for separation of ammonia, metals, and nonpolar organics; the subsequent toxicity responses are compared between treatments and unfractionated, ambient exposures. The iTIE system was deployed to a depth of 3 m and evaluated in streams and marine harbors. Chemical analyses of water and iTIE chemical sorptive resins confirmed chemical groups causing lethal to sublethal responses. The system proved to be as sensitive or more so than the traditional phase 1 TIE test and required almost half of the resources to complete. This iTIE prototype provides a robust technology that improves stressor-causality linkages and thereby supports strong evidence for ecological risk weight-of-evidence assessments. Environ Toxicol Chem 2020;39:1746-1754. © 2020 SETAC.


Assuntos
Monitoramento Ambiental/métodos , Poluição Ambiental/análise , Testes de Toxicidade , Amônia/análise , Animais , Bivalves/efeitos dos fármacos , Bivalves/embriologia , Análise Custo-Benefício , Embrião não Mamífero/efeitos dos fármacos , Determinação de Ponto Final , Água Doce/química , Sedimentos Geológicos/química , Humanos , Larva/efeitos dos fármacos , Rios , Ouriços-do-Mar/efeitos dos fármacos , Ouriços-do-Mar/embriologia , Poluentes Químicos da Água/toxicidade
20.
Curr Top Dev Biol ; 140: 283-316, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32591077

RESUMO

Specification of the main axes of polarity of the embryo is an essential process during embryonic development. In many species, this process is achieved by the localization of maternal factors into discrete regions of the egg. However, in other animals, like in amniotes and in echinoderms, the considerable plasticity of the early blastomeres seems to preclude the existence of maternal determinants and the mechanisms by which the radial symmetry of the egg is broken remain largely enigmatic. In this chapter, we review recent progress on the identification of maternal components involved in symmetry breaking and dorsal-ventral (D/V) axis formation of the sea urchin embryo. We will first review some key experiments on D/V axis formation from classical embryologists that provided evidence for a weak maternal D/V prepattern. We will then detail more recent molecular analyses that established the critical role played by Nodal signaling in allocating cell fates along the secondary axis and led to the discovery that maternal transcription factors such as the Sry-related HMG box B1 (SoxB1), the Octamer binding factor1/2 (Oct1/2), the T-cell factor/Lymphoid enhancer-binding factor (TCF/LEF) and the Erythroblastosis virus E26 Oncogene Homolog (ETS) domain transcriptional repressor Translocation-Ets-Leukemia virus protein (Yan/Tel) as well as maternal signaling molecules like Univin are essential for the initiation of nodal expression. Finally, we will describe recent advances that uncovered a role in symmetry breaking and dorsal-ventral axis orientation for the transforming growth factor beta (TGF-beta)-like factor Panda, which appears to be both necessary and sufficient for D/V axis orientation. Therefore, even in the highly regulative sea urchin embryo, the activity of localized maternal factors provides the embryo with a blueprint of the D/V axis.


Assuntos
Blastômeros/metabolismo , Padronização Corporal/genética , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Ouriços-do-Mar/genética , Animais , Blastômeros/citologia , Embrião não Mamífero/citologia , Embrião não Mamífero/embriologia , Herança Materna/genética , Modelos Genéticos , Proteína Nodal/genética , Proteína Nodal/metabolismo , Ouriços-do-Mar/embriologia , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA