Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.370
Filtrar
1.
Sci Rep ; 14(1): 11587, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773239

RESUMO

Peptide deformylase can catalyse the removal of formyl groups from the N-terminal formyl methionine of the primary polypeptide chain. The peptide deformylase genes of a few herbaceous plants have been studied to some extent, but the peptide deformylase genes of woody plants have not been studied. In this study, we isolated EuPDF1B from Eucommia ulmoides Oliv. The full-length sequence of EuPDF1B is 1176 bp long with a poly-A tail and contains an open reading frame of 831 bp that encodes a protein of 276 amino acids. EuPDF1B was localized to the chloroplast. qRT‒PCR analysis revealed that this gene was expressed in almost all tissues tested but mainly in mature leaves. Moreover, the expression of EuPDF1B was enhanced by ABA, MeJA and GA and inhibited by shading treatment. The expression pattern of EuPDF1B was further confirmed in EuPDF1Bp: GUS transgenic tobacco plants. Among all the transgenic tobacco plants, EuPDF1Bp-3 showed the highest GUS histochemical staining and activity in different tissues. This difference may be related to the presence of enhancer elements in the region from - 891 bp to - 236 bp of the EuPDF1B promoter. In addition, the expression of the chloroplast gene psbA and the net photosynthetic rate, fresh weight and height of tobacco plants overexpressing EuPDF1B were greater than those of the wild-type tobacco plants, suggesting that EuPDF1B may promote the growth of transgenic tobacco plants. This is the first time that PDF and its promoter have been cloned from woody plants, laying a foundation for further analysis of the function of PDF and the regulation of its expression.


Assuntos
Amidoidrolases , Clonagem Molecular , Eucommiaceae , Regulação da Expressão Gênica de Plantas , Nicotiana , Plantas Geneticamente Modificadas , Eucommiaceae/genética , Eucommiaceae/metabolismo , Plantas Geneticamente Modificadas/genética , Amidoidrolases/genética , Amidoidrolases/metabolismo , Nicotiana/genética , Cloroplastos/genética , Cloroplastos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Filogenia , Sequência de Aminoácidos , Ciclopentanos/farmacologia , Ciclopentanos/metabolismo , Oxilipinas/farmacologia , Oxilipinas/metabolismo
2.
Sci Rep ; 14(1): 10238, 2024 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702342

RESUMO

Fatty acids are precursors of inflammatory oxylipins. In the context of COVID-19, an excessive production of pro-inflammatory cytokines is associated with disease severity. The objective was to investigate whether the baseline omega 3/omega 6 fatty acids ratio and the oxylipins were associated with inflammation and oxidative stress in unvaccinated patients with COVID-19, classified according to the severity of the disease during hospitalization. This Prospective population-based cohort study included 180 hospitalized patients with COVID-19. The patients were classified into five groups according to the severity of their disease. Group 1 was the least severe and Group 5 was the most severe. Three specific types of fatty acids-eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and arachidonic acid (AA)-as well as their enzymatic and non-enzymatic oxylipins were determined using chromatography coupled mass spectrometry. There was no difference in the ratio of omega-3 to omega-6 fatty acids between the groups (p = 0.276). However, the EPA/AA ratio was lower in Group 4 compared to Group 1 (p = 0.015). This finding was associated with an increase in both C-Reactive Protein (p < 0.001) and Interleukin-6 (p = 0.002). Furthermore, the concentration of F2-Isoprostanes was higher in Group 4 than in Group 1 (p = 0.009), while no significant changes were observed for other oxylipins among groups. Multivariate analysis did not present any standard of biomarkers, suggesting the high complexity of factors involved in the disease severity. Our hypothesis was confirmed in terms of EPA/AA ratio. A higher EPA/AA ratio upon hospital admission was found to be associated with lower concentration of C-Reactive Protein and Interleukin-6, leading to a better prognosis of hospitalized SARS-CoV-2 patients. Importantly, this beneficial outcome was achieved without any form of supplementation. The trial also provides important information that can be further applied to reduce the severity of infections associated with an uncontrolled synthesis of pro-inflammatory cytokines.Trial registration: https://clinicaltrials.gov/study/NCT04449718 -01/06/2020. ClinicalTrials.gov Identifier: NCT04449718.


Assuntos
COVID-19 , Ácidos Graxos Ômega-3 , Hospitalização , Índice de Gravidade de Doença , Humanos , COVID-19/sangue , Masculino , Feminino , Pessoa de Meia-Idade , Ácidos Graxos Ômega-3/sangue , Idoso , Estudos Prospectivos , SARS-CoV-2/isolamento & purificação , Oxilipinas/sangue , Ácido Eicosapentaenoico/sangue , Estresse Oxidativo , Ácidos Docosa-Hexaenoicos/sangue , Adulto , Inflamação/sangue
3.
BMC Genom Data ; 25(1): 41, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711007

RESUMO

BACKGROUND: Class III peroxidase (POD) enzymes play vital roles in plant development, hormone signaling, and stress responses. Despite extensive research on POD families in various plant species, the knowledge regarding the POD family in Chinese pear (Pyrus bretschenedri) is notably limited. RESULTS: We systematically characterized 113 POD family genes, designated as PbPOD1 to PbPOD113 based on their chromosomal locations. Phylogenetic analysis categorized these genes into seven distinct subfamilies (I to VII). The segmental duplication events were identified as a prevalent mechanism driving the expansion of the POD gene family. Microsynteny analysis, involving comparisons with Pyrus bretschenedri, Fragaria vesca, Prunus avium, Prunus mume and Prunus persica, highlighted the conservation of duplicated POD regions and their persistence through purifying selection during the evolutionary process. The expression patterns of PbPOD genes were performed across various plant organs and diverse fruit development stages using transcriptomic data. Furthermore, we identified stress-related cis-acting elements within the promoters of PbPOD genes, underscoring their involvement in hormonal and environmental stress responses. Notably, qRT-PCR analyses revealed distinctive expression patterns of PbPOD genes in response to melatonin (MEL), salicylic acid (SA), abscisic acid (ABA), and methyl jasmonate (MeJA), reflecting their responsiveness to abiotic stress and their role in fruit growth and development. CONCLUSIONS: In this study, we investigated the potential functions and evolutionary dynamics of PbPOD genes in Pyrus bretschenedri, positioning them as promising candidates for further research and valuable indicators for enhancing fruit quality through molecular breeding strategies.


Assuntos
Regulação da Expressão Gênica de Plantas , Filogenia , Reguladores de Crescimento de Plantas , Pyrus , Pyrus/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Melatonina/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Oxilipinas/farmacologia , Ciclopentanos/farmacologia , Peroxidase/genética , Peroxidase/metabolismo , Acetatos/farmacologia , Acetatos/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento
4.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731798

RESUMO

Aphids are insect pests that suck phloem sap and introduce salivary proteins into plant tissues through saliva secretion. The effector of salivary proteins plays a key role in the modulation of host plant defense responses and enhancing aphid host adaptation. Based on previous transcriptome sequencing results, a candidate effector cyclin-dependent kinase-like (CDK) was identified from the grain aphid Sitobion avenae. In this study, the function of SaCDK in wheat defense response and the adaptation of S. avenae was investigated. Our results showed that the transient overexpression of SaCDK in tobacco Nicotiana benthamiana suppressed cell death triggered by mouse pro-apoptotic protein-BAX or Phytophthora infestans PAMP-INF1. SaCDK, delivered into wheat cells through a Pseudomonas fluorescens-mediated bacterial type III secretion system, suppressed callose deposition in wheat seedlings, and the overexpression of SaCDK in wheat significantly decreased the expression levels of salicylic acid and jasmonic acid signaling pathway-related genes phenylalanine ammonia lyase (PAL), pathogenesis-related 1 protein (PR1), lipoxygenase (LOX) and Ω-3 fatty acid desaturase (FAD). In addition, aphid bioassay results showed that the survival and fecundity of S. avenae were significantly increased while feeding on the wheat plants carrying SaCDK. Taken together, our findings demonstrate that the salivary protein SaCDK is involved in inhibiting host defense response and improving its host adaptation, which lays the foundation to uncover the mechanism of the interaction of cereal aphids and host plants.


Assuntos
Afídeos , Triticum , Animais , Afídeos/fisiologia , Triticum/parasitologia , Triticum/genética , Triticum/metabolismo , Proteínas e Peptídeos Salivares/metabolismo , Proteínas e Peptídeos Salivares/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Adaptação Fisiológica , Doenças das Plantas/parasitologia , Regulação da Expressão Gênica de Plantas , Nicotiana/parasitologia , Nicotiana/genética , Ciclopentanos/metabolismo , Oxilipinas
5.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38732009

RESUMO

The interaction between light and phytohormones is crucial for plant growth and development. The practice of supplementing light at night during winter to promote pitaya flowering and thereby enhance yield has been shown to be crucial and widely used. However, it remains unclear how supplemental winter light regulates phytohormone levels to promote flowering in pitaya. In this study, through analyzing the transcriptome data of pitaya at four different stages (NL, L0, L1, L2), we observed that differentially expressed genes (DEGs) were mainly enriched in the phytohormone biosynthesis pathway. We further analyzed the data and found that cytokinin (CK) content first increased at the L0 stage and then decreased at the L1 and L2 stages after supplemental light treatment compared to the control (NL). Gibberellin (GA), auxin (IAA), salicylic acid (SA), and jasmonic acid (JA) content increased during the formation of flower buds (L1, L2 stages). In addition, the levels of GA, ethylene (ETH), IAA, and abscisic acid (ABA) increased in flower buds after one week of development (L2f). Our results suggest that winter nighttime supplemental light can interact with endogenous hormone signaling in pitaya, particularly CK, to regulate flower bud formation. These results contribute to a better understanding of the mechanism of phytohormone interactions during the induction of flowering in pitaya under supplemental light in winter.


Assuntos
Flores , Regulação da Expressão Gênica de Plantas , Luz , Reguladores de Crescimento de Plantas , Estações do Ano , Reguladores de Crescimento de Plantas/metabolismo , Flores/metabolismo , Flores/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Citocininas/metabolismo , Giberelinas/metabolismo , Ipomoea nil/metabolismo , Ipomoea nil/genética , Transcriptoma , Perfilação da Expressão Gênica , Ciclopentanos , Oxilipinas
6.
Nat Commun ; 15(1): 3770, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704366

RESUMO

Aspergillus fumigatus is the leading causative agent of life-threatening invasive aspergillosis in immunocompromised individuals. One antifungal class used to treat Aspergillus infections is the fungistatic echinocandins, semisynthetic drugs derived from naturally occurring fungal lipopeptides. By inhibiting beta-1,3-glucan synthesis, echinocandins cause both fungistatic stunting of hyphal growth and repeated fungicidal lysis of apical tip compartments. Here, we uncover an endogenous mechanism of echinocandin tolerance in A. fumigatus whereby the inducible oxylipin signal 5,8-diHODE confers protection against tip lysis via the transcription factor ZfpA. Treatment of A. fumigatus with echinocandins induces 5,8-diHODE synthesis by the fungal oxygenase PpoA in a ZfpA dependent manner resulting in a positive feedback loop. This protective 5,8-diHODE/ZfpA signaling relay is conserved among diverse isolates of A. fumigatus and in two other Aspergillus pathogens. Our findings reveal an oxylipin-directed growth program-possibly arisen through natural encounters with native echinocandin producing fungi-that enables echinocandin tolerance in pathogenic aspergilli.


Assuntos
Antifúngicos , Aspergilose , Aspergillus fumigatus , Equinocandinas , Proteínas Fúngicas , Oxilipinas , Antifúngicos/farmacologia , Equinocandinas/farmacologia , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/antagonistas & inibidores , Oxilipinas/metabolismo , Oxilipinas/farmacologia , Aspergilose/tratamento farmacológico , Aspergilose/microbiologia , Transdução de Sinais/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Hifas/efeitos dos fármacos , Hifas/crescimento & desenvolvimento , Hifas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
7.
PeerJ ; 12: e17371, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38708338

RESUMO

Background: Platycodon grandiflorus belongs to the genus Platycodon and has many pharmacological effects, such as expectorant, antitussive, and anti-tumor properties. Among transcription factor families peculiar to eukaryotes, the basic leucine zipper (bZIP) family is one of the most important, which exists widely in plants and participates in many biological processes, such as plant growth, development, and stress responses. However, genomic analysis of the bZIP gene family and related stress response genes has not yet been reported in P. grandiflorus. Methods: P. grandiflorus bZIP (PgbZIP) genes were first identified here, and the phylogenetic relationships and conserved motifs in the PgbZIPs were also performed. Meanwhile, gene structures, conserved domains, and the possible protein subcellular localizations of these PgbZIPs were characterized. Most importantly, the cis-regulatory elements and expression patterns of selected genes exposed to two different stresses were analyzed to provide further information on PgbZIPs potential biological roles in P. grandiflorus upon exposure to environmental stresses. Conclusions: Forty-six PgbZIPs were identified in P. grandiflorus and divided into nine groups, as displayed in the phylogenetic tree. The results of the chromosomal location and the collinearity analysis showed that forty-six PgbZIP genes were distributed on eight chromosomes, with one tandem duplication event and eleven segmental duplication events identified. Most PgbZIPs in the same phylogenetic group have similar conserved motifs, domains, and gene structures. There are cis-regulatory elements related to the methyl jasmonate (MeJA) response, low-temperature response, abscisic acid response, auxin response, and gibberellin response. Ten PgbZIP genes were selected to study their expression patterns upon exposure to low-temperature and MeJA treatments, and all ten genes responded to these stresses. The real-time quantitative polymerase chain reaction (RT-qPCR) results suggest that the expression levels of most PgbZIPs decreased significantly within 6 h and then gradually increased to normal or above normal levels over the 90 h following MeJA treatment. The expression levels of all PgbZIPs were significantly reduced after 3 h of the low-temperature treatment. These results reveal the characteristics of the PgbZIP family genes and provide valuable information for improving P. grandiflorus's ability to cope with environmental stresses during growth and development.


Assuntos
Acetatos , Fatores de Transcrição de Zíper de Leucina Básica , Ciclopentanos , Regulação da Expressão Gênica de Plantas , Oxilipinas , Filogenia , Platycodon , Oxilipinas/farmacologia , Ciclopentanos/farmacologia , Acetatos/farmacologia , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Platycodon/genética , Platycodon/metabolismo , Estresse Fisiológico/genética , Estresse Fisiológico/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Temperatura Baixa , Reguladores de Crescimento de Plantas/farmacologia
8.
BMC Plant Biol ; 24(1): 353, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693493

RESUMO

BACKGROUND: Wasabi, a Brassicaceae member, is well-known for its unique pungent and hot flavor which is produced from glucosinolate (GSL) degradation. Myrosinase (MYR) is a principle enzyme catalyzing the primary conversion of GSLs to GSL hydrolysis products (GHPs) which is responsible for plant defense system and food quality. Due to the limited information in relation to MYRs present in wasabi (Wasabia japonica M.), this study aimed to identify the MYR isogenes in W. japonica and analyze their roles in relation to GSL metabolism. RESULTS: In results, WjMYRI-1 was abundantly expressed in all organs, whereas WjMYRI-2 showed only trace expression levels. WjMYRII was highly expressed in the aboveground tissues. Interestingly, WjMYRII expression was significantly upregulated by certain abiotic factors, such as methyl jasmonate (more than 40-fold in petioles and 15-fold in leaves) and salt (tenfold in leaves). Young leaves and roots contained 97.89 and 91.17 µmol‧g-1 of GSL, whereas less GSL was produced in mature leaves and petioles (38.36 and 44.79 µmol‧g-1, respectively). Similar pattern was observed in the accumulation of GHPs in various plant organs. Notably, despite the non-significant changes in GSL production, abiotic factors treated samples enhanced significantly GHP content. Pearson's correlation analysis revealed that WjMYRI-1 expression significantly correlated with GSL accumulation and GHP formation, suggesting the primary role of WjMYRI-1-encoding putative protein in GSL degradation. In contrast, WjMYRII expression level showed no correlation with GSL or GHP content, suggesting another physiological role of WjMYRII in stress-induced response. CONCLUSIONS: In conclusions, three potential isogenes (WjMYRI-1, WjMYRI-2, and WjMYRII) encoding for different MYR isoforms in W. japonica were identified. Our results provided new insights related to MYR and GSL metabolism which are important for the implications of wasabi in agriculture, food and pharmaceutical industry. Particularly, WjMYRI-1 may be primarily responsible for GSL degradation, whereas WjMYRII (clade II) may be involved in other regulatory pathways induced by abiotic factors.


Assuntos
Acetatos , Glucosinolatos , Glicosídeo Hidrolases , Glucosinolatos/metabolismo , Glicosídeo Hidrolases/metabolismo , Glicosídeo Hidrolases/genética , Regulação da Expressão Gênica de Plantas , Brassicaceae/genética , Brassicaceae/metabolismo , Brassicaceae/enzimologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/genética
9.
Sci Rep ; 14(1): 10650, 2024 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724532

RESUMO

Avoiding fatigue is a long-standing challenge in both healthy and diseased individuals. Establishing objective standard markers of fatigue is essential to evaluate conditions in spatiotemporally different locations and individuals and identify agents to fight against fatigue. Herein, we introduced a novel method for evaluating fatigue using nervous system markers (including dopamine, adrenaline, and noradrenaline), various cytokine levels (such as interleukin [IL]-1ß, tumor necrosis factor [TNF]-α, IL-10, IL-2, IL-5 and IL-17A), and oxidative stress markers (such as diacron-reactive oxygen metabolites [d-ROMs] and biological antioxidant potential [BAP]) in a rat fatigue model. Using this method, the anti-fatigue effects of methyl dihydrojasmonate (MDJ) and linalool, the fragrance/flavor compounds used in various products, were assessed. Our method evaluated the anti-fatigue effects of the aforementioned compounds based on the changes in levels of the nerves system markers, cytokines, and oxidative stress markers. MDJ exerted more potent anti-fatigue effects than linalool. In conclusion, the reported method could serve as a useful tool for fatigue studies and these compounds may act as effective therapeutic agents for abrogating fatigue symptoms.


Assuntos
Monoterpenos Acíclicos , Citocinas , Modelos Animais de Doenças , Fadiga , Estresse Oxidativo , Animais , Estresse Oxidativo/efeitos dos fármacos , Monoterpenos Acíclicos/farmacologia , Ratos , Fadiga/tratamento farmacológico , Fadiga/metabolismo , Citocinas/metabolismo , Masculino , Ciclopentanos/farmacologia , Antioxidantes/farmacologia , Biomarcadores , Monoterpenos/farmacologia , Oxilipinas/farmacologia , Ratos Sprague-Dawley
10.
BMC Plant Biol ; 24(1): 363, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724910

RESUMO

Salinity stress is a significant challenge in agricultural production. When soil contains high salts, it can adversely affect plant growth and productivity due to the high concentration of soluble salts in the soil water. To overcome this issue, foliar applications of methyl jasmonate (MJ) and gibberellic acid (GA3) can be productive amendments. Both can potentially improve the plant's growth attributes and flowering, which are imperative in improving growth and yield. However, limited literature is available on their combined use in canola to mitigate salinity stress. That's why the current study investigates the impact of different levels of MJ (at concentrations of 0.8, 1.6, and 3.2 mM MJ) and GA3 (0GA3 and 5 mg/L GA3) on canola cultivated in salt-affected soils. Applying all the treatments in four replicates. Results indicate that the application of 0.8 mM MJ with 5 mg/L GA3 significantly enhances shoot length (23.29%), shoot dry weight (24.77%), number of leaves per plant (24.93%), number of flowering branches (26.11%), chlorophyll a (31.44%), chlorophyll b (20.28%) and total chlorophyll (27.66%) and shoot total soluble carbohydrates (22.53%) over control. Treatment with 0.8 mM MJ and 5 mg/L GA3 resulted in a decrease in shoot proline (48.17%), MDA (81.41%), SOD (50.59%), POD (14.81%) while increase in N (10.38%), P (15.22%), and K (8.05%) compared to control in canola under salinity stress. In conclusion, 0.8 mM MJ + 5 mg/L GA3 can improve canola growth under salinity stress. More investigations are recommended at the field level to declare 0.8 mM MJ + 5 mg/L GA3 as the best amendment for alleviating salinity stress in different crops.


Assuntos
Acetatos , Antioxidantes , Brassica napus , Ciclopentanos , Giberelinas , Oxilipinas , Reguladores de Crescimento de Plantas , Solo , Ciclopentanos/farmacologia , Oxilipinas/farmacologia , Brassica napus/crescimento & desenvolvimento , Brassica napus/efeitos dos fármacos , Brassica napus/metabolismo , Giberelinas/metabolismo , Giberelinas/farmacologia , Antioxidantes/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Acetatos/farmacologia , Solo/química , Clorofila/metabolismo , Estresse Salino/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Nutrientes/metabolismo
11.
Planta ; 259(6): 152, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38735012

RESUMO

MAIN CONCLUSION: Overexpression of Artemisia annua jasmonic acid carboxyl methyltransferase (AaJMT) leads to enhanced artemisinin content in Artemisia annua. Artemisinin-based combination therapies remain the sole deterrent against deadly disease malaria and Artemisia annua remains the only natural producer of artemisinin. In this study, the 1101 bp gene S-adenosyl-L-methionine (SAM): Artemisia annua jasmonic acid carboxyl methyltransferase (AaJMT), was characterised from A. annua, which converts jasmonic acid (JA) to methyl jasmonate (MeJA). From phylogenetic analysis, we confirmed that AaJMT shares a common ancestor with Arabidopsis thaliana, Eutrema japonica and has a close homology with JMT of Camellia sinensis. Further, the Clustal Omega depicted that the conserved motif I, motif III and motif SSSS (serine) required to bind SAM and JA, respectively, are present in AaJMT. The relative expression of AaJMT was induced by wounding, MeJA and salicylic acid (SA) treatments. Additionally, we found that the recombinant AaJMT protein catalyses the synthesis of MeJA from JA with a Km value of 37.16 µM. Moreover, site-directed mutagenesis of serine-151 in motif SSSS to tyrosine, asparagine-10 to threonine and glutamine-25 to histidine abolished the enzyme activity of AaJMT, thus indicating their determining role in JA substrate binding. The GC-MS analysis validated that mutant proteins of AaJMT were unable to convert JA into MeJA. Finally, the artemisinin biosynthetic and trichome developmental genes were upregulated in AaJMT overexpression transgenic lines, which in turn increased the artemisinin content.


Assuntos
Acetatos , Artemisia annua , Artemisininas , Ciclopentanos , Metiltransferases , Oxilipinas , Filogenia , Artemisia annua/genética , Artemisia annua/enzimologia , Artemisia annua/metabolismo , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Artemisininas/metabolismo , Oxilipinas/metabolismo , Oxilipinas/farmacologia , Metiltransferases/metabolismo , Metiltransferases/genética , Acetatos/farmacologia , Acetatos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regulação da Expressão Gênica de Plantas , Ácido Salicílico/metabolismo
12.
BMC Plant Biol ; 24(1): 418, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38760720

RESUMO

BACKGROUND: Blueberry fruit exhibit atypical climacteric ripening with a non-auto-catalytic increase in ethylene coincident with initiation of ripening. Further, application of ethephon, an ethylene-releasing plant growth regulator, accelerates ripening by increasing the proportion of ripe (blue) fruit as compared to the control treatment. To investigate the mechanistic role of ethylene in regulating blueberry ripening, we performed transcriptome analysis on fruit treated with ethephon, an ethylene-releasing plant growth regulator. RESULTS: RNA-Sequencing was performed on two sets of rabbiteye blueberry ('Powderblue') fruit: (1) fruit from divergent developmental stages; and (2) fruit treated with ethephon, an ethylene-releasing compound. Differentially expressed genes (DEGs) from divergent developmental stages clustered into nine groups, among which cluster 1 displayed reduction in expression during ripening initiation and was enriched with photosynthesis related genes, while cluster 7 displayed increased expression during ripening and was enriched with aromatic-amino acid family catabolism genes, suggesting stimulation of anthocyanin biosynthesis. More DEGs were apparent at 1 day after ethephon treatment suggesting its early influence during ripening initiation. Overall, a higher number of genes were downregulated in response to ethylene. Many of these overlapped with cluster 1 genes, indicating that ethylene-mediated downregulation of photosynthesis is an important developmental event during the ripening transition. Analyses of DEGs in response to ethylene also indicated interplay among phytohormones. Ethylene positively regulated abscisic acid (ABA), negatively regulated jasmonates (JAs), and influenced auxin (IAA) metabolism and signaling genes. Phytohormone quantification supported these effects of ethylene, indicating coordination of blueberry fruit ripening by ethylene. CONCLUSION: This study provides insights into the role of ethylene in blueberry fruit ripening. Ethylene initiates blueberry ripening by downregulating photosynthesis-related genes. Also, ethylene regulates phytohormone-metabolism and signaling related genes, increases ABA, and decreases JA concentrations. Together, these results indicate that interplay among multiple phytohormones regulates the progression of ripening, and that ethylene is an important coordinator of such interactions during blueberry fruit ripening.


Assuntos
Ácido Abscísico , Mirtilos Azuis (Planta) , Ciclopentanos , Etilenos , Frutas , Regulação da Expressão Gênica de Plantas , Oxilipinas , Fotossíntese , Reguladores de Crescimento de Plantas , Etilenos/metabolismo , Ácido Abscísico/metabolismo , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Mirtilos Azuis (Planta)/genética , Mirtilos Azuis (Planta)/crescimento & desenvolvimento , Mirtilos Azuis (Planta)/metabolismo , Mirtilos Azuis (Planta)/fisiologia , Frutas/crescimento & desenvolvimento , Frutas/genética , Frutas/efeitos dos fármacos , Oxilipinas/metabolismo , Regulação para Baixo , Compostos Organofosforados/farmacologia , Perfilação da Expressão Gênica
13.
Nat Commun ; 15(1): 3875, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719800

RESUMO

The genomes of charophyte green algae, close relatives of land plants, typically do not show signs of developmental regulation by phytohormones. However, scattered reports of endogenous phytohormone production in these organisms exist. We performed a comprehensive analysis of multiple phytohormones in Viridiplantae, focusing mainly on charophytes. We show that auxin, salicylic acid, ethylene and tRNA-derived cytokinins including cis-zeatin are found ubiquitously in Viridiplantae. By contrast, land plants but not green algae contain the trans-zeatin type cytokinins as well as auxin and cytokinin conjugates. Charophytes occasionally produce jasmonates and abscisic acid, whereas the latter is detected consistently in land plants. Several phytohormones are excreted into the culture medium, including auxin by charophytes and cytokinins and salicylic acid by Viridiplantae in general. We note that the conservation of phytohormone biosynthesis and signaling pathways known from angiosperms does not match the capacity for phytohormone biosynthesis in Viridiplantae. Our phylogenetically guided analysis of established algal cultures provides an important insight into phytohormone biosynthesis and metabolism across Streptophyta.


Assuntos
Citocininas , Ácidos Indolacéticos , Filogenia , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Citocininas/metabolismo , Viridiplantae/metabolismo , Viridiplantae/genética , Etilenos/metabolismo , Oxilipinas/metabolismo , Ácido Salicílico/metabolismo , Ácido Abscísico/metabolismo , Regulação da Expressão Gênica de Plantas , Ciclopentanos/metabolismo , Evolução Biológica , Clorófitas/metabolismo , Clorófitas/genética , Transdução de Sinais
14.
Int J Mol Sci ; 25(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38612510

RESUMO

The ATP-dependent caseinolytic protease (Clp) system has been reported to play an important role in plant growth, development, and defense against pathogens. However, whether the Clp system is involved in plant defense against herbivores remains largely unclear. We explore the role of the Clp system in rice defenses against brown planthopper (BPH) Nilaparvata lugens by combining chemical analysis, transcriptome, and molecular analyses, as well as insect bioassays. We found the expression of a rice Clp proteolytic subunit gene, OsClpP6, was suppressed by infestation of BPH gravid females and mechanical wounding. Silencing OsClpP6 enhanced the level of BPH-induced jasmonic acid (JA), JA-isoleucine (JA-Ile), and ABA, which in turn promoted the production of BPH-elicited rice volatiles and increased the resistance of rice to BPH. Field trials showed that silencing OsClpP6 decreased the population densities of BPH and WBPH. We also observed that silencing OsClpP6 decreased chlorophyll content in rice leaves at early developmental stages and impaired rice root growth and seed setting rate. These findings demonstrate that an OsClpP6-mediated Clp system in rice was involved in plant growth-defense trade-offs by affecting the biosynthesis of defense-related signaling molecules in chloroplasts. Moreover, rice plants, after recognizing BPH infestation, can enhance rice resistance to BPH by decreasing the Clp system activity. The work might provide a new way to breed rice varieties that are resistant to herbivores.


Assuntos
Ciclopentanos , Hemípteros , Oryza , Oxilipinas , Feminino , Animais , Proteases Dependentes de ATP , Oryza/genética , Melhoramento Vegetal , Peptídeo Hidrolases , Isoleucina , Hemípteros/genética , Trifosfato de Adenosina
15.
Physiol Plant ; 176(2): e14265, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38556740

RESUMO

Plant species distribution across ecosystems is influenced by multiple environmental factors, and recurrent seasonal stress events can act as natural selection agents for specific plant traits and limit species distribution. For that, studies aiming at understanding how environmental constraints affect adaptive mechanisms of taxonomically closely related species are of great interest. We chose two Scabiosa species inhabiting contrasting environments: the coastal scabious S. atropurpurea, typically coping with hot-dry summers in a Mediterranean climate, and the mountain scabious S. columbaria facing cold winters in an oceanic climate. A set of functional traits was examined to assess plant performance in these congeneric species from contrasting natural habitats. Both S. atropurpurea and S. columbaria appeared to be perfectly adapted to their environment in terms of adjustments in stomatal closure, CO2 assimilation rate and water use efficiency over the seasons. However, an unexpected dry period during winter followed by the typical Mediterranean hot-dry summer forced S. atropurpurea plants to deploy a set of photoprotective responses during summer. Aside from reductions in leaf water content and Fv/Fm, photoprotective molecules (carotenoids, α-tocopherol and anthocyanins) per unit of chlorophyll increased, mostly as a consequence of a severe chlorophyll loss. The profiling of stress-related hormones (ABA, salicylic acid and jasmonates) revealed associations between ABA and the bioactive jasmonoyl-isoleucine with the underlying photoprotective response to recurrent seasonal stress in S. atropurpurea. We conclude that jasmonates may be used together with ABA as a functional trait that may, at least in part, help understand plant responses to recurrent seasonal stress in the current frame of global climate change.


Assuntos
Antocianinas , Ciclopentanos , Ecossistema , Oxilipinas , Estações do Ano , Clorofila , Folhas de Planta/fisiologia , Água
16.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612625

RESUMO

Extreme drought weather has occurred frequently in recent years, resulting in serious yield loss in tea plantations. The study of drought in tea plantations is becoming more and more intensive, but there are fewer studies on drought-resistant measures applied in actual production. Therefore, in this study, we investigated the effect of exogenous tea polyphenols on the drought resistance of tea plant by pouring 100 mg·L-1 of exogenous tea polyphenols into the root under drought. The exogenous tea polyphenols were able to promote the closure of stomata and reduce water loss from leaves under drought stress. Drought-induced malondialdehyde (MDA) accumulation in tea leaves and roots was also significantly reduced by exogenous tea polyphenols. Combined transcriptomic and metabolomic analyses showed that exogenous tea polyphenols regulated the abnormal responses of photosynthetic and energy metabolism in leaves under drought conditions and alleviated sphingolipid metabolism, arginine metabolism, and glutathione metabolism in the root system, which enhanced the drought resistance of tea seedlings. Exogenous tea polyphenols induced jasmonic acid-isoleucine (JA-ILE) accumulation in the root system, and the jasmonic acid-isoleucine synthetase gene (TEA028623), jasmonic acid ZIM structural domain proteins (JAMs) synthesis genes (novel.22237, TEA001821), and the transcription factor MYC2 (TEA014288, TEA005840) were significantly up-regulated. Meanwhile, the flavonoid metabolic flow was significantly altered in the root; for example, the content of EGCG, ECG, and EGC was significantly increased. Thus, exogenous tea polyphenols enhance the drought resistance of tea plants through multiple pathways.


Assuntos
Camellia sinensis , Ciclopentanos , Resistência à Seca , Oxilipinas , Isoleucina , Polifenóis/farmacologia , Camellia sinensis/genética , Flavonoides , Chá
17.
Int J Mol Sci ; 25(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38612774

RESUMO

D-arginine (D-Arg) can promote embryogenic callus (EC) proliferation and increase the rate of somatic embryo induction of litchi (Litchi chinensis Sonn.), yet the mechanism underlying the processes is incompletely understood. To investigate the mechanism, physiological responses of polyamines (PAs) [putrescine (Put), spermidine (Spd), and spermine (Spm)] were investigated for D-Arg-treated litchi EC and enzyme activity related to polyamine metabolism, plant endogenous hormones, and polyamine- and embryogenic-related genes were explored. Results showed that the exogenous addition of D-Arg reduces the activity of diamine oxidase (DAO) and polyamine oxidase (PAO) in EC, reduces the production of H2O2, promotes EC proliferation, and increases the (Spd + Spm)/Put ratio to promote somatic embryo induction. Exogenous D-Arg application promoted somatic embryogenesis (SE) by increasing indole-3-acetyl glycine (IAA-Gly), kinetin-9-glucoside (K9G), and dihydrozeatin-7-glucoside (DHZ7G) levels and decreasing trans-zeatin riboside (tZR), N-[(-)-jasmonoyl]-(L)-valine (JA-Val), jasmonic acid (JA), and jasmonoyl-L-isoleucine (Ja-ILE) levels on 18 d, as well as promoting cell division and differentiation. The application of exogenous D-Arg regulated EC proliferation and somatic embryo induction by altering gene expression levels of the WRKY family, AP2/ERF family, C3H family, and C2H2 family. These results indicate that exogenous D-Arg could regulate the proliferation of EC and the SE induction of litchi by changing the biosynthesis of PAs through the alteration of gene expression pattern and endogenous hormone metabolism.


Assuntos
Ciclopentanos , Isoleucina/análogos & derivados , Litchi , Oxilipinas , Litchi/genética , Peróxido de Hidrogênio , Desenvolvimento Embrionário , Poliaminas , Espermidina , Putrescina , Espermina , Arginina , Divisão Celular , Glucosídeos
18.
BMC Plant Biol ; 24(1): 266, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600447

RESUMO

BACKGROUND: Mango (Mangifera indica L.) is grown in Hainan, Guangdong, Yunnan, Sichuan, and Fujian provinces and Guanxi autonomous region of China. However, trees growing in these areas suffer severe cold stress during winter, which affects the yield. To this regard, data on global metabolome and transcriptome profiles of leaves are limited. Here, we used combined metabolome and transcriptome analyses of leaves of three mango cultivars with different cold stress tolerance, i.e. Jinhuang (J)-tolerant, Tainung (T) and Guiremang No. 82 (G)-susceptible, after 24 (LF), 48 (MF) and 72 (HF) hours of cold. RESULTS: A total of 1,323 metabolites belonging to 12 compound classes were detected. Of these, amino acids and derivatives, nucleotides and derivatives, and lipids accumulated in higher quantities after cold stress exposure in the three cultivars. Notably, Jinhuang leaves showed increasing accumulation trends of flavonoids, terpenoids, lignans and coumarins, and alkaloids with exposure time. Among the phytohormones, jasmonic acid and abscisic acid levels decreased, while N6-isopentenyladenine increased with cold stress time. Transcriptome analysis led to the identification of 22,526 differentially expressed genes. Many genes enriched in photosynthesis, antenna proteins, flavonoid, terpenoid (di- and sesquiterpenoids) and alkaloid biosynthesis pathways were upregulated in Jihuang leaves. Moreover, expression changes related to phytohormones, MAPK (including calcium and H2O2), and the ICE-CBF-COR signalling cascade indicate involvement of these pathways in cold stress responses. CONCLUSION: Cold stress tolerance in mango leaves is associated with regulation of primary and secondary metabolite biosynthesis pathways. Jasmonic acid, abscisic acid, and cytokinins are potential regulators of cold stress responses in mango leaves.


Assuntos
Ciclopentanos , Mangifera , Oxilipinas , Transcriptoma , Resposta ao Choque Frio/genética , Mangifera/genética , Reguladores de Crescimento de Plantas/metabolismo , Ácido Abscísico/metabolismo , Peróxido de Hidrogênio/metabolismo , China , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas
19.
J Hazard Mater ; 470: 134172, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38569340

RESUMO

Xyloglucan endotransglucosylase/hydrolases (XTH) are cell wall-modifying enzymes important in plant response to abiotic stress. However, the role of XTH in cadmium (Cd) tolerance in ramie remains largely unknown. Here, we identified and cloned BnXTH1, a member of the XTH family, in response to Cd stress in ramie. The BnXTH1 promoter (BnXTH1p) demonstrated that MeJA induces the response of BnXTH1p to Cd stress. Moreover, overexpressing BnXTH1 in Boehmeria nivea increased Cd tolerance by significantly increasing the Cd content in the cell wall and decreasing Cd inside ramie cells. Cadmium stress induced BnXTH1-expression and consequently increased xyloglucan endotransglucosylase (XET) activity, leading to high xyloglucan contents and increased hemicellulose contents in ramie. The elevated hemicellulose content increased Cd chelation onto the cell walls and reduced the level of intracellular Cd. Interestingly, overexpressing BnXTH1 significantly increased the content of Cd in vacuoles of ramie and vacuolar compartmentalization genes. Altogether, these results evidence that Cd stress induced MeJA accumulation in ramie, thus, activating BnXTH1 expression and increasing the content of xyloglucan to enhance the hemicellulose binding capacity and increase Cd chelation onto cell walls. BnXTH1 also enhances the vacuolar Cd compartmentalization and reduces the level of Cd entering the organelles and soluble solution.


Assuntos
Boehmeria , Cádmio , Parede Celular , Vacúolos , Cádmio/toxicidade , Cádmio/metabolismo , Parede Celular/metabolismo , Parede Celular/efeitos dos fármacos , Boehmeria/metabolismo , Boehmeria/efeitos dos fármacos , Vacúolos/metabolismo , Vacúolos/efeitos dos fármacos , Glicosiltransferases/metabolismo , Glicosiltransferases/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Polissacarídeos/metabolismo , Oxilipinas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glucanos/metabolismo , Xilanos/metabolismo , Estresse Fisiológico/efeitos dos fármacos
20.
Sci Rep ; 14(1): 9338, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654120

RESUMO

Induced resistance is considered an eco-friendly disease control strategy, which can enhance plant disease resistance by inducing the plant's immune system to activate the defense response. In recent years, studies have shown that lactic acid can play a role in plant defense against biological stress; however, whether lactic acid can improve tobacco resistance to Phytophthora nicotianae, and its molecular mechanism remains unclear. In our study, the mycelial growth and sporangium production of P. nicotianae were inhibited by lactic acid in vitro in a dose-dependent manner. Application of lactic acid could reduce the disease index, and the contents of total phenol, salicylic acid (SA), jasmonic acid (JA), lignin and H2O2, catalase (CAT) and phenylalanine ammonia-lyase (PAL) activities were significantly increased. To explore this lactic acid-induced protective mechanism for tobacco disease resistance, RNA-Seq analysis was used. Lactic acid enhances tobacco disease resistance by activating Ca2+, reactive oxygen species (ROS) signal transduction, regulating antioxidant enzymes, SA, JA, abscisic acid (ABA) and indole-3-acetic acid (IAA) signaling pathways, and up-regulating flavonoid biosynthesis-related genes. This study demonstrated that lactic acid might play a role in inducing resistance to tobacco black shank disease; the mechanism by which lactic acid induces disease resistance includes direct antifungal activity and inducing the host to produce direct and primed defenses. In conclusion, this study provided a theoretical basis for lactic acid-induced resistance and a new perspective for preventing and treating tobacco black shank disease.


Assuntos
Resistência à Doença , Ácido Láctico , Nicotiana , Oxilipinas , Phytophthora , Doenças das Plantas , Phytophthora/patogenicidade , Phytophthora/fisiologia , Nicotiana/microbiologia , Nicotiana/imunologia , Nicotiana/genética , Nicotiana/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/prevenção & controle , Oxilipinas/metabolismo , Ácido Láctico/metabolismo , Ciclopentanos/metabolismo , Ácido Salicílico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Regulação da Expressão Gênica de Plantas , Ácido Abscísico/metabolismo , Fenilalanina Amônia-Liase/metabolismo , Transdução de Sinais , Peróxido de Hidrogênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA