Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.659
Filtrar
1.
Sci Rep ; 14(1): 10586, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719951

RESUMO

Carotenoids play essential roles in plant growth and development and provide plants with a tolerance to a series of abiotic stresses. In this study, the function and biological significance of lycopene ß-cyclase, lycopene ε-cyclase, and ß-carotene hydroxylase, which are responsible for the modification of the tetraterpene skeleton procedure, were isolated from Lycium chinense and analyzed. The overexpression of lycopene ß-cyclase, lycopene ε-cyclase, and ß-carotene hydroxylase promoted the accumulation of total carotenoids and photosynthesis enhancement, reactive oxygen species scavenging activity, and proline content of tobacco seedlings after exposure to the salt stress. Furthermore, the expression of the carotenoid biosynthesis genes and stress-related genes (ascorbate peroxidase, catalase, peroxidase, superoxide dismutase, and pyrroline-5-carboxylate reductase) were detected and showed increased gene expression level, which were strongly associated with the carotenoid content and reactive oxygen species scavenging activity. After exposure to salt stress, the endogenous abscisic acid content was significantly increased and much higher than those in control plants. This research contributes to the development of new breeding aimed at obtaining stronger salt tolerance plants with increased total carotenoids and vitamin A content.


Assuntos
Carotenoides , Regulação da Expressão Gênica de Plantas , Lycium , Nicotiana , Proteínas de Plantas , Tolerância ao Sal , Carotenoides/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Tolerância ao Sal/genética , Lycium/genética , Lycium/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Espécies Reativas de Oxigênio/metabolismo , Liases Intramoleculares/genética , Liases Intramoleculares/metabolismo , Fotossíntese/genética , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Ácido Abscísico/metabolismo
2.
Nat Commun ; 15(1): 3975, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38729930

RESUMO

Oxidoreductases have evolved tyrosine/tryptophan pathways that channel highly oxidizing holes away from the active site to avoid damage. Here we dissect such a pathway in a bacterial LPMO, member of a widespread family of C-H bond activating enzymes with outstanding industrial potential. We show that a strictly conserved tryptophan is critical for radical formation and hole transference and that holes traverse the protein to reach a tyrosine-histidine pair in the protein's surface. Real-time monitoring of radical formation reveals a clear correlation between the efficiency of hole transference and enzyme performance under oxidative stress. Residues involved in this pathway vary considerably between natural LPMOs, which could reflect adaptation to different ecological niches. Importantly, we show that enzyme activity is increased in a variant with slower radical transference, providing experimental evidence for a previously postulated trade-off between activity and redox robustness.


Assuntos
Proteínas de Bactérias , Oxigenases de Função Mista , Oxirredução , Oxigenases de Função Mista/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Domínio Catalítico , Triptofano/metabolismo , Polissacarídeos/metabolismo , Mutação , Estresse Oxidativo , Tirosina/metabolismo , Modelos Moleculares , Histidina/metabolismo , Histidina/genética
3.
J Hazard Mater ; 471: 134437, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38691934

RESUMO

Crude oil is a hazardous pollutant that poses significant and lasting harm to human health and ecosystems. In this study, Moesziomyces aphidis XM01, a biosurfactant mannosylerythritol lipids (MELs)-producing yeast, was utilized for crude oil degradation. Unlike most microorganisms relying on cytochrome P450, XM01 employed two extracellular unspecific peroxygenases, MaUPO.1 and MaUPO.2, with preference for polycyclic aromatic hydrocarbons (PAHs) and n-alkanes respectively, thus facilitating efficient crude oil degradation. The MELs produced by XM01 exhibited a significant emulsification activity of 65.9% for crude oil and were consequently supplemented in an "exogenous MELs addition" strategy to boost crude oil degradation, resulting in an optimal degradation ratio of 72.3%. Furthermore, a new and simple "pre-MELs production" strategy was implemented, achieving a maximum degradation ratio of 95.9%. During this process, the synergistic up-regulation of MaUPO.1, MaUPO.1 and the key MELs synthesis genes contributed to the efficient degradation of crude oil. Additionally, the phylogenetic and geographic distribution analysis of MaUPO.1 and MaUPO.1 revealed their wide occurrence among fungi in Basidiomycota and Ascomycota, with high transcription levels across global ocean, highlighting their important role in biodegradation of crude oil. In conclusion, M. aphidis XM01 emerges as a novel yeast for efficient and eco-friendly crude oil degradation.


Assuntos
Biodegradação Ambiental , Glicolipídeos , Oxigenases de Função Mista , Petróleo , Tensoativos , Petróleo/metabolismo , Tensoativos/metabolismo , Tensoativos/química , Glicolipídeos/metabolismo , Oxigenases de Função Mista/metabolismo , Oxigenases de Função Mista/genética , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/química , Alcanos/metabolismo
4.
BMC Plant Biol ; 24(1): 384, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724935

RESUMO

BACKGROUND: Semi-dwarfing alleles are used widely in cereals to confer improved lodging resistance and assimilate partitioning. The most widely deployed semi-dwarfing alleles in rice and barley encode the gibberellin (GA)-biosynthetic enzyme GA 20-OXIDASE2 (GA20OX2). The hexaploid wheat genome carries three homoeologous copies of GA20OX2, and because of functional redundancy, loss-of-function alleles of a single homoeologue would not be selected in wheat breeding programmes. Instead, approximately 70% of wheat cultivars carry gain-of-function mutations in REDUCED HEIGHT 1 (RHT1) genes that encode negative growth regulators and are degraded in response to GA. Semi-dwarf Rht-B1b or Rht-D1b alleles encode proteins that are insensitive to GA-mediated degradation. However, because RHT1 is expressed ubiquitously these alleles have pleiotropic effects that confer undesirable traits in some environments. RESULTS: We have applied reverse genetics to combine loss-of-function alleles in all three homoeologues of wheat GA20OX2 and its paralogue GA20OX1 and evaluated their performance in three years of field trials. ga20ox1 mutants exhibited a mild height reduction (approximately 3%) suggesting GA20OX1 plays a minor role in stem elongation in wheat. ga20ox2 mutants have reduced GA1 content and are 12-32% shorter than their wild-type segregants, comparable to the effect of the Rht-D1b 'Green Revolution' allele. The ga20ox2 mutants showed no significant negative effects on yield components in the spring wheat variety 'Cadenza'. CONCLUSIONS: Our study demonstrates that chemical mutagenesis can expand genetic variation in polyploid crops to uncover novel alleles despite the difficulty in identifying appropriate mutations for some target genes and the negative effects of background mutations. Field experiments demonstrate that mutations in GA20OX2 reduce height in wheat, but it will be necessary to evaluate the effect of these alleles in different genetic backgrounds and environments to determine their value in wheat breeding as alternative semi-dwarfing alleles.


Assuntos
Fenótipo , Proteínas de Plantas , Triticum , Triticum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mutação , Oryza/genética , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Alelos , Giberelinas/metabolismo , Genes de Plantas
5.
Appl Microbiol Biotechnol ; 108(1): 320, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709366

RESUMO

The unspecific peroxygenase (UPO) from Cyclocybe aegerita (AaeUPO) can selectively oxidize C-H bonds using hydrogen peroxide as an oxygen donor without cofactors, which has drawn significant industrial attention. Many studies have made efforts to enhance the overall activity of AaeUPO expressed in Komagataella phaffii by employing strategies such as enzyme-directed evolution, utilizing appropriate promoters, and screening secretion peptides. Building upon these previous studies, the objective of this study was to further enhance the expression of a mutant of AaeUPO with improved activity (PaDa-I) by increasing the gene copy number, co-expressing chaperones, and optimizing culture conditions. Our results demonstrated that a strain carrying approximately three copies of expression cassettes and co-expressing the protein disulfide isomerase showed an approximately 10.7-fold increase in volumetric enzyme activity, using the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) as the substrate. After optimizing the culture conditions, the volumetric enzyme activity of this strain further increased by approximately 48.7%, reaching 117.3 U/mL. Additionally, the purified catalytic domain of PaDa-I displayed regioselective hydroxylation of R-2-phenoxypropionic acid. The results of this study may facilitate the industrial application of UPOs. KEY POINTS: • The secretion of the catalytic domain of PaDa-I can be significantly enhanced through increasing gene copy numbers and co-expressing of protein disulfide isomerase. • After optimizing the culture conditions, the volumetric enzyme activity can reach 117.3 U/mL, using the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) as the substrate. • The R-2-phenoxypropionic acid can undergo the specific hydroxylation reaction catalyzed by catalytic domain of PaDa-I, resulting in the formation of R-2-(4-hydroxyphenoxy)propionic acid.


Assuntos
Oxigenases de Função Mista , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Oxigenases de Função Mista/química , Saccharomycetales/genética , Saccharomycetales/enzimologia , Saccharomycetales/metabolismo , Dosagem de Genes , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Expressão Gênica , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/química
6.
Biotechnol J ; 19(5): e2300664, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38719620

RESUMO

CYP116B5 is a class VII P450 in which the heme domain is linked to a FMN and 2Fe2S-binding reductase. Our laboratory has proved that the CYP116B5 heme domain (CYP116B5-hd) is capable of catalyzing the oxidation of substrates using H2O2. Recently, the Molecular Lego approach was applied to join the heme domain of CYP116B5 to sarcosine oxidase (SOX), which provides H2O2 in-situ by the sarcosine oxidation. In this work, the chimeric self-sufficient fusion enzyme CYP116B5-SOX was heterologously expressed, purified, and characterized for its functionality by absorbance and fluorescence spectroscopy. Differential scanning calorimetry (DSC) experiments revealed a TM of 48.4 ± 0.04 and 58.3 ± 0.02°C and a enthalpy value of 175,500 ± 1850 and 120,500 ± 1350 cal mol-1 for the CYP116B5 and SOX domains respectively. The fusion enzyme showed an outstanding chemical stability in presence of up to 200 mM sarcosine or 5 mM H2O2 (4.4 ± 0.8 and 11.0 ± 2.6% heme leakage respectively). Thanks to the in-situ H2O2 generation, an improved kcat/KM for the p-nitrophenol conversion was observed (kcat of 20.1 ± 0.6 min-1 and KM of 0.23 ± 0.03 mM), corresponding to 4 times the kcat/KM of the CYP116B5-hd. The aim of this work is the development of an engineered biocatalyst to be exploited in bioremediation. In order to tackle this challenge, an E. coli strain expressing CYP116B5-SOX was employed to exploit this biocatalyst for the oxidation of the wastewater contaminating-drug tamoxifen. Data show a 12-fold increase in tamoxifen N-oxide production-herein detected for the first time as CYP116B5 metabolite-compared to the direct H2O2 supply, equal to the 25% of the total drug conversion.


Assuntos
Biodegradação Ambiental , Sistema Enzimático do Citocromo P-450 , Escherichia coli , Peróxido de Hidrogênio , Sarcosina Oxidase , Peróxido de Hidrogênio/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Sarcosina Oxidase/metabolismo , Sarcosina Oxidase/genética , Sarcosina Oxidase/química , Oxigenases de Função Mista/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/química , Oxirredução , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/química , Sarcosina/metabolismo , Sarcosina/análogos & derivados
7.
Front Immunol ; 15: 1293723, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38690263

RESUMO

T cells must adapt to variations in tissue microenvironments; these adaptations include the degree of oxygen availability. The hypoxia-inducible factor (HIF) transcription factors control much of this adaptation, and thus regulate many aspects of T cell activation and function. The HIFs are in turn regulated by oxygen-dependent hydroxylases: both the prolyl hydroxylases (PHDs) which interact with the VHL tumour suppressor and control HIF turnover, and the asparaginyl hydroxylase known as the Factor inhibiting HIF (FIH), which modulates HIF transcriptional activity. To determine the role of this latter factor in T cell function, we generated T cell-specific FIH knockout mice. We found that FIH regulates T cell fate and function in a HIF-dependent manner and show that the effects of FIH activity occur predominantly at physiological oxygen concentrations. T cell-specific loss of FIH boosts T cell cytotoxicity, augments T cell expansion in vivo, and improves anti-tumour immunotherapy in mice. Specifically inhibiting FIH in T cells may therefore represent a promising strategy for cancer immunotherapy.


Assuntos
Diferenciação Celular , Camundongos Knockout , Animais , Camundongos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Ativação Linfocitária/imunologia , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Camundongos Endogâmicos C57BL
8.
Microb Biotechnol ; 17(5): e14453, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38683670

RESUMO

Soluble di-iron monooxygenases (SDIMOs) are multi-component enzymes catalysing the oxidation of various substrates. These enzymes are characterized by high sequence and functional diversity that is still not well understood despite their key role in biotechnological processes including contaminant biodegradation. In this study, we analysed a mutant of Rhodoccocus aetherivorans BCP1 (BCP1-2.10) characterized by a transposon insertion in the gene smoA encoding the alpha subunit of the plasmid-located SDIMO SmoABCD. The mutant BCP1-2.10 showed a reduced capacity to grow on propane, lost the ability to grow on butane, pentane and n-hexane and was heavily impaired in the capacity to degrade chloroform and trichloroethane. The expression of the additional SDIMO prmABCD in BCP1-2.10 probably allowed the mutant to partially grow on propane and to degrade it, to some extent, together with the other short-chain n-alkanes. The complementation of the mutant, conducted by introducing smoABCD in the genome as a single copy under a constitutive promoter or within a plasmid under a thiostreptone-inducible promoter, allowed the recovery of the alkanotrophic phenotype as well as the capacity to degrade chlorinated n-alkanes. The heterologous expression of smoABCD allowed a non-alkanotrophic Rhodococcus strain to grow on pentane and n-hexane when the gene cluster was introduced together with the downstream genes encoding alcohol and aldehyde dehydrogenases and a GroEL chaperon. BCP1 smoA gene was shown to belong to the group 6 SDIMOs, which is a rare group of monooxygenases mostly present in Mycobacterium genus and in a few Rhodococcus strains. SmoABCD originally evolved in Mycobacterium and was then acquired by Rhodococcus through horizontal gene transfer events. This work extends the knowledge of the biotechnologically relevant SDIMOs by providing functional and evolutionary insights into a group 6 SDIMO in Rhodococcus and demonstrating its key role in the metabolism of short-chain alkanes and degradation of chlorinated n-alkanes.


Assuntos
Alcanos , Oxigenases de Função Mista , Alcanos/metabolismo , Oxigenases de Função Mista/metabolismo , Oxigenases de Função Mista/genética , Teste de Complementação Genética , Mutagênese Insercional , Biotransformação , Elementos de DNA Transponíveis , Hidrocarbonetos Clorados/metabolismo
9.
Arch Microbiol ; 206(5): 236, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38676717

RESUMO

Lignocellulolytic enzymes from a novel Myceliophthora verrucosa (5DR) strain was found to potentiate the efficacy of benchmark cellulase during saccharification of acid/alkali treated bagasse by ~ 2.24 fold, indicating it to be an important source of auxiliary enzymes. The De-novo sequencing and analysis of M. verrucosa genome (31.7 Mb) revealed to encode for 7989 putative genes, representing a wide array of CAZymes (366) with a high proportions of auxiliary activity (AA) genes (76). The LC/MS QTOF based secretome analysis of M. verrucosa showed high abundance of glycosyl hydrolases and AA proteins with cellobiose dehydrogenase (CDH) (AA8), being the most prominent auxiliary protein. A gene coding for lytic polysaccharide monooxygenase (LPMO) was expressed in Pichia pastoris and CDH produced by M. verrucosa culture on rice straw based solidified medium were purified and characterized. The mass spectrometry of LPMO catalyzed hydrolytic products of avicel showed the release of both C1/C4 oxidized products, indicating it to be type-3. The lignocellulolytic cocktail comprising of in-house cellulase produced by Aspergillus allahabadii strain spiked with LPMO & CDH exhibited enhanced and better hydrolysis of mild alkali deacetylated (MAD) and unwashed acid pretreated rice straw slurry (UWAP), when compared to Cellic CTec3 at high substrate loading rate.


Assuntos
Biomassa , Proteínas Fúngicas , Genoma Fúngico , Lignina , Saccharomycetales , Sordariales , Lignina/metabolismo , Sordariales/genética , Sordariales/enzimologia , Sordariales/metabolismo , Hidrólise , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Desidrogenases de Carboidrato/metabolismo , Desidrogenases de Carboidrato/genética , Celulose/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Celulase/metabolismo , Celulase/genética
10.
Epigenetics ; 19(1): 2337142, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38583183

RESUMO

Deregulation of ten-eleven Translocation protein 1 (TET1) is commonly reported to induce imbalances in gene expression and subsequently to colorectal cancer development (CRC). On the other hand, vitamin C (VitC) improves the prognosis of colorectal cancer by reprogramming the cancer epigenome and limiting chemotherapeutic drug resistance events. In this study, we aimed to characterize TET1-specific subcellular compartments and evaluate the effect of VitC on TET1 compartmentalization in colonic tumour cells. We demonstrated that TET1 is concentrated in coarse nuclear bodies (NB) and 5-hydroxymethylcytosine (5hmC) in foci in colorectal cancer cells (HCT116, Caco-2, and HT-29). To our knowledge, this is the first report of a novel intracellular localization profile of TET1 and its demethylation marker, 5hmC, in CRC cells. Interestingly, we found that TET1-NBs frequently interacted with Cajal bodies, but not with promyelocytic leukaemia (PML) bodies. In addition, we report that VitC treatment of HCT116 cells induces 5hmC foci biogenesis and triggers 5hmC marks to form active complexes with nuclear body components, including both Cajal and PML proteins. Our data highlight novel NB-concentrating TET1 in CRC cells and demonstrate that VitC modulates TET1-NBs' interactions with other nuclear structures. These findings reveal novel TET1-dependent cellular functions and potentially provide new insights for CRC management.


Assuntos
Ácido Ascórbico , Neoplasias Colorretais , Humanos , Células CACO-2 , Ácido Ascórbico/farmacologia , Corpos Nucleares da Leucemia Promielocítica , Metilação de DNA , Corpos Nucleares , Vitaminas , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Oxigenases de Função Mista/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo
11.
Semin Hematol ; 61(1): 51-60, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38431463

RESUMO

Loss of function TET2 mutation (TET2MT) is one of the most frequently observed lesions in clonal hematopoiesis (CH). TET2 a member TET-dioxygenase family of enzymes that along with TET1 and TET3, progressively oxidize 5-methyl cytosine (mC) resulting in regulated demethylation of promoter, enhancer and silencer elements of the genome. This process is critical for efficient transcription that determine cell lineage fate, proliferation and survival and the maintenance of the genomic fidelity with aging of the organism. Partial or complete loss-of-function TET2 mutations create regional and contextual DNA hypermethylation leading to gene silencing or activation that result in skewed myeloid differentiation and clonal expansion. In addition to myeloid skewing, loss of TET2 creates differentiation block and provides proliferative advantage to hematopoietic stem and progenitor cells (HSPCs). TET2MT is a prototypical lesion in CH, since the mutant clones dominate during stress hematopoiesis and often associates with evolution of myeloid malignancies. TET2MT clones has unique privilege to create and persist in pro-inflammatory milieu. Despite extensive knowledge regarding biochemical mechanisms underlying distorted myeloid differentiation, and enhanced self-replication of TET2MT HSPC, the mechanistic link of various pathogenesis associated with TET2 loss in CHIP is less understood. Here we review the recent development in TET2 biology and its probable mechanistic link in CH with aging and inflammation. We also explored the therapeutic strategies of targeting TET2MT associated CHIP and the utility of targeting TET2 in normal hematopoiesis and somatic cell reprograming. We explore the biochemical mechanisms and candidate therapies that emerged in last decade of research.


Assuntos
Hematopoiese Clonal , Dioxigenases , Humanos , Hematopoiese Clonal/genética , Mutação , Metilação de DNA , Diferenciação Celular/genética , Hematopoese/genética , Oxigenases de Função Mista/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dioxigenases/genética
12.
Int J Biol Macromol ; 266(Pt 1): 131095, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537859

RESUMO

Gibberellin oxidases (GAoxs) identified from many species play indispensable roles in GA biosynthesis and GA signal transduction. However, there has been limited research conducted on the GAox family of Salix matsudana, a tetraploid ornamental tree species. Here, 54 GAox genes were identified from S. matsudana and renamed as SmGA20ox1-22, SmGA2ox1-24, SmGA3ox1-6, and SmGAox-like1/2. Gene structure and conserved motif analysis showed that SmGA3ox members possess the 1 intron and other SmGAoxs contain 2-3 introns, and motif 1/2/7 universally present in all SmGAoxs. A total of 69 gene pairs were identified from SmGAox family members, and the Ka/Ks values indicated the SmGAoxs experience the purifying selection. The intra species collinearity analysis implied S. matsudana, S. purpurea, and Populus trichocarpa have the close genetic relationship. The GO analysis suggested SmGAoxs are dominantly involved in GA metabolic process, ion binding, and oxidoreductase activity. RNA-sequencing demonstrated that some SmGAoxs may play an essential role in salt and submergence stresses. In addition, the SmGA20ox13/21 displayed the dominant vitality of GA20 oxidase, but the SmGA20ox13/21 still possessed low activities of GA2 and GA3 oxidases. This study can contribute to reveal the regulatory mechanism of salt and submergence tolerance in willow.


Assuntos
Regulação da Expressão Gênica de Plantas , Giberelinas , Oxigenases de Função Mista , Filogenia , Salix , Salix/genética , Giberelinas/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Oxigenases de Função Mista/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Perfilação da Expressão Gênica
13.
Nat Commun ; 15(1): 2339, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38490987

RESUMO

Taxol is a widely-applied anticancer drug that inhibits microtubule dynamics in actively replicating cells. Although a minimum 19-step biosynthetic pathway has been proposed and 16 enzymes likely involved have been characterized, stepwise biosynthetic reactions from the well-characterized di-oxygenated taxoids to Taxol tetracyclic core skeleton are yet to be elucidated. Here, we uncover the biosynthetic pathways for a few tri-oxygenated taxoids via confirming the critical reaction order of the second and third hydroxylation steps, unearth a taxoid 9α-hydroxylase catalyzing the fourth hydroxylation, and identify CYP725A55 catalyzing the oxetane ester formation via a cascade oxidation-concerted acyl rearrangement mechanism. After identifying a acetyltransferase catalyzing the formation of C7-OAc, the pathway producing the highly-oxygenated 1ß-dehydroxybaccatin VI with the Taxol tetracyclic core skeleton is elucidated and its complete biosynthesis from taxa-4(20),11(12)-diene-5α-ol is achieved in an engineered yeast. These systematic studies lay the foundation for the complete elucidation of the biosynthetic pathway of Taxol.


Assuntos
Paclitaxel , Taxoides , Taxoides/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Hidroxilação , Oxirredução
14.
J Clin Invest ; 134(6)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38488003

RESUMO

Wnts, cholesterol, and MAPK signaling are essential for development and adult homeostasis. Here, we report that fatty acid hydroxylase domain containing 2 (FAXDC2), a previously uncharacterized enzyme, functions as a methyl sterol oxidase catalyzing C4 demethylation in the Kandutsch-Russell branch of the cholesterol biosynthesis pathway. FAXDC2, a paralog of MSMO1, regulated the abundance of the specific C4-methyl sterols lophenol and dihydro-T-MAS. Highlighting its clinical relevance, FAXDC2 was repressed in Wnt/ß-catenin-high cancer xenografts, in a mouse genetic model of Wnt activation, and in human colorectal cancers. Moreover, in primary human colorectal cancers, the sterol lophenol, regulated by FAXDC2, accumulated in the cancerous tissues and not in adjacent normal tissues. FAXDC2 linked Wnts to RTK/MAPK signaling. Wnt inhibition drove increased recycling of RTKs and activation of the MAPK pathway, and this required FAXDC2. Blocking Wnt signaling in Wnt-high cancers caused both differentiation and senescence; and this was prevented by knockout of FAXDC2. Our data show the integration of 3 ancient pathways, Wnts, cholesterol synthesis, and RTK/MAPK signaling, in cellular proliferation and differentiation.


Assuntos
Neoplasias Colorretais , beta Catenina , Adulto , Humanos , Camundongos , Animais , beta Catenina/genética , beta Catenina/metabolismo , Via de Sinalização Wnt , Proliferação de Células , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo
15.
Epigenetics ; 19(1): 2323751, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38431880

RESUMO

Methylation modifications play pertinent roles in regulating gene expression and various biological processes. The silencing of the demethylase enzyme TET1 can affect the expressions of key oncogenes or tumour suppressor genes, thus contributing to tumour formation. Nonetheless, how TET1 affects the progression of cervical cancer is yet to be elucidated. In this study, we found that the expression of TET1 was significantly downregulated in cervical cancer tissues. Functionally, TET1 knockdown in cervical cancer cells can promote cell proliferation, migration, invasion, cervical xenograft tumour formation and EMT. On the contrary, its overexpression can reverse the aforementioned processes. Moreover, the autophagy level of cervical cancer cells can be enhanced after TET1 knockdown. Mechanistically, methylated DNA immunoprecipitation (MeDIP)-sequencing and MeDIP quantitative real-time PCR revealed that TET1 mediates the methylation of autophagy promoter regions. These findings suggest that TET1 affects the autophagy of cervical cancer cells by altering the methylation levels of NKRF or HIST1H2AK, but the specific mechanism needs to be investigated further.


Assuntos
Oxigenases de Função Mista , Neoplasias do Colo do Útero , Feminino , Humanos , Autofagia/genética , Proliferação de Células , Metilação de DNA , Oxigenases de Função Mista/genética , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas/genética , Neoplasias do Colo do Útero/genética
16.
Breast Cancer Res ; 26(1): 44, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468288

RESUMO

BACKGROUND: Ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) is a deubiquitinating enzyme that regulates ERα expression in triple-negative cancer (TNBC). This study aimed to explore the deubiquitination substrates of UCHL1 related to endocrine therapeutic responses and the mechanisms of UCHL1 dysregulation in TNBC. METHODS: Bioinformatics analysis was conducted using online open databases. TNBC representative MDA-MB-468 and SUM149 cells were used for in vitro and in-vivo studies. Co-immunoprecipitation was used to explore the interaction between UCHL1 and KLF5 and UCHL1-mediated KIF5 deubiquitination. CCK-8, colony formation and animal studies were performed to assess endocrine therapy responses. The regulatory effect of TET1/3 on UCHL1 promoter methylation and transcription was performed by Bisulfite sequencing PCR and ChIP-qPCR. RESULTS: UCHL1 interacts with KLF5 and stabilizes KLF5 by reducing its polyubiquitination and proteasomal degradation. The UCHL1-KLF5 axis collaboratively upregulates EGFR expression while downregulating ESR1 expression at both mRNA and protein levels in TNBC. UCHL1 knockdown slows the proliferation of TNBC cells and sensitizes the tumor cells to Tamoxifen and Fulvestrant. KLF5 overexpression partially reverses these trends. Both TET1 and TET3 can bind to the UCHL1 promoter region, reducing methylation of associated CpG sites and enhancing UCHL1 transcription in TNBC cell lines. Additionally, TET1 and TET3 elevates KLF5 protein level in a UCHL1-dependent manner. CONCLUSION: UCHL1 plays a pivotal role in TNBC by deubiquitinating and stabilizing KLF5, contributing to endocrine therapy resistance. TET1 and TET3 promote UCHL1 transcription through promoter demethylation and maintain KLF5 protein level in a UCHL1-dependent manner, implying their potential as therapeutic targets in TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Animais , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Linhagem Celular Tumoral , Regiões Promotoras Genéticas , Proliferação de Células , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Proteínas Proto-Oncogênicas/genética , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo
17.
J Microbiol Methods ; 219: 106908, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38403133

RESUMO

1,4-Dioxane, a likely human carcinogen, is a co-contaminant at many chlorinated solvent contaminated sites. Conventional treatment technologies, such as carbon sorption or air stripping, are largely ineffective, and so many researchers have explored bioremediation for site clean-up. An important step towards this involves examining the occurrence of the functional genes associated with 1,4-dioxane biodegradation. The current research explored potential biomarkers for 1,4-dioxane in three mixed microbial communities (wetland sediment, agricultural soil, impacted site sediment) using monooxygenase targeted amplicon sequencing, followed by quantitative PCR (qPCR). A BLAST analysis of the sequencing data detected only two of the genes previously associated with 1,4-dioxane metabolism or co-metabolism, namely propane monooxygenase (prmA) from Rhodococcus jostii RHA1 and Rhodococcus sp. RR1. To investigate this further, qPCR primers and probes were designed, and the assays were used to enumerate prmA gene copies in the three communities. Gene copies of Rhodococcus RR1 prmA were detected in all three, while gene copies of Rhodococcus jostii RHA1 prmA were detected in two of the three sample types (except impacted site sediment). Further, there was a statistically significant increase in RR1 prmA gene copies in the microcosms inoculated with impacted site sediment following 1,4-dioxane biodegradation compared to the control microcosms (no 1,4-dioxane) or to the initial copy numbers before incubation. Overall, the results indicate the importance of Rhodococcus associated prmA, compared to other 1,4-dioxane degrading associated biomarkers, in three different microbial communities. Also, the newly designed qPCR assays provide a platform for others to investigate 1,4-dioxane biodegradation potential in mixed communities and should be of particular interest to those considering bioremediation as a potential 1,4-dioxane remediation approach.


Assuntos
Dioxanos , Microbiota , Rhodococcus , Humanos , Biodegradação Ambiental , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Propano/metabolismo , Rhodococcus/genética , Rhodococcus/metabolismo , Biomarcadores/metabolismo
18.
Epigenomics ; 16(5): 293-308, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38356412

RESUMO

Background: Triple-negative breast cancer (TNBC) is an aggressive disease with limited treatment options. Eribulin, a chemotherapeutic drug, induces epigenetic changes in cancer cells, suggesting a unique mechanism of action. Materials & methods: MDA-MB 231 cells were treated with eribulin and paclitaxel, and the samples from 53 patients treated with neoadjuvant eribulin were compared with those from 14 patients who received the standard-of-care treatment using immunohistochemistry. Results: Eribulin treatment caused significant DNA methylation changes in drug-tolerant persister TNBC cells, and it also elicited changes in the expression levels of epigenetic modifiers (DNMT1, TET1, DNMT3A/B) in vitro and in primary TNBC tumors. Conclusion: These findings provide new insights into eribulin's mechanism of action and potential biomarkers for predicting TNBC treatment response.


Assuntos
Metilação de DNA , Furanos , Policetídeos de Poliéter , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Cetonas/farmacologia , Cetonas/uso terapêutico , DNA/metabolismo , Linhagem Celular Tumoral , Oxigenases de Função Mista/genética , Proteínas Proto-Oncogênicas/genética
19.
Eur Rev Med Pharmacol Sci ; 28(3): 1123-1134, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38375718

RESUMO

DNA methylation is an epigenetic mechanism involving the transfer of a methyl group onto the C5 position of the cytosine to form 5-methylcytosine (5mC). In general, DNA methylation in cancer is associated with the repression of the expression of tumor suppressor genes (TSG) and the demethylation with the overexpression of oncogenes. DNA methylation was considered a stable modification for a long time, but in 2009, it was reported that DNA methylation is a dynamic modification. The Ten-Eleven-Translocations (TET) enzymes include TET1, TET2, and TET3 and participate in DNA demethylation through the oxidation of 5mC to 5-hydroxymethylcytosine (5hmC). The 5hmC oxidates to 5-formylcytosine (5fC) and 5-carboxylcitosine (5caC), which are replaced by unmodified cytosines via Thymine-DNA Glycosylase (TDG). Several studies have shown that the expression of TET proteins and 5hmC levels are deregulated in gynecological cancers, such as cervical (CC), endometrial (EC), and ovarian (OC) cancers. In addition, the molecular mechanisms involved in this deregulation have been reported, as well as their potential role as biomarkers in these types of cancers. This review shows the state-of-art TET enzymes and the 5hmC epigenetic mark in CC, EC, and OC.


Assuntos
Epigênese Genética , Neoplasias , Humanos , Metilação de DNA , Oxirredução , Neoplasias/genética , Carcinogênese/genética , Oxigenases de Função Mista/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo
20.
J Pediatr Endocrinol Metab ; 37(3): 271-275, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38353247

RESUMO

OBJECTIVES: The fatty acid 2-hydroxylase gene (FA2H) compound heterozygous or homozygous variants that cause spastic paraplegia type 35 (SPG35) (OMIM # 612319) are autosomal recessive HSPs. FA2H gene variants in humans have been shown to be associated with not only SPG35 but also leukodystrophy and neurodegeneration with brain iron accumulation. CASE PRESENTATION: A patient with a spastic gait since age seven was admitted to the paediatric metabolism department. She was born to consanguineous, healthy Turkish parents and had no family history of neurological disease. She had normal developmental milestones and was able to walk at 11 months. At age seven, she developed a progressive gait disorder with increased muscle tone in her lower limbs, bilateral ankle clonus and dysdiadochokinesis. She had frequent falls and deteriorating school performance. Despite physiotherapy, her spastic paraplegia was progressive. Whole exome sequencing (WES) identified a homozygous NM_024306.5:c.460C>T missense variant in the FA2H gene, of which her parents were heterozygous carriers. A brain MRI showed a slight reduction in the cerebellar volume with no iron deposits. CONCLUSIONS: Pathogenic variants of the FA2H gene have been linked to neurodegeneration with iron accumulation in the brain, leukodystrophy and SPG35. When patients developed progressive gait deterioration since early childhood even if not exhibited hypointensity in the basal ganglia detected by neuroimaging, FA2H-related neurodegeneration with brain iron accumulation should be ruled out. FA2H/SPG35 disease is characterised by notable clinical and imaging variability, as well as phenotypic diversity.


Assuntos
Transtornos Heredodegenerativos do Sistema Nervoso , Paraplegia Espástica Hereditária , Criança , Feminino , Humanos , Pré-Escolar , Mutação , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/patologia , Oxigenases de Função Mista/genética , Imageamento por Ressonância Magnética , Linhagem , Paraplegia , Ferro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA