Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.843
Filtrar
1.
J Nanobiotechnology ; 22(1): 242, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38735936

RESUMO

BACKGROUND: Two-dimensional ultrathin Ti3C2 (MXene) nanosheets have gained significant attention in various biomedical applications. Although previous studies have described the accumulation and associated damage of Ti3C2 nanosheets in the testes and placenta. However, it is currently unclear whether Ti3C2 nanosheets can be translocated to the ovaries and cause ovarian damage, thereby impairing ovarian functions. RESULTS: We established a mouse model with different doses (1.25, 2.5, and 5 mg/kg bw/d) of Ti3C2 nanosheets injected intravenously for three days. We demonstrated that Ti3C2 nanosheets can enter the ovaries and were internalized by granulosa cells, leading to a decrease in the number of primary, secondary and antral follicles. Furthermore, the decrease in follicles is closely associated with higher levels of FSH and LH, as well as increased level of E2 and P4, and decreased level of T in mouse ovary. In further studies, we found that exposure toTi3C2 nanosheets increased the levels of Beclin1, ATG5, and the ratio of LC3II/Ι, leading to autophagy activation. Additionally, the level of P62 increased, resulting in autophagic flux blockade. Ti3C2 nanosheets can activate autophagy through the PI3K/AKT/mTOR signaling pathway, with oxidative stress playing an important role in this process. Therefore, we chose the ovarian granulosa cell line (KGN cells) for in vitro validation of the impact of autophagy on the hormone secretion capability. The inhibition of autophagy initiation by 3-Methyladenine (3-MA) promoted smooth autophagic flow, thereby partially reduced the secretion of estradiol and progesterone by KGN cells; Whereas blocking autophagic flux by Rapamycin (RAPA) further exacerbated the secretion of estradiol and progesterone in cells. CONCLUSION: Ti3C2 nanosheet-induced increased secretion of hormones in the ovary is mediated through the activation of autophagy and impairment of autophagic flux, which disrupts normal follicular development. These results imply that autophagy dysfunction may be one of the underlying mechanisms of Ti3C2-induced damage to ovarian granulosa cells. Our findings further reveal the mechanism of female reproductive toxicity induced by Ti3C2 nanosheets.


Assuntos
Autofagia , Células da Granulosa , Nanoestruturas , Ovário , Titânio , Animais , Feminino , Autofagia/efeitos dos fármacos , Titânio/toxicidade , Titânio/química , Titânio/farmacologia , Camundongos , Ovário/efeitos dos fármacos , Ovário/metabolismo , Nanoestruturas/química , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo
2.
Open Vet J ; 14(3): 822-829, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38682144

RESUMO

Background: Reproductive efficiency affects dairy cow profitability. Ovarian function in postpartum (P.P.) has been better understood using ultrasound and hormonal assays. Optimizing ovulation synchronization and carefully timing artificial insemination (TAI) can greatly enhance reproductive rates in dairy cows. Aim: This experiment was designed to investigate the reproductive performance and ovarian activity in early postpartum lactating dairy cows using the Presynch-PGF2α, Ovsynch protocol, and TAI. Methods: Randomly the cows were assigned to a control group and a treatment group, based on the chronological order of their calving date. On day 14 P.P., both groups received two cloprostenol treatments, 14 days apart. Ultrasonographic inspections were conducted on day 14 to check ovarian activity and uterine contents. On day 11, after presynchronization, cows in the treatment group were given 100 µg IM. of cystorelin, followed by a luteolytic dose of 500 µg IM., cloprostenol on day 7, and a second dose of cystorelin on day 8 (36 hours later). After the second cystorelin injection by 16-20 hours, cows were inseminated, while the control group had all cows displaying spontaneous estrus between day 0 and day 28 were artificially inseminated. Results: Ovarian activity began to improve at 82.61% on day 19 P.P., with complete recovery between days 24 and 27 P.P. The second cloprostenol injection approached, causing follicular size to reach 8.41 ± 1.04 mm. After the second injection, ovarian activity switched from follicular to luteal, with corpus luteum rates of 23.91% and 26.1%. The presynchronized PGF2α regimen significantly enhanced ovarian activity from days 19-35 P.P. Ovulation and pregnancy rates in the Ovsynch group were 54.2% and 41.7% at the first timed artificial insemination (TAI), compared to 54.5% and 31.8% in the control group. There was no significant impact between them; it was just high in the presynchronized Ovsynch group. However, the P.P. period was minimized to 47-49 days till the first AI reached a 41.7% pregnancy rate and 20.8% at the second AI, for an overall 62.5%. Conclusion: The current study concludes that presynchronization during preservice in clinically normal P.P. dairy cows reduces P.P. duration, increases ovarian activity performance, and reduces ovarian dysfunctions from day 19 to day 35 P.P., as well as improves the pregnancy rate.


Assuntos
Bovinos , Sincronização do Estro , Fertilidade , Ovulação , Líbia , Feminino , Animais , Período Pós-Parto , Sincronização do Estro/métodos , Ovário/diagnóstico por imagem , Ovário/efeitos dos fármacos , Fertilidade/efeitos dos fármacos , Fertilidade/fisiologia , Progesterona/metabolismo , Ovulação/efeitos dos fármacos , Ultrassonografia/veterinária , Dinoprosta/farmacologia , Hormônio Liberador de Gonadotropina/farmacologia , Cloprostenol/farmacologia , Inseminação Artificial/veterinária
3.
Sci Total Environ ; 927: 172379, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38614345

RESUMO

Bisphenol S (BPS) is an alternative chemical to bisphenol A commonly used in food packaging materials. It raises concerns due to potential adverse effects on human health. However, limited evidence exists regarding reproductive toxicity from BPS exposure, and the mechanism of associated transgenerational toxicity remains unclear. In this study, pregnant SD rats were exposed to two different doses of BPS (0.05 or 20 mg/kg) from GD6 to PND21. The objective was to investigate reproductive and transmissible toxicity induced by BPS, explore endocrine effects, and uncover potential underlying mechanisms in rats. Perinatal exposure to BPS in the F0 generation significantly decreased the rate of body weight, ovarian organ coefficient, and growth and development of the F1 generation. Notably, these changes included abnormal increases in body weight and length, estrous cycle disruption, and embryonic dysplasia in F1. 4D-DIA proteomic and PRM analyses revealed that exposure to 20 mg/kg group significantly altered the expression of proteins, such as Lhcgr and Akr1c3, within the steroid biosynthetic pathway. This led to elevated levels of FSH and LH in the blood. The hypothalamic-pituitary-ovarian (HPO) axis, responsible for promoting fertility through the cyclic secretion of gonadotropins and steroid hormones, was affected. RT-qPCR and Western blot results demonstrated that the expression of GnRH in the hypothalamus was decreased, the GnRHR in the pituitary gland was decreased, and the expression of FSHß and LHß in the pituitary gland was increased. Overall, BPS exposure disrupts the HPO axis, hormone levels, and steroid biosynthesis in the ovaries, affecting offspring development and fertility. This study provides new insights into the potential effects of BPS exposure on the reproductive function of the body and its relevant mechanisms of action.


Assuntos
Disruptores Endócrinos , Fenóis , Ratos Sprague-Dawley , Reprodução , Sulfonas , Animais , Feminino , Fenóis/toxicidade , Ratos , Gravidez , Sulfonas/toxicidade , Reprodução/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Efeitos Tardios da Exposição Pré-Natal , Ovário/efeitos dos fármacos
4.
PeerJ ; 12: e17251, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646488

RESUMO

The occupational chemical 4-Vinylcyclohexene diepoxide (VCD) is a reproductively toxic environmental pollutant that causes follicular failure, leading to premature ovarian insufficiency (POI), which significantly impacts a woman's physical health and fertility. Investigating VCD's pathogenic mechanisms can offer insights for the prevention of ovarian impairment and the treatment of POI. This study established a mouse model of POI through intraperitoneal injection of VCD into female C57BL/6 mice for 15 days. The results were then compared with those of the control group, including a comparison of phenotypic characteristics and transcriptome differences, at two time points: day 15 and day 30. Through a comprehensive analysis of differentially expressed genes (DEGs), key genes were identified and validated some using RT-PCR. The results revealed significant impacts on sex hormone levels, follicle number, and the estrous cycle in VCD-induced POI mice on both day 15 and day 30. The DEGs and enrichment results obtained on day 15 were not as significant as those obtained on day 30. The results of this study provide a preliminary indication that steroid hormone synthesis, DNA damage repair, and impaired oocyte mitosis are pivotal in VCD-mediated ovarian dysfunction. This dysfunction may have been caused by VCD damage to the primordial follicular pool, impairing follicular development and aggravating ovarian damage over time, making it gradually difficult for the ovaries to perform their normal functions.


Assuntos
Cicloexenos , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Camundongos Endogâmicos C57BL , Insuficiência Ovariana Primária , Compostos de Vinila , Animais , Insuficiência Ovariana Primária/induzido quimicamente , Insuficiência Ovariana Primária/genética , Insuficiência Ovariana Primária/patologia , Feminino , Compostos de Vinila/toxicidade , Camundongos , Transcriptoma/efeitos dos fármacos , Ciclo Estral/efeitos dos fármacos , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/metabolismo , Folículo Ovariano/patologia , Ovário/efeitos dos fármacos , Ovário/patologia , Ovário/metabolismo
5.
Reprod Biol Endocrinol ; 22(1): 51, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671458

RESUMO

BACKGROUND: Ovarian damage and follicle loss are major side effects of chemotherapy in young female patients with cancer. However, effective strategies to prevent these injuries are still lacking. The purpose of this study was to verify low-intensity pulsed ultrasound (LIPUS) can reduce ovarian injury caused by chemotherapy and to explore its underlying mechanisms in mice model. METHODS: The mice were randomly divided into the Control group, Cisplatin group, and Cisplatin + LIPUS group. The Cisplatin group and Cisplatin + LIPUS group were intraperitoneally injected with cisplatin every other day for a total of 10 injections, and the Control group was injected with saline. On the second day of each injection, the Cisplatin + LIPUS group received irradiation, whereas the other two groups received sham irradiation. We used a variety of biotechnologies to detect the differences in follicle count, granulosa cell apoptosis, fibrosis, transcriptome level, oxidative damage, and inflammation in differently treated mice. RESULT: LIPUS was able to reduce primordial follicle pool depletion induced by cisplatin and inhibit the apoptosis of granulosa cells. Transcriptomic results confirmed that LIPUS can reduce ovarian tissue injury. We demonstrated that LIPUS can relieve ovarian fibrosis by inhibiting TGF-ß1/Smads pathway. Meanwhile, it can reduce the oxidative damage and reduced the mRNA levels of proinflammatory cytokines caused by chemotherapy. CONCLUSION: LIPUS can reduce the toxic effects of chemotherapy drugs on ovaries, inhibit ovarian fibrosis, reduce the inflammatory response, and redcue the oxidative damage, reduce follicle depletion and to maintain the number of follicle pools.


Assuntos
Antineoplásicos , Cisplatino , Ovário , Ondas Ultrassônicas , Animais , Feminino , Camundongos , Cisplatino/efeitos adversos , Ovário/efeitos dos fármacos , Ovário/efeitos da radiação , Ovário/patologia , Antineoplásicos/efeitos adversos , Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/efeitos da radiação , Terapia por Ultrassom/métodos
6.
J Evid Based Integr Med ; 29: 2515690X241249534, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38679583

RESUMO

OBJECTIVE: Aqueous extract of unripe Musa paradisiaca fruit is commonly used for the treatment of ulcers in eastern Nigeria. This study aimed to assess the acute and subacute effects of an aqueous extract of unripe fruit on male and female fertility in rats. METHODS: Aqueous extracts obtained by maceration were analyzed for acute and subacute toxicity and for the presence of phytochemical constituents using standard procedures. The extract (100, 500, and 1000 mg/kg) was administered daily to rats of both sexes for 28 d. Blood samples collected on days 0 and 28 were assessed for follicle-stimulating hormone (FSH), luteinizing hormone (LH), catalase (CAT), superoxide dismutase (SOD), and malondialdehyde (MDA). Testes and ovaries were harvested for histopathological analysis. Sperm were also collected to determine the sperm count and motility. RESULTS: Phytochemical screening revealed the presence of saponins, tannins, alkaloids, and resins. After an oral dose of up to 5000 mg/kg, there were no deaths in the acute toxicity test. The extract (500 mg/kg) significantly (P < .05) enhanced sperm count and motility relative to the untreated control; significantly (P < .05) reduced SOD, CAT, and glutathione levels, while significantly (P < .05) elevated LH, FSH, and MDA levels in male and female rats. Histological examination revealed significant structural damage to the ovaries. CONCLUSION: Unripe Musa paradisiaca fruit exhibited an adverse toxicological profile following prolonged administration and caused oxidative stress in rodents.


Assuntos
Hormônio Foliculoestimulante , Hormônio Luteinizante , Musa , Extratos Vegetais , Animais , Masculino , Feminino , Extratos Vegetais/farmacologia , Ratos , Musa/química , Hormônio Luteinizante/sangue , Hormônio Foliculoestimulante/sangue , Malondialdeído/metabolismo , Superóxido Dismutase/metabolismo , Reprodução/efeitos dos fármacos , Ovário/efeitos dos fármacos , Nigéria , Catalase/metabolismo , Testículo/efeitos dos fármacos , Contagem de Espermatozoides , Frutas , Motilidade dos Espermatozoides/efeitos dos fármacos , Ratos Wistar
7.
J Ovarian Res ; 17(1): 91, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678269

RESUMO

OBJECTIVE: The present study aimed to elucidate how mesenchymal stem cells (MSCs) application could efficiently attenuate pathological changes of letrozole-induced poly cystic ovary syndrome (PCOS) by modulating mitochondrial dynamic via PI3K-AKT pathway. METHODS: Thirty-two female rats were randomly divided into four experimental groups: Sham, PCOS, PCOS + MSCs, and PCOS + MSCs + LY294002. The Sham group received 0.5% w/v carboxymethyl cellulose (CMC); the PCOS group received letrozole (1 mg/kg, daily) in 0.5% CMC for 21 days. Animals in the PCOS + MSCs group received 1 × 106 MSCs/rat (i.p,) on the 22th day of the study. In the PCOS + MSCs + LY294002 group, rats received LY294002 (PI3K-AKT inhibitor) 40 min before MSC transplantation. Mitochondrial dynamic gene expression, mitochondrial membrane potential (MMP), citrate synthase (CS) activity, oxidative stress, inflammation, ovarian histological parameters, serum hormone levels, homeostatic model assessment for insulin resistance (HOMA-IR), insulin and glucose concentrations, p-PI3K and p-AKT protein levels were evaluated at the end of the experiment. RESULTS: PCOS rats showed a significant disruption of mitochondrial dynamics and histological changes, lower MMP, CS, ovary super oxide dismutase (SOD) and estrogen level. They also had a notable rise in insulin and glucose concentrations, HOMA-IR, testosterone level, tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) levels, ovarian malondialdehyde (MDA) content as well as a notable decrease in p-PI3K and p-AKT protein levels compared to the Sham group. In the PCOS + MSCs group, the transplantation of MSCs could improve the above parameters. Administration of LY294002 (PI3K-AKT pathway inhibitor) deteriorated mitochondrial dynamic markers, oxidative stress status, inflammation markers, hormonal levels, glucose, and insulin levels and follicular development compared to the PCOS + MSCs group. CONCLUSIONS: This study demonstrated that the protective effects of MSC transplantation in regulating mitochondrial dynamics, promoting mitochondrial biogenesis, competing with redox status and inflammation response were mainly mediated through the PI3K-AKT pathway in the PCOS model.


Assuntos
Letrozol , Transplante de Células-Tronco Mesenquimais , Mitocôndrias , Ovário , Fosfatidilinositol 3-Quinases , Síndrome do Ovário Policístico , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Animais , Feminino , Letrozol/farmacologia , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/induzido quimicamente , Ratos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Ovário/metabolismo , Ovário/patologia , Ovário/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Modelos Animais de Doenças , Tecido Adiposo/metabolismo
8.
Genes (Basel) ; 15(4)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38674441

RESUMO

Polycystic ovary syndrome (PCOS) is an endocrine disease commonly associated with metabolic disorders in females. Leonurine hydrochloride (Leo) plays an important role in regulating immunity, tumours, uterine smooth muscle, and ovarian function. However, the effect of Leo on PCOS has not been reported. Here, we used dehydroepiandrosterone to establish a mouse model of PCOS, and some mice were then treated with Leo by gavage. We found that Leo could improve the irregular oestros cycle of PCOS mice, reverse the significantly greater serum testosterone (T) and luteinising hormone (LH) levels, significantly reduce the follicle-stimulating hormone (FSH) level, and significantly increase the LH/FSH ratio of PCOS mice. Leo could also change the phenomenon of ovaries in PCOS mice presented with cystic follicular multiplication and a lacking corpus luteum. Transcriptome analysis identified 177 differentially expressed genes related to follicular development between the model and Leo groups. Notably, the cAMP signalling pathway, neuroactive ligand-receptor interactions, the calcium signalling pathway, the ovarian steroidogenesis pathway, and the Lhcgr, Star, Cyp11a, Hsd17b7, Camk2b, Calml4, and Phkg1 genes may be most related to improvements in hormone levels and the numbers of ovarian cystic follicles and corpora lutea in PCOS mice treated by Leo, which provides a reference for further study of the mechanism of Leo.


Assuntos
Modelos Animais de Doenças , Ácido Gálico , Ácido Gálico/análogos & derivados , Síndrome do Ovário Policístico , Animais , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/tratamento farmacológico , Síndrome do Ovário Policístico/metabolismo , Feminino , Camundongos , Ácido Gálico/farmacologia , Hormônio Luteinizante/sangue , Ovário/metabolismo , Ovário/efeitos dos fármacos , Ovário/patologia , Hormônio Foliculoestimulante/sangue , Perfilação da Expressão Gênica , Testosterona/sangue , Transcriptoma
9.
J Agric Food Chem ; 72(17): 10076-10088, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38629202

RESUMO

This study aimed to explore antioxidant peptides derived from sturgeon (Acipenser schrenckii) ovaries that exhibit antiosteoporotic effects in oxidative-induced MC3T3-E1 cells. The F3-15 component obtained from sturgeon ovarian protein hydrolysates (SOPHs) via gel filtration and RP-HPLC significantly increased the cell survival rate (from 49.38 ± 2.88 to 76.26 ± 2.09%). Two putative antioxidant-acting peptides, FDWDRL (FL6) and FEGPPFKF (FF8), were screened from the F3-15 faction via liquid chromatography-tandem mass spectrometry (LC-MS/MS) and through prediction by computer simulations. Molecular docking results indicated that the possible antioxidant mechanisms of FL6 and FF8 involved blocking the active site of human myeloperoxidase (hMPO). The in vitro tests showed that FL6 and FF8 were equally adept at reducing intracellular ROS levels, increasing the activity of antioxidant enzymes, and protecting cells from oxidative injuries by inhibiting the mitogen-activated protein kinase (MAPK) pathway and activating the phosphoinositide-3 kinase (PI3K)/protein kinase B (AKT)/glycogen synthase kinase-3ß (GSK-3ß) signaling pathway. Moreover, both peptides could increase differentiation and mineralization abilities in oxidatively damaged MC3T3-E1 cells. Furthermore, FF8 exhibited high resistance to pepsin and trypsin, showcasing potential for practical applications.


Assuntos
Proteínas de Peixes , Peixes , Osteoblastos , Ovário , Estresse Oxidativo , Peptídeos , Hidrolisados de Proteína , Animais , Hidrolisados de Proteína/química , Hidrolisados de Proteína/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Feminino , Camundongos , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoblastos/citologia , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/isolamento & purificação , Proteínas de Peixes/química , Proteínas de Peixes/farmacologia , Proteínas de Peixes/metabolismo , Ovário/efeitos dos fármacos , Ovário/metabolismo , Antioxidantes/química , Antioxidantes/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Simulação de Acoplamento Molecular , Espécies Reativas de Oxigênio/metabolismo , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/química , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Espectrometria de Massas em Tandem
10.
Chemosphere ; 357: 142103, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38653400

RESUMO

Salinity is an important environmental factor influencing the toxicity of chemicals. Bisphenol A (BPA) is an environmental endocrine disruptor with adverse effects on aquatic organisms, such as fish. However, the influence of salinity on the biotoxicity of BPA and the underlying mechanism are unclear. In this study, we exposed marine medaka (Oryzias melastigma) to BPA at different salinities (0 psµ, 15 psµ, and 30 psµ) for 70days to investigate the toxic effects. At 0 psµ salinity, BPA had an inhibitory effect on the swimming behavior of female medaka. At 15 psµ salinity, exposure to BPA resulted in necrotic cells in the ovaries but not on the spermatozoa. In addition, BPA exposure changed the transcript levels of genes related to the nervous system (gap43, elavl3, gfap, mbpa, and α-tubulin) and the hypothalamic-pituitary-gonadal (HPG) axis (fshr, lhr, star, arα, cyp11a, cyp17a1, cyp19a, and erα); the expression changes differed among salinity levels. These results suggest that salinity influences the adverse effects of BPA on the nervous system and reproductive system of medaka. These results emphasize the importance of considering the impact of environmental factors when carrying out ecological risk assessment of pollutants.


Assuntos
Compostos Benzidrílicos , Disruptores Endócrinos , Oryzias , Fenóis , Reprodução , Salinidade , Poluentes Químicos da Água , Animais , Oryzias/fisiologia , Fenóis/toxicidade , Compostos Benzidrílicos/toxicidade , Poluentes Químicos da Água/toxicidade , Feminino , Reprodução/efeitos dos fármacos , Masculino , Disruptores Endócrinos/toxicidade , Comportamento Animal/efeitos dos fármacos , Ovário/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos
11.
Steroids ; 206: 109424, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38642598

RESUMO

OBJECTIVE: This study aimed to evaluate the effects of dehydroepiandrosterone (DHEA) and DHEA combined with a high-fat diet (HFD) treatment of reproductive and endocrine metabolism in rats and then identify an ideal model of polycystic ovary syndrome (PCOS). METHODS: Three-week-old female Sprague-Dawley rats were injected subcutaneously with DHEA or oil, fed with or without a HFD, for 21 days, during which body weight, feed intake, and estrous cycle monitoring were carried out. Fasting blood glucose was measured, and serum fasting insulin, testosterone, dihydrotestosterone (DHT), estradiol, progesterone, luteinizing hormone (LH), anti-Müllerian hormone (AMH), and follicle-stimulating hormone (FSH) were estimated by ELISA. Serum total cholesterol (TC), total triglycerides (TG), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) were measured by colorimetric assay. Whereas, histologic changes in rat ovaries were evaluated by H&E staining. Ovarian steroid hormone synthases and their protein levels (StAR, 3ß-HSD2, 17ß-HSD1, CYP11A1, CYP17A1, and CYP19A1) were examined by Western blotting. RESULTS: Both DHEA and DHEA + HFD-treated rats lost a regular estrous cycle; had polycystic ovarian changes, significantly higher serum fasting insulin and testosterone levels; and increased ovarian StAR, 3ß-HSD2, and CYP11A1 protein levels. Additionally, rats in the DHEA + HFD-treated group were obese; had elevated fasting blood glucose, TG, DHT, AMH levels and LH:FSH ratios; increased ovarian 17ß-HSD1 protein levels. CONCLUSION: DHEA combined with HFD treatment is more effective at inducing PCOS than DHEA alone. The reproductive and endocrine metabolic aspects of this method are more consistent with the clinical characteristics of PCOS patients.


Assuntos
Desidroepiandrosterona , Dieta Hiperlipídica , Modelos Animais de Doenças , Síndrome do Ovário Policístico , Ratos Sprague-Dawley , Animais , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/induzido quimicamente , Síndrome do Ovário Policístico/tratamento farmacológico , Síndrome do Ovário Policístico/patologia , Síndrome do Ovário Policístico/sangue , Feminino , Desidroepiandrosterona/sangue , Dieta Hiperlipídica/efeitos adversos , Ratos , Ovário/metabolismo , Ovário/efeitos dos fármacos , Ovário/patologia , Ciclo Estral/efeitos dos fármacos
12.
Environ Pollut ; 349: 123929, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38582190

RESUMO

Microcystin-LR (MC-LR) is a reproductive toxin produced by cyanobacteria in the aquatic environment and can be ingested by humans through drinking water and the food chain, posing a threat to human reproductive health. However, the toxic mechanisms and prospective interventions for MC-LR-induced ovarian dysfunction at environmental doses are unknown. The mulberry fruit is a traditional natural product of plant origin, with various pharmacological effects, such as antioxidant and anti-inflammatory effects. Here, mice were exposed to MC-LR (10, 100 µg/L) in drinking water for 90 days, during which mice were gavage 600 mg/kg/week of mulberry fruit extract (MFE). It was found that MC-LR can accumulate in mouse ovaries, causing sexual hormone disturbance, inflammatory infiltration, and ovarian pathological damage. Results from RNA-seq were shown that CCL2, a chemokine associated with inflammatory response, was significantly increased in mouse ovary after MC-LR exposure. Further investigation revealed that MC-LR exposure aggravates apoptosis of granulosa cells via the CCL2-CCR10 axis-mediated Jak/Stat pathway. Importantly, MFE can significantly ameliorate these ovarian dysfunction phenotypes by inhibiting the activation of the CCL2-CCR10 axis. This study broadened new insights into the ovarian toxicity of MC-LR and clarified the pharmacological effects of mulberry fruit on ovarian function protection.


Assuntos
Toxinas Marinhas , Microcistinas , Morus , Animais , Feminino , Microcistinas/toxicidade , Camundongos , Morus/química , Ovário/efeitos dos fármacos , Quimiocina CCL2/metabolismo , Quimiocina CCL2/genética , Extratos Vegetais/farmacologia , Células da Granulosa/efeitos dos fármacos
13.
Environ Pollut ; 349: 123939, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38593938

RESUMO

Bisphenol S (BPS) is an emerging environmental endocrine disruptor capable of crossing the placental barrier, resulting in widespread exposure to pregnant women due to its extensive usage. However, the impact of perinatal maternal exposure to BPS on reproductive health in offspring and the underlying molecular mechanism remain underexplored. In this study, gestational ICR mice were provided with drinking water containing 3.33 mg/L BPS to mimic possible human exposure in some countries. Results demonstrated that BPS accelerated the breakdown of germ-cell cysts and the assembly of primordial follicles in neonates, leading to oocyte over-loss. Furthermore, the expression levels of folliculogenesis-related genes (Kit, Nobox, Gdf9, Sohlh2, Kitl, Bmp15, Lhx8, Figla, and Tgfb1) decreased, thus compromising oocyte quality and disrupting early folliculogenesis dynamics. BPS also disrupted other aspects of offspring reproduction, including advancing puberty onset, disrupting the estrus cycle, and impairing fertility. Further investigation found that BPS exposure inhibited the activities and expression levels of antioxidant-related enzymes in neonatal ovaries, leading to the substantial accumulation of MDA and ROS. The increased oxidative burden exacerbated the intracellular apoptotic signaling, manifested by increased expression levels of pro-apoptotic markers (Bax, Caspase 3, and Caspase 9) and decreased expression levels of anti-apoptotic marker (Bcl2). Concurrently, BPS inhibited autophagy by increasing p-mTOR/mTOR and decreasing p-ULK1/ULK1, subsequently down-regulating autophagy flux-related biomarkers (LC3b/LC3a and Beclin-1) and impeding the degradation of autophagy substrate p62. However, the imbalanced crosstalk between autophagy, apoptosis and oxidative stress homeostasis was restored after rapamycin treatment. Collectively, the findings demonstrated that BPS exposure induced reproductive disorders in offspring by perturbing the mTOR/autophagy axis, and such autophagic dysfunction exacerbated redox imbalance and promoted excessive apoptosis. These results provide novel mechanistic insights into the role of autophagy in mitigating BPS-induced intergenerational reproductive dysfunction.


Assuntos
Apoptose , Autofagia , Camundongos Endogâmicos ICR , Ovário , Estresse Oxidativo , Fenóis , Sulfonas , Serina-Treonina Quinases TOR , Animais , Feminino , Fenóis/toxicidade , Autofagia/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Camundongos , Ovário/efeitos dos fármacos , Ovário/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Gravidez , Estresse Oxidativo/efeitos dos fármacos , Sulfonas/toxicidade , Disruptores Endócrinos/toxicidade , Efeitos Tardios da Exposição Pré-Natal , Exposição Materna , Animais Recém-Nascidos
14.
In Vitro Cell Dev Biol Anim ; 60(4): 432-440, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38573397

RESUMO

It has been reported that the effective inhibition of vascular endothelial growth factor (VEGF) can prevent the progression of ovarian hyperstimulation syndrome (OHSS). The present study aimed to investigate the mechanism underlying the effect of vitamin D3 (VD3) on OHSS in mouse models and granulosa cells. The effects of VD3 administration (16 and 24 IU) on ovarian permeability were determined using Evans blue. In addition, ovarian pathology, corpus luteum count, inflammatory responses, and hormone and VEGFA levels were assessed using pathological sections and ELISA. Molecular docking predicted that pentraxin 3 (PTX3) could be a potential target of VD3, and therefore, the effects of human chorionic gonadotropin (hCG) and VD3 as well as PTX3 overexpression on the production and secretion of VEGFA in granulosa cells were also investigated using western blotting and immunofluorescence. Twenty-four IU VD3 significantly reversed the increase in ovarian weight and permeability in mice with OHSS. Additionally, VD3 diminished congestion and the number of corpus luteum in the ovaries and reduced the secretion levels of inflammatory factors and those of estrogen and progesterone. Notably, VD3 downregulated VEGFA and CD31 in ovarian tissues, while the expression levels of PTX3 varied among different groups. Furthermore, VD3 restored the hCG-induced enhanced VEGFA and PTX3 expression levels in granulosa cells, whereas PTX3 overexpression abrogated the VD3-mediated inhibition of VEGFA production and secretion. The present study demonstrated that VD3 could inhibit the release of VEGFA through PTX3, thus supporting the beneficial effects of VD3 administration on ameliorating OHSS symptoms.


Assuntos
Proteína C-Reativa , Colecalciferol , Células da Granulosa , Síndrome de Hiperestimulação Ovariana , Componente Amiloide P Sérico , Fator A de Crescimento do Endotélio Vascular , Animais , Feminino , Humanos , Camundongos , Proteína C-Reativa/metabolismo , Colecalciferol/farmacologia , Gonadotropina Coriônica/farmacologia , Células da Granulosa/metabolismo , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/patologia , Síndrome de Hiperestimulação Ovariana/metabolismo , Síndrome de Hiperestimulação Ovariana/patologia , Ovário/metabolismo , Ovário/efeitos dos fármacos , Ovário/patologia , Componente Amiloide P Sérico/metabolismo , Componente Amiloide P Sérico/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Camundongos Endogâmicos ICR
15.
Chemosphere ; 356: 141905, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38579946

RESUMO

Nonylphenol (NP) contamination in the coastal environment of China poses ecological risks to aquatic organisms. However, the endocrine disruptive impacts of NP on bivalves, particularly on ovarian development, remain poorly understood. In this study, Manila clams Ruditapes philippinarum at the developing stage of gonad were exposed to 1.0 µg/L NP for 21 days. Utilizing RNA interference (RNAi) to suppress ER gene expression, we observed a delay in ovarian development as evidenced by histological observations under both NP and NPRi (NP with ER-RNAi) treatment, with Vtg elevation exclusive to the NP group. Comprehensive analyses encompassing transcriptomics, real-time quantitative PCR, and steroid hormone measurement revealed significant alterations in aldosterone synthesis, estrogen signaling, and thyroid hormone synthesis. These pathways showed similar perturbations in both NP and NPRi groups compared to controls. Notably, the NPRi group exhibited distinct enrichment in PPAR and insulin signaling pathways, may implicating these in ER function suppression. Steroid hormone biosynthesis was notably reduced in both treatments, pointing to a profound impact on hormone synthesis. The contrast between in vivo and in vitro findings suggests that NP's detrimental effects on ovarian development may primarily involve neuroendocrine regulation of steroidogenesis. This investigation highlights the complex dynamics of NP-induced endocrine disruption in bivalves, emphasizing the pivotal role of ER and associated pathways.


Assuntos
Bivalves , Disruptores Endócrinos , Ovário , Fenóis , Interferência de RNA , Poluentes Químicos da Água , Animais , Fenóis/toxicidade , Feminino , Ovário/efeitos dos fármacos , Ovário/metabolismo , Bivalves/efeitos dos fármacos , Bivalves/genética , Disruptores Endócrinos/toxicidade , Poluentes Químicos da Água/toxicidade , China , Receptores de Estrogênio/metabolismo , Receptores de Estrogênio/genética
16.
Chemosphere ; 356: 141906, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583534

RESUMO

Atrazine (ATR) is one of the most commonly used herbicides worldwide. As an endocrine disruptor, it causes ovarian dysfunction, but the mechanism is unclear. We hypothesized that ATR could affect ovarian steroidogenesis, oxidative stress, inflammation, and apoptosis. In the current study, rats aged 28 days were treated with PMSG and HCG to obtain amounts of corpora lutea. Then, rats were injected with ATR (50 mg/kg/day) or saline (0.9%) for 7 days. Sera were collected to detect biochemical indices and progesterone (P4) level, ovaries were collected for antioxidant status, HE, qPCR, and WB analysis. Results showed that ATR exposure affected growth performance as well as serum TP, GLB, and ALB levels, increased serum P4 level and ovarian mRNA and protein levels of StAR, CYP11A1, and HSD3B. ATR treatment increased ovarian mRNA and protein levels of CREB but not PKA expression. ATR treatment increased ovarian mRNA abundances of Nrf-2 and Nqo1, MDA level, and decreased SOD, GST, and T-AOC levels. ATR exposure increased the mRNA abundances of pro-inflammatory cytokines including Tnf-α, Il-1ß, Il-6, Il-18, and Inos. ATR exposure increased the mRNA and protein level of Caspase 3 and the ratio of BAX/BCL-2. In conclusion, NRF-2/NQO1 signaling pathway and CREB might be involved in the regulation of ATR in luteal steroidogenesis, oxidative stress, inflammation, and apoptosis in rat ovary.


Assuntos
Apoptose , Atrazina , Herbicidas , Inflamação , Ovário , Estresse Oxidativo , Progesterona , Animais , Atrazina/toxicidade , Feminino , Ovário/efeitos dos fármacos , Ovário/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Progesterona/sangue , Ratos , Apoptose/efeitos dos fármacos , Inflamação/induzido quimicamente , Herbicidas/toxicidade , Pseudogravidez , Disruptores Endócrinos/toxicidade , Ratos Sprague-Dawley
17.
Eur J Pharm Sci ; 197: 106768, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38643940

RESUMO

The negative coordination of growth hormone secretagogue receptor (GHS-R) and growth hormone-releasing hormone receptor (GHRH-R) involves in the repair processes of cellular injury. The allosteric U- or H-like modified GHRH dimer Grinodin and 2Y were comparatively evaluated in normal Kunming mice and hamster infertility models induced by CPA treatment. 1-3-9 µg of Grinodin or 2Y per hamster stem-cell-exhaustion model was subcutaneously administered once a week, respectively inducing 75-69-46 or 45-13-50 % of birth rates. In comparison, the similar mole of human menopausal gonadotropin (hMG) or human growth hormone (hGH) was administered once a day but caused just 25 or 20 % of birth rates. Grinodin induced more big ovarian follicles and corpora lutea than 2Y, hMG, hGH. The hMG-treated group was observed many distorted interstitial cells and more connective tissues and the hGH-treated group had few ovarian follicles. 2Y had a plasma lifetime of 21 days and higher GH release in mice, inducing lower birth rate and stronger individual specificity in reproduction as well as only promoting the proliferation of mesenchymal-stem-cells (MSCs) in the models. In comparison, Grinodin had a plasma lifetime of 30 days and much lower GH release in mice. It significantly promoted the proliferation and activation of ovarian MSCs together with the development of follicles in the models by increasing Ki67 and GHS-R expressions, and decreasing GHRH-R expression in a dose-dependent manner. However, the high GH and excessive estrogen levels in the models showed a dose-dependent reduction in fertility. Therefore, unlike 2Y, the low dose of Grinodin specifically shows low GHS-R and high GHRH-R expressions thus evades GH and estrogen release and improves functions of organs, resulting in an increase of fertility.


Assuntos
Proliferação de Células , Células-Tronco Mesenquimais , Ovário , Feminino , Animais , Camundongos , Proliferação de Células/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Ovário/efeitos dos fármacos , Ovário/metabolismo , Hormônio Liberador de Hormônio do Crescimento/metabolismo , Fertilidade/efeitos dos fármacos , Receptores de Neuropeptídeos/metabolismo , Humanos , Regulação Alostérica/efeitos dos fármacos , Receptores de Grelina/metabolismo , Cricetinae , Receptores de Hormônios Reguladores de Hormônio Hipofisário/metabolismo , Dimerização
18.
Biomed Pharmacother ; 174: 116504, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552442

RESUMO

Polycystic ovary syndrome (PCOS) is the most common cause of anovulatory infertility. The aim of this study was to investigate the therapeutic potential of vitamin C, glutamine, mesalazine, hydralazine, and alendronate as new drug candidates for the treatment of letrozole-induced PCOS in female Wistar rats. PCOS was induced in rats by intramuscular injection of estradiol valerate (2 mg/kg body weight for 28 days). The rats then received normal saline (PCOS group), letrozole (0.5 mg/kg), vitamin C (100 mg/kg), glutamine (1000 mg/kg), mesalazine (200 mg/kg), hydralazine (30 mg/kg), and alendronate (17.5 mg/kg). Serum testosterone, LH, FSH, estradiol and progesterone levels were determined by ELISA method. H&E staining was used for histological analysis in the ovarian tissues. The groups treated with hydralazine and alendronate, show a significant decrease in testosterone, LH hormone, cystic and atretic follicles, and a significant increase in the number of single layer, multilayer, antral, graafian follicles and the volume of corpus luteum as compared to the PCOS group. Hydrolazine and alendronate appear to be effective in restoring folliculogenesis and increasing ovulation in PCOS rat. So that the natural process of ovulation and the improvement of the histology of polycystic ovaries and its shift towards healthy and active ovaries were observed. This finding supports the potential beneficial effect of hydrolazine and alendronate on improving PCOS complication.


Assuntos
Alendronato , Inibidores da Aromatase , Hidralazina , Síndrome do Ovário Policístico , Animais , Feminino , Ratos , Alendronato/farmacologia , Inibidores da Aromatase/farmacologia , Modelos Animais de Doenças , Estradiol/sangue , Hidralazina/farmacologia , Hidralazina/uso terapêutico , Letrozol , Hormônio Luteinizante/sangue , Ovário/efeitos dos fármacos , Ovário/patologia , Síndrome do Ovário Policístico/tratamento farmacológico , Síndrome do Ovário Policístico/induzido quimicamente , Síndrome do Ovário Policístico/patologia , Ratos Wistar , Testosterona/sangue
19.
Am J Physiol Endocrinol Metab ; 326(5): E626-E639, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38536037

RESUMO

Loss of ovarian function imparts increased susceptibility to obesity and metabolic disease. These effects are largely attributed to decreased estradiol (E2), but the role of increased follicle-stimulating hormone (FSH) in modulating energy balance has not been fully investigated. Previous work that blocked FSH binding to its receptor in mice suggested this hormone may play a part in modulating body weight and energy expenditure after ovariectomy (OVX). We used an alternate approach to isolate the individual and combined contributions of FSH and E2 in mediating energy imbalance and changes in tissue-level metabolic health. Female Wistar rats were ovariectomized and given the gonadotropin releasing hormone (GnRH) antagonist degarelix to suppress FSH production. E2 and FSH were then added back individually and in combination for a period of 3 wk. Energy balance, body mass composition, and transcriptomic profiles of individual tissues were obtained. In contrast to previous studies, suppression and replacement of FSH in our paradigm had no effect on body weight, body composition, food intake, or energy expenditure. We did, however, observe organ-specific effects of FSH that produced unique transcriptomic signatures of FSH in retroperitoneal white adipose tissue. These included reductions in biological processes related to lipogenesis and carbohydrate transport. In addition, rats administered FSH had reduced liver triglyceride concentration (P < 0.001), which correlated with FSH-induced changes at the transcriptomic level. Although not appearing to modulate energy balance after loss of ovarian function in rats, FSH may still impart tissue-specific effects in the liver and white adipose tissue that might affect the metabolic health of those organs.NEW & NOTEWORTHY We find no effect of follicle-stimulating hormone (FSH) on energy balance using a novel model in which rats are ovariectomized, subjected to gonadotropin-releasing hormone antagonism, and systematically given back FSH by osmotic pump. However, tissue-specific effects of FSH on adipose tissue and liver were observed in this study. These include unique transcriptomic signatures induced by the hormone and a stark reduction in hepatic triglyceride accumulation.


Assuntos
Metabolismo Energético , Estradiol , Hormônio Foliculoestimulante , Ovariectomia , Ratos Wistar , Animais , Feminino , Metabolismo Energético/efeitos dos fármacos , Ratos , Hormônio Foliculoestimulante/metabolismo , Estradiol/farmacologia , Composição Corporal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Ovário/efeitos dos fármacos , Ovário/metabolismo , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos
20.
Phytomedicine ; 128: 155423, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38518646

RESUMO

BACKGROUND: Polycystic ovary syndrome is a metabolic and hormonal disorder that is closely linked to oxidative stress. Within individuals diagnosed with PCOS, changes occur in the ovaries, resulting in an excessive buildup of iron and peroxidation of lipids, both of which may be associated with the occurrence of ferroptosis. Baicalein, a flavonoid found in the roots of Scutellaria baicalensis and widely known as Chinese skullcap, is known for its anti-inflammatory and anti-ferroptotic properties, which protect against various diseases. Nevertheless, there has been no investigation into the impact of baicalein on polycystic ovary syndrome. PURPOSE: This study aimed to correlate ferroptosis with polycystic ovary syndrome and to assess the effects of baicalein on ovarian dysfunction and placental development in pregnant patients. STUDY DESIGN AND METHODS: Polycystic ovary syndrome was induced in a rat model through the administration of dehydroepiandrosterone, and these rats were treated with baicalein. Oxidative stress and inflammation levels were assessed in serum and ovaries, and tissue samples were collected for histological and protein analyses. Furthermore, different groups of female rats were mated with male rats to observe pregnancy outcomes and tissue samples were obtained for histological, protein, and RNA sequencing. Then, RNA sequencing of the placenta was performed to determine the key genes involved in ferroptosis negative regulation (FNR) signatures. RESULTS: Baicalein was shown to reduce ovarian oxidative stress and pathology. Baicalein also ameliorated polycystic ovary syndrome by decreasing lipid peroxidation and chronic inflammation and modulating mitochondrial functions and ferroptosis in the ovaries. Specifically, glutathione peroxidase and ferritin heavy chain 1 were considerably downregulated in polycystic ovary syndrome gravid rats compared to their expression in the control group, and most of these differences were reversed after baicalein intervention. CONCLUSIONS: Our findings, initially, indicated that baicalein could potentially enhance the prognosis of individuals suffering from polycystic ovary syndrome by reducing oxidative stress and ferroptosis, thus potentially influencing the formulation of a therapeutic approach to address this condition.


Assuntos
Ferroptose , Flavanonas , Ovário , Estresse Oxidativo , Placenta , Síndrome do Ovário Policístico , Síndrome do Ovário Policístico/tratamento farmacológico , Feminino , Flavanonas/farmacologia , Ferroptose/efeitos dos fármacos , Animais , Estresse Oxidativo/efeitos dos fármacos , Gravidez , Placenta/efeitos dos fármacos , Placenta/metabolismo , Ovário/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Scutellaria baicalensis/química , Modelos Animais de Doenças , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA