Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.472
Filtrar
1.
World J Microbiol Biotechnol ; 40(6): 178, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662173

RESUMO

Oxalic acid and oxalates are secondary metabolites secreted to the surrounding environment by fungi, bacteria, and plants. Oxalates are linked to a variety of processes in soil, e.g. nutrient availability, weathering of minerals, or precipitation of metal oxalates. Oxalates are also mentioned among low-molecular weight compounds involved indirectly in the degradation of the lignocellulose complex by fungi, which are considered to be the most effective degraders of wood. The active regulation of the oxalic acid concentration is linked with enzymatic activities; hence, the biochemistry of microbial biosynthesis and degradation of oxalic acid has also been presented. The potential of microorganisms for oxalotrophy and the ability of microbial enzymes to degrade oxalates are important factors that can be used in the prevention of kidney stone, as a diagnostic tool for determination of oxalic acid content, as an antifungal factor against plant pathogenic fungi, or even in efforts to improve the quality of edible plants. The potential role of fungi and their interaction with bacteria in the oxalate-carbonate pathway are regarded as an effective way for the transfer of atmospheric carbon dioxide into calcium carbonate as a carbon reservoir.


Assuntos
Bactérias , Biotecnologia , Fungos , Ácido Oxálico , Ácido Oxálico/metabolismo , Fungos/metabolismo , Bactérias/metabolismo , Biotecnologia/métodos , Plantas/microbiologia , Plantas/metabolismo , Oxalatos/metabolismo , Lignina/metabolismo
2.
Ren Fail ; 46(1): 2334396, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38570195

RESUMO

OBJECTIVES: Calcium oxalate (CaOx) crystal deposition in acute kidney injury (AKI) patients is under recognized but impacts renal outcomes. This study investigates its determinants and effects. METHODS: We studied 814 AKI patients with native kidney biopsies from 2011 to 2020, identifying CaOx crystal deposition severity (mild: <5, moderate: 5-10, severe: >10 crystals per section). We assessed factors like urinary oxalate, citrate, urate, electrolytes, pH, tubular calcification index, and SLC26A6 expression, comparing them with creatinine-matched AKI controls without oxalosis. We analyzed how these factors relate to CaOx severity and their impact on renal recovery (eGFR < 15 mL/min/1.73 m2 at 3-month follow-up). RESULTS: CaOx crystal deposition was found in 3.9% of the AKI cohort (32 cases), with 72% due to nephrotoxic medication-induced tubulointerstitial nephritis. Diuretic use, higher urinary oxalate-to-citrate ratio induced by hypocitraturia, and tubular calcification index were significant contributors to moderate and/or severe CaOx deposition. Poor baseline renal function, low urinary chloride, high uric acid and urea nitrogen, tubular SLC26A6 overexpression, and glomerular sclerosis were also associated with moderate-to-severe CaOx deposition. Kidney recovery was delayed, with 43.8%, 31.2%, and 18.8% of patients having eGFR < 15 mL/min/1.73 m2 at 4, 12, and 24-week post-injury. Poor outcomes were linked to high urinary α1-microglobulin-to-creatinine (α1-MG/C) ratios and active tubular injury scores. Univariate analysis showed a strong link between this ratio and poor renal outcomes, independent of oxalosis severity. CONCLUSIONS: In AKI, CaOx deposition is common despite declining GFR. Factors worsening tubular injury, not just oxalate-to-citrate ratios, are key to understanding impaired renal recovery.


Assuntos
Injúria Renal Aguda , Calcinose , Hiperoxalúria , Humanos , Oxalato de Cálcio/química , Creatinina/metabolismo , Rim/patologia , Hiperoxalúria/complicações , Oxalatos/metabolismo , Injúria Renal Aguda/patologia , Citratos/metabolismo , Ácido Cítrico
3.
Urolithiasis ; 52(1): 52, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564033

RESUMO

Urolithiasis is a prevalent urological disorder that contributes significantly to global morbidity. This study aimed to assess the anti-urolithic effects of Cymbopogon proximus (Halfa Bar) and Petroselinum crispum (parsley) seed ethanolic extract /Gum Arabic (GA) emulsion, and its nanogel form against ethylene glycol (EG) and ammonium chloride (AC)-induced experimental urolithiasis in rats. Rats were divided into four groups: group 1 served as the normal control, group 2 received EG with AC in drinking water for 14 days to induce urolithiasis, groups 3 and 4 were orally administered emulsion (600 mg/kg/day) and nanogel emulsion (600 mg/kg/day) for 7 days, followed by co-administration with EG and AC in drinking water for 14 days. Urolithiatic rats exhibited a significant decrease in urinary excreted magnesium, and non-enzymic antioxidant glutathione and catalase activity. Moreover, they showed an increase in oxalate crystal numbers and various urolithiasis promoters, including excreted calcium, oxalate, phosphate, and uric acid. Renal function parameters and lipid peroxidation were intensified. Treatment with either emulsion or nanogel emulsion significantly elevated urolithiasis inhibitors, excreted magnesium, glutathione levels, and catalase activities. Reduced oxalate crystal numbers, urolithiasis promoters' excretion, renal function parameters, and lipid peroxidation while improving histopathological changes. Moreover, it decreased renal crystal deposition score and the expression of Tumer necrosis factor-α (TNF-α) and cleaved caspase-3. Notably, nanogel emulsion showed superior effects compared to the emulsion. Cymbopogon proximus (C. proximus) and Petroselinum crispum (P. crispum) seed ethanolic extracts/GA nanogel emulsion demonstrated protective effects against ethylene glycol induced renal stones by mitigating kidney dysfunction, oxalate crystal formation, and histological alterations.


Assuntos
Cymbopogon , Água Potável , Cálculos Renais , Polietilenoglicóis , Polietilenoimina , Urolitíase , Animais , Ratos , Petroselinum , Cloreto de Amônio , Goma Arábica , Emulsões , Catalase , Magnésio , Nanogéis , Urolitíase/induzido quimicamente , Urolitíase/tratamento farmacológico , Urolitíase/prevenção & controle , Sementes , Antioxidantes/uso terapêutico , Etanol , Glutationa , Oxalatos , Etilenoglicóis , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
4.
Int J Mol Sci ; 25(8)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38674109

RESUMO

Although several therapeutic effects have been attributed to wild blackthorn fruits, their use is still negligible. Purification of the antioxidant-active fraction, obtained from wild blackthorn fruits by hot ammonium oxalate extraction (Ao), yielded seven fractions after successive elution with water, sodium chloride and sodium hydroxide solutions. The purified fractions differ in carbohydrates, proteins, and phenolics. About 60% of the applied Ao material was recovered from the column, with the highest yields eluted with 0.25 M NaCl solution, accounting for up to 70 wt% of all eluted material. Analyses have shown that two dominant fractions (3Fa and 3Fb) contain 72.8-81.1 wt% of galacturonic acids, indicating the prevalence of homogalacturonans (HG) with a low acetyl content and a high degree of esterification. The low content of rhamnose, arabinose and galactose residues in both fractions indicates the presence of RG-I associated with arabinogalactan. In terms of yield, the alkali-eluted fraction was also significant, as a dark brown-coloured material with a yield of ~15 wt% with the highest content of phenolic compounds of all fractions. However, it differs from other fractions in its powdery nature, which indicates a high content of salts that could not be removed by dialysis.


Assuntos
Antioxidantes , Frutas , Oxalatos , Polissacarídeos , Antioxidantes/farmacologia , Antioxidantes/química , Frutas/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Oxalatos/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Pectinas/química , Fenóis/química , Fenóis/análise , Galactanos/química
5.
Urolithiasis ; 52(1): 55, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564006

RESUMO

The formation of calcium oxalate (CaOx) crystals in the kidneys leads to renal epithelial damage and the progression of crystalline nephropathy. This study investigated the role of STIP1 homology and U-box protein 1 (STUB1), an E3 ubiquitin ligase, and cystic fibrosis transmembrane conductance regulator (CFTR), a chloride channel, in CaOx-related renal damage and autophagy regulation. HK-2 cells were treated with various doses of CaOx monohydrate (COM) to simulate kidney injury in vitro. Cell viability, reactive oxygen species (ROS) production, and apoptosis were assessed. The regulation of CFTR ubiquitination by STUB1 was confirmed by immunoprecipitation. An in vivo model was established by injecting mice with glyoxylate. COM treatment dose-dependently decreased cell viability, increased TNF-α and ROS production, and induced apoptotic cell death in HK-2 cells. COM-treated cells also showed decreased CFTR protein expression. CFTR overexpression improved cell viability and reduced ROS production in COM-stimulated HK-2 cells. Bioinformatics analysis predicted CFTR's ubiquitination binding site for STUB1. Further analysis confirmed the role of STUB1 as a ubiquitin ligase in CFTR degradation. Knockdown of STUB1 upregulated CFTR expression, while STUB1 overexpression had the opposite effect. Knockdown of CFTR reversed the impact of STUB1 deficiency on autophagy. The in vivo experiments showed that CFTR overexpression attenuated kidney tissue damage and CaOx deposition in mice. STUB1-mediated CFTR ubiquitination plays a crucial role in mitigating calcium oxalate-related renal damage by regulating autophagy. Targeting the STUB1/CFTR axis may hold therapeutic potential for treating kidney injury associated with calcium oxalate deposition.


Assuntos
Oxalato de Cálcio , Regulador de Condutância Transmembrana em Fibrose Cística , Animais , Camundongos , Espécies Reativas de Oxigênio , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Rim , Autofagia , Ubiquitinação , Oxalatos
6.
J Agric Food Chem ; 72(18): 10163-10178, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38653191

RESUMO

Oxalate decarboxylase (OXDC) is a typical Mn2+/Mn3+ dependent metal enzyme and splits oxalate to formate and CO2 without any organic cofactors. Fungi and bacteria are the main organisms expressing the OXDC gene, but with a significantly different mechanism of gene expression and regulation. Many articles reported its potential applications in the clinical treatment of hyperoxaluria, low-oxalate food processing, degradation of oxalate salt deposits, oxalate acid diagnostics, biocontrol, biodemulsifier, and electrochemical oxidation. However, some questions still remain to be clarified about the role of substrate binding and/or protein environment in modulating the redox properties of enzyme-bound Mn(II)/Mn(III), the nature of dioxygen involved in the catalytic mechanism, and how OXDC acquires Mn(II) /Mn(III). This review mainly summarizes its biochemical and structure characteristics, gene expression and regulation, and catalysis mechanism. We also deep-mined oxalate decarboxylase gene data from National Center for Biotechnology Information to give some insights to explore new OXDC with diverse biochemical properties.


Assuntos
Bactérias , Carboxiliases , Carboxiliases/genética , Carboxiliases/metabolismo , Carboxiliases/química , Bactérias/genética , Bactérias/enzimologia , Bactérias/metabolismo , Fungos/genética , Fungos/enzimologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Biocatálise , Oxalatos/metabolismo , Oxalatos/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Regulação Enzimológica da Expressão Gênica , Humanos , Catálise , Animais
7.
Clin Res Hepatol Gastroenterol ; 48(5): 102322, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38503362

RESUMO

Enteric hyperoxaluria is a metabolic disorder resulting from conditions associated with fatty acid malabsorption and characterized by an increased urinary output of oxalate. Oxalate is excessively absorbed in the gut and then excreted in urine where it forms calcium oxalate crystals, inducing kidney stones formation and crystalline nephropathies. Enteric hyperoxaluria is probably underdiagnosed and may silently damage kidney function of patients affected by bowel diseases. Moreover, the prevalence of enteric hyperoxaluria has increased because of the development of bariatric surgical procedures. Therapeutic options are based on the treatment of the underlying disease, limitation of oxalate intakes, increase in calcium salts intakes but also increase in urine volume and correction of hypocitraturia. There are few data regarding the natural evolution of kidney stone events and chronic kidney disease in these patients, and there is a need for new treatments limiting kidney injury by calcium oxalate crystallization.


Assuntos
Hiperoxalúria , Humanos , Hiperoxalúria/terapia , Hiperoxalúria/complicações , Hiperoxalúria/etiologia , Oxalatos/metabolismo , Oxalato de Cálcio/metabolismo , Síndromes de Malabsorção/terapia , Síndromes de Malabsorção/fisiopatologia , Síndromes de Malabsorção/complicações , Síndromes de Malabsorção/etiologia
8.
Biointerphases ; 19(2)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38526056

RESUMO

Bletilla striata polysaccharide (BSP) and chitosan (CS) were chemically cross-linked using oxalyl chloride to prepare a composite hemostatic sponge (BSP-CS), and the process parameters were optimized using the Box-Behnken design (BBD) with response surface methodology. To optimize the performance of the hemostatic sponge, we adjusted the ratio of independent variables, the amount of oxalyl chloride added, and the freeze-dried volume. A series of evaluations were conducted on the hemostatic applicability of BSP-CS. The characterization results revealed that BSP-CS had a stable bacteriostatic effect on Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa within 72 h, and the bacteriostatic rate was above 30%. The CCK-8 cytotoxicity test demonstrated that BSP-CS had a certain effect on promoting cell proliferation of L929 cells. In the mouse tail-cutting experiment, the hemostasis time of BSP-CS was 463.0±38.16 s, shortened by 91.3 s on average compared with 554.3±34.67 s of the gauze group. The blood loss of the BSP-CS group was 28.47±3.74 mg, which was 34.7% lower than that of the control gauze group (43.6±3.83 mg). In the in vitro coagulation experiment, the in vitro coagulation index of the BSP-CS group was 97.29%±1.8%, which was reduced to 8.6% of the control group. The CT value of the BSP-CS group was 240±15 s, which was 155 s lower than that of the gauze group (355±31.22 s). All characterization results indicate that BSP-CS is an excellent hemostatic material.


Assuntos
Quitosana , Cloretos , Hemostáticos , Orchidaceae , Oxalatos , Camundongos , Animais , Hemostáticos/farmacologia , Hemostáticos/química , Quitosana/farmacologia , Quitosana/química , Hemostasia , Polissacarídeos/farmacologia , Polissacarídeos/química , Orchidaceae/química
9.
J Bras Nefrol ; 46(1): 99-106, 2024.
Artigo em Inglês, Português | MEDLINE | ID: mdl-38427579

RESUMO

We present a case of a 69-year-old man who presented for routine check-up and was incidentally found to have kidney failure with an initially unrevealing history and bland urinary sediment. He was diagnosed with oxalate nephropathy in the setting of chronic turmeric supplementation and chronic antibiotic therapy with associated diarrhea. Our case provides several key insights into oxalate nephropathy. First, the diagnosis requires a high index of clinical suspicion. It is uncommonly suspected clinically unless there is an obvious clue in the history such as Roux-en-Y gastric bypass or ethylene glycol poisoning. Diagnosis can be confirmed by histopathologic findings and corroborated by serum levels of oxalate and 24-hour urinary excretion. Second, the diagnosis can often be missed by the pathologist because of the characteristics of the crystals unless the renal pathologist has made it a rule to examine routinely all H&E sections under polarized light. This must be done on H&E, as the other stains dissolve the crystals. Third, one oxalate crystal in a routine needle biopsy is considered pathologic and potentially contributing to the AKI or to the CKD in an important way. Fourth, secondary oxalosis can be largely mitigated or prevented in many cases, especially iatrogenic cases. This can come through the surgeon or the gastroenterologist providing proper instructions to patients on an oxalate-restricted diet or other specific dietary measures. Lastly, this case highlights the success that results from cooperation and communication between the pathologist and the treating physician.


Assuntos
Hiperoxalúria , Insuficiência Renal , Masculino , Humanos , Idoso , Curcuma , Hiperoxalúria/induzido quimicamente , Hiperoxalúria/complicações , Insuficiência Renal/complicações , Oxalatos , Suplementos Nutricionais/efeitos adversos
10.
Artigo em Chinês | MEDLINE | ID: mdl-38538241

RESUMO

Objective: To establish a high performance liquid chromatography method for the simultaneous determination of dimethyl oxalate (DMO) and diethyl oxalate (DEO) in workplace air. Methods: From January 2022 to January 2023, air samples were collected by silica gel tubes, desorbed by acetonitrile, separated by C18 chromatographic column, detected by photo-array detector, and retention time was used to characterize and peak area was used to quantify at 210 nm wavelength. Results: The linear relationships of DMO and DEO were good, r>0.999. The detection limits of DMO and DEO were 0.39 and 0.52 µg/ml, respectively. The quantitative limit was 1.28 µg/ml for DMO and 1.72 µg/ml for DEO. Average desorption efficiency for DMO was 82.40%-92.72%, and DEO was 94.13%-97.69%. The intra-assay precision of DMO was 1.87%-6.18%, and DEO was 2.25%-3.31%. Inter-assay precision of DMO was 3.29%-5.73%, and DEO was 1.38%-2.94%. Average sampling efficiencies were 100% for both DMO and DEO. Breakthrough capacity of DMO was 37.61 mg (200 mg solid adsorbent), DEO was >28.11 mg (200 mg solid adsorbent). Samples should be stored at 4 ℃ for at least 7 days. Conclusion: This method is easy to operate and has strong practicability. All indicators meet the requirements of the specification, and it is suitable for the simultaneous determination of DMO and DEO in the workplace air.


Assuntos
Poluentes Ocupacionais do Ar , Cromatografia Líquida de Alta Pressão/métodos , Poluentes Ocupacionais do Ar/análise , Local de Trabalho , Oxalatos/análise
11.
J Agric Food Chem ; 72(12): 6372-6388, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38471112

RESUMO

Oxidative damage to the kidneys is a primary factor in the occurrence of kidney stones. This study explores the inhibitory effect of Porphyra yezoensis polysaccharides (PYP) on oxalate-induced renal injury by detecting levels of oxidative damage, expression of adhesion molecules, and damage to intracellular organelles and revealed the molecular mechanism by molecular biology methods. Additionally, we validated the role of PYP in vivo using a crystallization model of hyperoxalate-induced rats. PYP effectively scavenged the overproduction of reactive oxygen species (ROS) in HK-2 cells, inhibited the adhesion of calcium oxalate (CaOx) crystals on the cell surface, unblocked the cell cycle, restored the depolarization of the mitochondrial membrane potential, and inhibited cell death. PYP upregulated the expression of antioxidant proteins, including Nrf2, HO-1, SOD, and CAT, while decreasing the expression of Keap-1, thereby activating the Keap1/Nrf2 signaling pathway. PYP inhibited CaOx deposition in renal tubules in the rat crystallization model, significantly reduced high oxalate-induced renal injury, decreased the levels of the cell surface adhesion proteins, improved renal function in rats, and ultimately inhibited the formation of kidney stones. Therefore, PYP, which has crystallization inhibition and antioxidant properties, may be a therapeutic option for the treatment of kidney stones.


Assuntos
Oxalato de Cálcio , Algas Comestíveis , Cálculos Renais , Porphyra , Ratos , Animais , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Oxalato de Cálcio/metabolismo , Oxalato de Cálcio/farmacologia , Antioxidantes/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Rim/metabolismo , Cálculos Renais/metabolismo , Estresse Oxidativo , Oxalatos/metabolismo , Oxalatos/farmacologia , Polissacarídeos/metabolismo
12.
Plant Physiol Biochem ; 208: 108475, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38430786

RESUMO

Saline-alkali stress significantly affects the growth and yield of alfalfa (Medicago sativa L.). Organic acid secretion is crucial in alleviating abiotic stress-induced damage in plants. In this study, we evaluated the contents of the major organic acids secreted by the roots of tolerant (ZD) and sensitive (LYL) varieties of alfalfa under saline-alkali stress and investigated the effects of these organic acids on the growth, and physiological functions of alfalfa. Our results indicated that the oxalic acid (OA) content was the highest among the organic acids secreted from alfalfa roots under saline-alkali stress, and oxalic acid content was the most significantly different between the two varieties, ZD and LYL, compared to the contents of the other organic acids. Oxalic acid alleviated the inhibition of alfalfa growth caused by saline-alkali stress, improved photosynthetic characteristics, reduced the accumulation of reactive oxygen species, and increased the activity of antioxidant enzymes and content of osmoregulatory substances. Furthermore, oxalic acid resulted in significantly increased expression of genes involved in photosynthesis and antioxidant system in alfalfa under saline-alkali stress. This study revealed the effects of oxalic acid secreted by the root system on stress-related physiological processes, providing valuable insights into the functions of root secretions in plant saline-alkali resistance.


Assuntos
Antioxidantes , Medicago sativa , Antioxidantes/metabolismo , Medicago sativa/genética , Álcalis/metabolismo , Fotossíntese , Oxalatos/metabolismo , Oxalatos/farmacologia
13.
BMC Nephrol ; 25(1): 106, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500054

RESUMO

A 75-year-old male developed acute kidney injury KDIGO stage 3 a few weeks after Whipple surgery was performed for a distal cholangiocarcinoma. Kidney biopsy revealed oxalate nephropathy. This was attributed to post-Whipple malabsorption, poor compliance with pancreatic enzyme replacement therapy, and daily intake of vitamin C supplements. Pancreatic enzyme replacement therapy was resumed and calcium carbonate initiated, with an improvement in glomerular filtration rate. Unfortunately, due to oncological progression, best supportive care was initiated.We review the pathophysiology and conditions predisposing to secondary hyperoxaluria and oxalate nephropathy. This diagnosis should be considered among the main causes of acute kidney injury following pancreatectomy, with important therapeutic implications.


Assuntos
Injúria Renal Aguda , Hiperoxalúria , Masculino , Humanos , Idoso , Pancreaticoduodenectomia/efeitos adversos , Hiperoxalúria/complicações , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/patologia , Oxalatos
14.
Urolithiasis ; 52(1): 46, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520518

RESUMO

This study was aimed to investigate the preventive effects of N-acetyl-L-cysteine (NAC) against renal tubular cell injury induced by oxalate and stone formation and further explore the related mechanism. Transcriptome sequencing combined with bioinformatics analysis were performed to identify differentially expressed gene (DEG) and related pathways. HK-2 cells were pretreated with or without antioxidant NAC/with or silencing DEG before exposed to sodium oxalate. Then, the cell viability, oxidative biomarkers of superoxidase dismutase (SOD) and malondialdehyde (MDA), apoptosis and cell cycle were measured through CCK8, ELISA and flow cytometry assay, respectively. Male SD rats were separated into control group, hyperoxaluria (HOx) group, NAC intervention group, and TGF-ß/SMAD pathway inhibitor group. After treatment, the structure changes and oxidative stress and CaOx crystals deposition were evaluated in renal tissues by H&E staining, immunohistochemical and Pizzolato method. The expression of TGF-ß/SMAD pathway related proteins (TGF-ß1, SMAD3 and SMAD7) were determined by Western blot in vivo and in vitro. CDKN2B is a DEG screened by transcriptome sequencing combined with bioinformatics analysis, and verified by qRT-PCR. Sodium oxalate induced declined HK-2 cell viability, in parallel with inhibited cellular oxidative stress and apoptosis. The changes induced by oxalate in HK-2 cells were significantly reversed by NAC treatment or the silencing of CDKN2B. The cell structure damage and CaOx crystals deposition were observed in kidney tissues of HOx group. Meanwhile, the expression levels of SOD and 8-OHdG were detected in kidney tissues of HOx group. The changes induced by oxalate in kidney tissues were significantly reversed by NAC treatment. Besides, expression of SMAD7 was significantly down-regulated, while TGF-ß1 and SMAD3 were accumulated induced by oxalate in vitro and in vivo. The expression levels of TGF-ß/SMAD pathway related proteins induced by oxalate were reversed by NAC. In conclusion, we found that NAC could play an anti-calculus role by mediating CDKN2B/TGF-ß/SMAD axis.


Assuntos
Hiperoxalúria , Oxalatos , Animais , Masculino , Ratos , Acetilcisteína/farmacologia , Oxalato de Cálcio/metabolismo , Células Epiteliais/metabolismo , Hiperoxalúria/induzido quimicamente , Hiperoxalúria/metabolismo , Oxalatos/metabolismo , Ratos Sprague-Dawley , Superóxido Dismutase/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
16.
Clin Nutr ESPEN ; 60: 320-326, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38479930

RESUMO

BACKGROUND AND AIMS: Previous studies have demonstrated associations between the Dietary Inflammatory Index (DII®), an analytical tool which evaluates the inflammatory potential of the diet according to the pro- and anti-inflammatory properties of its components, and renal stone formation. However, these have not comprehensively addressed important parameters such as stone type, gender, DII scores in stone formers (SFs) and healthy controls (Cs) and associations of DII with urine and blood chemistries. These were adopted as the survey parameters for the present study, the purpose of which was to test whether the contributory role of an inflammatory diet on stone formation could be further confirmed. METHODS: 97 calcium oxalate (CaOx) SFs and 63 Cs, matched for age and gender each completed a semi-quantitative food frequency questionnaire from which nutrient composition was computed. These data were used to calculate the DII® score. To control the effect of energy intake, energy-adjusted DII scores were calculated per 1000 kcal consumed (E-DII™). A single blood sample and two consecutive overnight (8h) urine samples were collected from a subset (n = 59 SFs and n = 54 Cs) of the overall number of particpants (n = 160). These were analysed for renal stone risk factors. Data were analysed using regression models fit in R software. RESULTS: E-DII scores were found to fit the data better than DII, so they were used throughout. E-DII scores were significantly more positive (more pro-inflammatory) in SFs than in controls in the combined gender group (-0.34 vs. -1.73, p < 0.0001) and separately in males (-0.43 vs. -1.78, p = 0.01) and females (-0.26 vs. - 1.61, p = 0.05). In blood, a significant negative correlation was seen between E-DII and HDL cholesterol. In urine significant positive correlations were seen between E-DII and each of calcium (ρ = 0.25, p = 0.02), phosphate (ρ = 0.48, p < 0.001), magnesium (ρ = 0.33, p < 0.0001) and uric acid (ρ = 0.27, p = 0.004) concentrations. A significant negative correlation was seen between E-DII and urinary volume ρ = -0.27, p = 0.003). There was no correlation between E-DII scores and the relative supersaturations of urinary CaOx, calcium phosphate (brushite) and uric acid. CONCLUSIONS: Our findings provide hitherto unreported quantitative evidence in support of the notion that the diet of calcium oxalate renal stone patients is significantly more pro-inflammatory than that of healthy controls.


Assuntos
Oxalato de Cálcio , Cálculos Renais , Masculino , Feminino , Humanos , Oxalato de Cálcio/urina , Oxalatos , Ácido Úrico/urina , Cálculos Renais/etiologia , Cálculos Renais/urina , Dieta , Fatores de Risco
17.
J Environ Manage ; 356: 120734, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38520861

RESUMO

This study investigates the genetic responses of the fungus Trichoderma asperellum (T. asperellum) during bioleaching of ore and tailing samples, comparing one-step, two-step, and spent media bioleaching processes. HPLC analysis quantified oxalic acid, citric acid, and propionic acids, with oxalic acid identified as the primary organic acid involved in metal bioleaching. Metal analysis revealed differences in recovery between ore and tailing samples and among bioleaching processes. The two-step bioleaching process yielded the highest zinc (>54%) and nickel (>60%) recovery in tailings and ore, respectively. Nickel's efficient recovery in ore bioleaching was attributed to the presence of manganese, while its precipitation as nickel oxalate in tailings hindered recovery. Additional metals such as Co, Mn, Mg, Cu, and As were also successfully recovered. Transcriptomic analyses showed significant upregulation of genes associated with biological processes and cellular components, particularly those related to cell membrane structure and function, indicating T. asperellum's adaptation to environmental stresses during metal bioleaching. These findings enhance our understanding of the diverse mechanisms influencing metal recovery rates in bioleaching processes.


Assuntos
Hypocreales , Metais , Níquel , Metais/análise , Perfilação da Expressão Gênica , Oxalatos
18.
Lab Chip ; 24(7): 2017-2024, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38407354

RESUMO

Effective prevention of recurrent kidney stone disease requires the understanding of the mechanisms of its formation. Numerous in vivo observations have demonstrated that a large number of pathological calcium oxalate kidney stones develop on an apatitic calcium phosphate deposit, known as Randall's plaque. In an attempt to understand the role of the inorganic hydroxyapatite phase in the formation and habits of calcium oxalates, we confined their growth under dynamic physicochemical and flow conditions in a reversible microfluidic channel coated with hydroxyapatite. Using multi-scale characterization techniques including scanning electron and Raman microscopy, we showed the successful formation of carbonated hydroxyapatite as found in Randall's plaque. This was possible due to a new two-step flow seed-mediated growth strategy which allowed us to coat the channel with carbonated hydroxyapatite. Precipitation of calcium oxalates under laminar flow from supersaturated solutions of oxalate and calcium ions showed that the formation of crystals is a substrate and time dependent complex process where diffusion of oxalate ions to the surface of carbonated hydroxyapatite and the solubility of the latter are among the most important steps for the formation of calcium oxalate crystals. Indeed when an oxalate solution was flushed for 24 h, dissolution of the apatite layer and formation of calcium carbonate calcite crystals occurred which seems to promote calcium oxalate crystal formation. Such a growth route has never been observed in vivo in the context of kidney stones. Under our experimental conditions, our results do not show any direct promoting role of carbonated hydroxyapatite in the formation of calcium oxalate crystals, consolidating therefore the important role that macromolecules can play in the process of nucleation and growth of calcium oxalate crystals on Randall's plaque.


Assuntos
Oxalato de Cálcio , Cálculos Renais , Humanos , Medula Renal/patologia , Cristalização , Cálcio , Microfluídica , Cálculos Renais/química , Cálculos Renais/patologia , Apatitas , Oxalatos , Íons , Hidroxiapatitas
19.
Water Res ; 253: 121256, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38335843

RESUMO

Hydrogen peroxide (H2O2), peroxymonosulfate (PMS), and peroxydisulfate (PDS) are key bulk oxidants in many advanced oxidation processes (AOPs) for treating chemically contaminated water. In some systems these peroxides may coexist in solution either through intentional co-addition or their inadvertent formation (especially H2O2) due to reaction chemistry. While many analytical methods to determine these peroxides individually have been established, mutual interference among the peroxides in such methods has seldom been evaluated, and new methods or variants of established methods to selectively determine peroxides in binary mixtures are lacking. We re-examined five established colorimetric methods-the Permanganate, Titanium Oxalate (Ti-oxalate), Iodide, N.N­diethyl-p-phenylenediamine (DPD), and 2,20-azino-bis(3-ethylbenzothiazoline-6-sulfonate (ABTS) methods-for mutual interference among peroxides and devised variants of these methods for selectively quantifying one peroxide in the presence of another. Hydrogen peroxide can be selectively determined by the Permanganate method at short reaction time; by the Ti-oxalate method; by the DPD method with added peroxidase (POD); or by the ABTS method with added POD. PMS can be selectively determined by the Iodide method; by the DPD or ABTS methods with added iodide ion as catalyst; or by the DPD method with added catalase (CAT) (with co-existing H2O2 but not PDS). The DPD method can be used to determine PDS without interference by H2O2 and-provided the sample is pretreated with l-histidine-without interference by PMS. The recommended methods were successfully applied to binary peroxide mixtures in complex waters, including a tap water and a synthetic water. Overall, the new selective methods will assist mechanistic investigation of AOPs based on these peroxides and support efforts to apply them commercially.


Assuntos
Benzotiazóis , Peróxido de Hidrogênio , Compostos de Manganês , Óxidos , Ácidos Sulfônicos , Poluentes Químicos da Água , Iodetos , Peróxidos , Oxirredução , Água , Oxalatos , Poluentes Químicos da Água/análise
20.
Arch Biochem Biophys ; 754: 109932, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38373542

RESUMO

d-lactate dehydrogenases are known to be expressed by prokaryotes and by eukaryotic invertebrates, and over the years the functional and structural features of some bacterial representatives of this enzyme ensemble have been investigated quite in detail. Remarkably, a human gene coding for a putative d-lactate dehydrogenase (DLDH) was identified and characterized, disclosing the occurrence of alternative splicing of its primary transcript. This translates into the expression of two human DLDH (hDLDH) isoforms, the molecular mass of which is expected to differ by 2.7 kDa. However, no information on these two hDLDH isoforms is available at the protein level. Here we report on the catalytic action of these enzymes, along with a first analysis of their structural features. In particular, we show that hDLDH is strictly stereospecific, with the larger isoform (hDLDH-1) featuring higher activity at the expense of d-lactate when compared to its smaller counterpart (hDLDH-2). Furthermore, we found that hDLDH is strongly inhibited by oxalate, as indicated by a Ki equal to 1.2 µM for this dicarboxylic acid. Structurally speaking, hDLDH-1 and hDLDH-2 were determined, by means of gel filtration and dynamic light scattering experiments, to be a hexamer and a tetramer, respectively. Moreover, in agreement with previous studies performed with human mitochondria, we identified FAD as the cofactor of hDLDH, and we report here a model of FAD binding by the human d-lactate dehydrogenase. Interestingly, the mutations W323C and T412 M negatively affect the activity of hDLDH, most likely by impairing the enzyme electron-acceptor site.


Assuntos
L-Lactato Desidrogenase , Lactato Desidrogenases , Ácido Láctico , Humanos , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/química , Ácido Láctico/metabolismo , Oxalatos , Isoformas de Proteínas , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA