Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
1.
J Med Chem ; 67(13): 10986-11002, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38932487

RESUMO

Respiratory syncytial virus (RSV) is a major cause of hospitalization in infants, the elderly, and immune-compromised patients. While a half-life extended monoclonal antibody and 2 vaccines have recently been approved for infants and the elderly, respectively, options to prevent disease in immune-compromised patients are still needed. Here, we describe spiro-azetidine oxindoles as small molecule RSV entry inhibitors displaying favorable potency, developability attributes, and long-acting PK when injected as an aqueous suspension, suggesting their potential to prevent complications following RSV infection over a period of 3 to 6 months with 1 or 2 long-acting intramuscular (IM) or subcutaneous (SC) injections in these immune-compromised patients.


Assuntos
Antivirais , Azetidinas , Oxindóis , Infecções por Vírus Respiratório Sincicial , Compostos de Espiro , Humanos , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Animais , Oxindóis/química , Oxindóis/farmacologia , Compostos de Espiro/química , Compostos de Espiro/farmacologia , Compostos de Espiro/farmacocinética , Compostos de Espiro/administração & dosagem , Antivirais/farmacologia , Antivirais/química , Antivirais/administração & dosagem , Azetidinas/química , Azetidinas/farmacologia , Azetidinas/administração & dosagem , Azetidinas/farmacocinética , Profilaxia Pré-Exposição/métodos , Injeções Intramusculares , Indóis/química , Indóis/administração & dosagem , Indóis/farmacologia , Injeções Subcutâneas , Vírus Sincicial Respiratório Humano/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos
2.
Phys Chem Chem Phys ; 26(22): 16139-16152, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38787638

RESUMO

Cyclin-dependent kinase 2 (CDK2) regulates cell cycle checkpoints in the synthesis and mitosis phases and plays a pivotal role in cancerous cell proliferation. The activation of CDK2, influenced by various protein signaling pathways, initiates the phosphorylation process. Due to its crucial role in carcinogenesis, CDK2 is a druggable hotspot target to suppress cancer cell proliferation. In this context, several studies have identified spirooxindoles as an effective class of CDK2 inhibitors. In the present study, three spirooxindoles (SOI1, SOI2, and SOI3) were studied to understand their inhibitory mechanism against CDK2 through a structure-based approach. Molecular docking and molecular dynamics (MD) simulations were performed to explore their interactions with CDK2 at the molecular level. The calculated binding free energy for the spirooxindole-based CDK2 inhibitors aligned well with experimental results regarding CDK2 inhibition. Energy decomposition (ED) analysis identified key binding residues, including I10, G11, T14, R36, F82, K89, L134, P155, T158, Y159, and T160, in the CDK2 active site and T-loop phosphorylation. Molecular mechanics (MM) energy was identified as the primary contributor to stabilizing inhibitor binding in the CDK2 protein structure. Furthermore, the analysis of binding affinity revealed that the inhibitor SOI1 binds more strongly to CDK2 compared to the other inhibitors under investigation. It demonstrated a robust interaction with the crucial residue T160 in the T-loop phosphorylation site, responsible for kinase activation. These insights into the inhibitory mechanism are anticipated to contribute to the development of potential CDK2 inhibitors using the spirooxindole scaffold.


Assuntos
Quinase 2 Dependente de Ciclina , Indóis , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Oxindóis , Inibidores de Proteínas Quinases , Compostos de Espiro , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Quinase 2 Dependente de Ciclina/metabolismo , Quinase 2 Dependente de Ciclina/química , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Humanos , Oxindóis/química , Oxindóis/farmacologia , Compostos de Espiro/química , Compostos de Espiro/farmacologia , Indóis/química , Indóis/farmacologia , Termodinâmica , Relação Estrutura-Atividade , Estrutura Molecular , Ligação Proteica , Espiro-Oxindóis
3.
PLoS Biol ; 22(5): e3002550, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38768083

RESUMO

Alkenyl oxindoles have been characterized as autophagosome-tethering compounds (ATTECs), which can target mutant huntingtin protein (mHTT) for lysosomal degradation. In order to expand the application of alkenyl oxindoles for targeted protein degradation, we designed and synthesized a series of heterobifunctional compounds by conjugating different alkenyl oxindoles with bromodomain-containing protein 4 (BRD4) inhibitor JQ1. Through structure-activity relationship study, we successfully developed JQ1-alkenyl oxindole conjugates that potently degrade BRD4. Unexpectedly, we found that these molecules degrade BRD4 through the ubiquitin-proteasome system, rather than the autophagy-lysosomal pathway. Using pooled CRISPR interference (CRISPRi) screening, we revealed that JQ1-alkenyl oxindole conjugates recruit the E3 ubiquitin ligase complex CRL4DCAF11 for substrate degradation. Furthermore, we validated the most potent heterobifunctional molecule HL435 as a promising drug-like lead compound to exert antitumor activity both in vitro and in a mouse xenograft tumor model. Our research provides new employable proteolysis targeting chimera (PROTAC) moieties for targeted protein degradation, providing new possibilities for drug discovery.


Assuntos
Proteínas de Ciclo Celular , Oxindóis , Proteólise , Ubiquitina-Proteína Ligases , Humanos , Animais , Proteólise/efeitos dos fármacos , Camundongos , Ubiquitina-Proteína Ligases/metabolismo , Oxindóis/farmacologia , Oxindóis/metabolismo , Oxindóis/química , Proteínas de Ciclo Celular/metabolismo , Fatores de Transcrição/metabolismo , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Nus , Células HEK293 , Relação Estrutura-Atividade , Complexo de Endopeptidases do Proteassoma/metabolismo , Azepinas/farmacologia , Azepinas/química , Azepinas/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Feminino , Proteínas que Contêm Bromodomínio , Receptores de Interleucina-17
4.
Eur J Med Chem ; 271: 116357, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38636130

RESUMO

The oxindole scaffold has been the center of several kinase drug discovery programs, some of which have led to approved medicines. A series of two oxindole matched pairs from the literature were identified where TLK2 was potently inhibited as an off-target kinase. The oxindole has long been considered a promiscuous kinase inhibitor template, but across these four specific literature oxindoles TLK2 activity was consistent, while the kinome profile was radically different ranging from narrow to broad spectrum kinome coverage. We synthesized a large series of analogues, utilizing quantitative structure-activity relationship (QSAR) analysis, water mapping of the kinase ATP binding sites, kinome profiling, and small-molecule x-ray structural analysis to optimize TLK2 inhibition and kinome selectivity. This resulted in the identification of several narrow spectrum, sub-family selective, chemical tool compounds including 128 (UNC-CA2-103) that could enable elucidation of TLK2 biology.


Assuntos
Descoberta de Drogas , Inibidores de Proteínas Quinases , Relação Quantitativa Estrutura-Atividade , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/síntese química , Humanos , Estrutura Molecular , Oxindóis/farmacologia , Oxindóis/química , Oxindóis/síntese química , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Relação Dose-Resposta a Droga , Modelos Moleculares
5.
Future Med Chem ; 16(9): 817-842, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38634318

RESUMO

Background: A dual COX/5-LOX strategy was adopted to develop new oxindole derivatives with superior anti-inflammatory activity. Methods: Three series of oxindoles - esters 4a-p, 6a-l and imines 7a-o - were synthesized and evaluated for their anti-inflammatory and analgesic activities. Molecular docking and predicted pharmacokinetic parameters were done for the most active compounds. A new LC-MS/MS method was developed and validated for the quantification of 4h in rat plasma. Results: Compounds 4h, 6d, 6f, 6j and 7m revealed % edema inhibition up to 100.00%; also, 4l and 7j showed 100.00% writhing protection. Compound 4h showed dual inhibitory activity with IC50 = 0.0533 and 0.4195 µM for COX-2 and 5-LOX, respectively. Molecular docking rationalized the obtained biological activity. The pharmacokinetic parameters of 4h from rat plasma were obtained.


[Box: see text].


Assuntos
Araquidonato 5-Lipoxigenase , Ciclo-Oxigenase 2 , Edema , Simulação de Acoplamento Molecular , Oxindóis , Animais , Oxindóis/farmacologia , Oxindóis/química , Oxindóis/síntese química , Ratos , Araquidonato 5-Lipoxigenase/metabolismo , Edema/tratamento farmacológico , Edema/induzido quimicamente , Ciclo-Oxigenase 2/metabolismo , Masculino , Inibidores de Lipoxigenase/química , Inibidores de Lipoxigenase/farmacologia , Inibidores de Lipoxigenase/síntese química , Estrutura Molecular , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/síntese química , Relação Estrutura-Atividade , Analgésicos/química , Analgésicos/farmacologia , Analgésicos/síntese química , Humanos , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/síntese química , Inibidores de Ciclo-Oxigenase 2/química , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/síntese química , Indóis/química , Indóis/farmacologia , Indóis/síntese química
6.
Org Biomol Chem ; 22(17): 3459-3467, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38597668

RESUMO

A water mediated three-component reaction of isatin, 4-aminocoumarin, and 1,3-cyclodicarbonyl compounds is reported for the synthesis of spiro[chromeno[4,3-b]cyclopenta[e]pyridine-7,3'-indoline]trione and the spiro[chromeno[4,3-b]quinoline 7,3'-indoline]trione. Up to 27 different spirooxindole derivatives were synthesized by this method. The bioactivity of these spirooxindole derivatives was evaluated and they were found to show antifungal activity against Cercospora arachidicola, Physalospora piricola, Rhizoctonia cerealis, and Fusarium moniliforme.


Assuntos
Antifúngicos , Benzopiranos , Indóis , Nitrilas , Compostos de Espiro , Água , Antifúngicos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Compostos de Espiro/farmacologia , Compostos de Espiro/química , Compostos de Espiro/síntese química , Água/química , Indóis/química , Indóis/farmacologia , Indóis/síntese química , Testes de Sensibilidade Microbiana , Oxindóis/farmacologia , Oxindóis/síntese química , Oxindóis/química , Estrutura Molecular , Relação Estrutura-Atividade , Fusarium/efeitos dos fármacos
7.
Bioorg Chem ; 147: 107363, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38657527

RESUMO

Environment-benign, multicomponent synthetic methodologies are vital in modern pharmaceutical research and facilitates multi-targeted drug development via synergistic approach. Herein, we reported green and efficient synthesis of pyrano[2,3-c]pyrazole fused spirooxindole linked 1,2,3-triazoles using a tea waste supported copper catalyst (TWCu). The synthetic approach involves a one-pot, five-component reaction using N-propargylated isatin, hydrazine hydrate, ethyl acetoacetate, malononitrile/ethyl cyanoacetate and aryl azides as model substrates. Mechanistically, the reaction was found to proceed via in situ pyrazolone formation followed by Knoevenagel condensation, azide alkyne cycloaddition and Michael's addition reactions. The molecules were developed using structure-based drug design. The primary goal is to identifying anti-oxidant molecules with potential ability to modulate α-amylase and DPP4 (dipeptidyl-peptidase 4) activity. The anti-oxidant analysis, as determined via DPPH, suggested that the synthesized compounds, A6 and A10 possessed excellent anti-oxidant potential compared to butylated hydroxytoluene (BHT). In contrast, compounds A3, A5, A8, A9, A13, A15, and A18 were found to possess comparable anti-oxidant potential. Among these, A3 and A13 possessed potential α-amylase inhibitory activity compared to the acarbose, and A3 further emerged as dual inhibitors of both DPP4 and α-amylase with anti-oxidant potential. The relationship of functionalities on their anti-oxidant and enzymatic inhibition was explored in context to their SAR that was further corroborated using in silico techniques and enzyme kinetics.


Assuntos
Antioxidantes , Dipeptidil Peptidase 4 , Hipoglicemiantes , Pirazóis , Triazóis , alfa-Amilases , Pirazóis/química , Pirazóis/farmacologia , Pirazóis/síntese química , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/síntese química , Triazóis/química , Triazóis/farmacologia , Triazóis/síntese química , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/síntese química , Relação Estrutura-Atividade , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/metabolismo , Dipeptidil Peptidase 4/metabolismo , Estrutura Molecular , Humanos , Relação Dose-Resposta a Droga , Inibidores da Dipeptidil Peptidase IV/química , Inibidores da Dipeptidil Peptidase IV/farmacologia , Inibidores da Dipeptidil Peptidase IV/síntese química , Simulação de Acoplamento Molecular , Picratos/antagonistas & inibidores , Compostos de Espiro/química , Compostos de Espiro/farmacologia , Compostos de Espiro/síntese química , Oxindóis/farmacologia , Oxindóis/química , Oxindóis/síntese química , Benzopiranos , Nitrilas
8.
ChemMedChem ; 19(12): e202400052, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38517377

RESUMO

A series of spirocyclopropyl oxindoles with benzimidazole substitutions was synthesized and tested for their cytotoxicity against selected human cancer cells. Most of the molecules exhibited significant antiproliferative activity with compound 12 p being the most potent. It exhibited significant cytotoxicity against MCF-7 breast cancer cells (IC50 value 3.14±0.50 µM), evidenced by the decrease in viable cells and increased apoptotic features during phase contrast microscopy, such as AO/EB, DAPI and DCFDA staining studies. Compound 12 p also inhibited cell migration in wound healing assay. Anticancer potential of 12 p was proved by the inhibition of tubulin polymerization with IC50 of 5.64±0.15 µM. These results imply the potential of benzimidazole substituted spirocyclopropyl oxindoles, notably 12 p, as cytotoxic agent for the treatment of breast cancer.


Assuntos
Antineoplásicos , Apoptose , Benzimidazóis , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Oxindóis , Polimerização , Moduladores de Tubulina , Tubulina (Proteína) , Humanos , Apoptose/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Oxindóis/farmacologia , Oxindóis/química , Oxindóis/síntese química , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/química , Moduladores de Tubulina/síntese química , Benzimidazóis/química , Benzimidazóis/farmacologia , Benzimidazóis/síntese química , Relação Estrutura-Atividade , Proliferação de Células/efeitos dos fármacos , Polimerização/efeitos dos fármacos , Estrutura Molecular , Relação Dose-Resposta a Droga , Compostos de Espiro/química , Compostos de Espiro/farmacologia , Compostos de Espiro/síntese química , Movimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Desenvolvimento de Medicamentos , Células MCF-7
9.
Bioorg Chem ; 146: 107243, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38457953

RESUMO

In the current study, a series of benzimidazole-oxindole conjugates 8a-t were designed and synthesized as type II multi-kinase inhibitors. They exhibited moderate to potent inhibitory activity against BRAFWT up to 99.61 % at 10 µM. Notably, compounds 8e, 8k, 8n and 8s demonstrated the most promising activity, with 99.44 to 99.61 % inhibition. Further evaluation revealed that 8e, 8k, 8n and 8s exhibit moderate to potent inhibitory effects on the kinases BRAFV600E, VEGFR-2, and FGFR-1. Additionally, compounds 8a-t were screened for their cytotoxicity by the NCI, and several compounds showed significant growth inhibition in diverse cancer cell lines. Compound 8e stood out with a GI50 range of 1.23 - 3.38 µM on melanoma cell lines. Encouraged by its efficacy, it was further investigated for its antitumor activity and mechanism of action, using sorafenib as a reference standard. The hybrid compound 8e exhibited potent cellular-level suppression of BRAFWT, VEGFR-2, and FGFR-1 in A375 cell line, surpassing the effects of sorafenib. In vivo studies demonstrate that 8e significantly inhibits the growth of B16F10 tumors in mice, leading to increased survival rates and histopathological tumor regression. Furthermore, 8e reduces angiogenesis markers, mRNA expression levels of VEGFR-2 and FGFR-1, and production of growth factors. It also downregulated Notch1 protein expression and decreased TGF-ß1 production. Molecular docking simulations suggest that 8e binds as a promising type II kinase inhibitor in the target kinases interacting with the key regions in their kinase domain.


Assuntos
Antineoplásicos , Melanoma , Animais , Camundongos , Sorafenibe/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Estrutura Molecular , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Melanoma/tratamento farmacológico , Proteínas Proto-Oncogênicas B-raf , Proliferação de Células , Antineoplásicos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Benzimidazóis/farmacologia , Oxindóis/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais
10.
Chem Biodivers ; 21(6): e202301942, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38393713

RESUMO

This article reports one-pot synthesis of ten novel spirooxindoles using 5-methyl-2-thiohydantoin, isatin derivatives, and malononitrile in good to high yields (65-90 %). The structures of the synthesized compounds were deduced by 1H-NMR, 13C NMR, FT-IR, and Mass spectral data. The antibacterial activity of the compounds was evaluated against two Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis) and two Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) based on the Kirby-Bauer method. According to the obtained data, the synthesized compounds show more activity against Gram-positive bacteria than Gram-negative bacteria. Also, the antioxidant activity of these compounds was measured using the DPPH radical scavenging test method, which showed good to excellent activity (59.65-94.03 %). Among them, the chlorinated derivatives (4 f-j) exhibited more antioxidant activity (84.85-94.03 %) than the other compounds (4 a-e) (56.65-74.4 %) and even ascorbic acid as a standard antioxidant compound (82.3 %).


Assuntos
Antibacterianos , Antioxidantes , Indóis , Testes de Sensibilidade Microbiana , Compostos de Espiro , Antibacterianos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Antioxidantes/farmacologia , Antioxidantes/síntese química , Antioxidantes/química , Compostos de Bifenilo/antagonistas & inibidores , Compostos de Bifenilo/química , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Indóis/química , Indóis/farmacologia , Indóis/síntese química , Estrutura Molecular , Oxindóis/farmacologia , Oxindóis/química , Oxindóis/síntese química , Picratos/antagonistas & inibidores , Pseudomonas aeruginosa/efeitos dos fármacos , Compostos de Espiro/química , Compostos de Espiro/farmacologia , Compostos de Espiro/síntese química , Espiro-Oxindóis , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade , Isatina/síntese química , Isatina/química , Isatina/farmacologia
11.
Eur J Med Chem ; 268: 116255, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38401190

RESUMO

Breast cancer (BC) still poses a threat worldwide which demands continuous efforts to present safer and efficacious treatment options via targeted therapy. Beside kinases' aberrations as Aurora B kinase which controls cell division, BC adopts distinct metabolic profiles to meet its high energy demands. Accordingly, targeting both aurora B kinase and/or metabolic vulnerability presents a promising approach to tackle BC. Based on a previously reported indolinone-based Aurora B kinase inhibitor (III), and guided by structural modification and SAR investigation, we initially synthesized 11 sulfonamide-indolinone hybrids (5a-k), which showed differential antiproliferative activities against the NCI-60 cell line panel with BC cells displaying preferential sensitivity. Nonetheless, modest activity against Aurora B kinase (18-49% inhibition) was noted at 100 nM. Screening of a representative derivative (5d) against 17 kinases, which are overexpressed in BC, failed to show significant activity at 1 µM concentration, suggesting that kinase inhibitory activity only played a partial role in targeting BC. Bioinformatic analyses of genome-wide transcriptomics (RNA-sequencing), metabolomics, and CRISPR loss-of-function screens datasets suggested that indolinone-completely responsive BC cell lines (MCF7, MDA-MB-468, and T-47D) were more dependent on mitochondrial oxidative phosphorylation (OXPHOS) compared to partially responsive BC cell lines (MDA-MB-231, BT-549, and HS 578 T). An optimized derivative, TC11, obtained by molecular hybridization of 5d with sunitinib polar tail, manifested superior antiproliferative activity and was used for further investigations. Indeed, TC11 significantly reduced/impaired the mitochondrial respiration, as well as mitochondria-dependent ROS production of MCF7 cells. Furthermore, TC11 induced G0/G1 cell cycle arrest and apoptosis of MCF7 BC cells. Notably, anticancer doses of TC11 did not elicit cytotoxic effects on normal cardiomyoblasts and hepatocytes. Altogether, these findings emphasize the therapeutic potential of targeting the metabolic vulnerability of OXPHOS-dependent BC cells using TC11 and its related sulfonamide-indolinone hybrids. Further investigation is warranted to identify their precise/exact molecular target.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Aurora Quinase B , Oxindóis/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Apoptose , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Proliferação de Células
12.
Bioorg Chem ; 143: 107091, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38183683

RESUMO

This scientific review documents the recent progress of C3-spirooxindoles chemistry (synthesis and reaction mechanism) and their bioactivities, focusing on the promising results as well as highlighting the biological mechanism via the reported molecular docking findings of the most bioactive derivatives. C3-Spirooxindoles are attractive bioactive agents and have been found in a variety of natural compounds, including alkaloids. They are widely investigated in the field of medicinal chemistry and play a key role in medication development, such as antivirals, anticancer agents, antimicrobials, etc. Regarding organic synthesis, several traditional and advanced strategies have been reported, particularly those that started with isatin derivatives.


Assuntos
Benzopiranos , Nitrilas , Compostos de Espiro , Espiro-Oxindóis , Simulação de Acoplamento Molecular , Compostos de Espiro/farmacologia , Compostos de Espiro/química , Oxindóis/farmacologia , Oxindóis/química
13.
Med Chem ; 20(1): 63-77, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37723960

RESUMO

BACKGROUND: Since CDKs have been demonstrated to be overexpressed in a wide spectrum of human malignancies, their inhibition has been cited as an effective technique for anticancer drug development. METHODS: In this context, new bis-oxindole/spiro-triazole-oxindole anti-breast cancer drugs with potential CDK4 inhibitory effects were produced in this work. The novel series of bis-oxindole/spirotriazole- oxindole were synthesized from the reaction of bis-oxindole with the aniline derivatives then followed by 1,3-dipolar cycloaddition of hydrazonoyl chloride. RESULTS: The structure of these bis-oxindole/spiro-triazole-oxindole series was proven based on their spectral analyses. Most bis-oxindole and bis-spiro-triazole-oxindole compounds effectively inhibited the growth of MCF-7 (IC50 = 2.81-17.61 µM) and MDA-MB-231 (IC50 = 3.23-7.98 µM) breast cancer cell lines with low inhibitory activity against normal WI-38 cells. While the reference doxorubicin showed IC50 values of 7.43 µM against MCF-7 and 5.71 µM against the MDA-MB-231 cell line. Additionally, compounds 3b, 3c, 6b, and 6d revealed significant anti-CDK4 activity (IC50 = 0.157- 0.618 µM) compared to palbociclib (IC50 = 0.071 µM). Subsequent mechanistic investigations demonstrated that 3c was able to trigger tumor cell death through the induction of apoptosis. Moreover, it stimulated cancer cell cycle arrest in the G1 phase. Furthermore, western blotting disclosed that the 3c-induced cell cycle arrest may be mediated through p21 upregulation. CONCLUSION: According to all of the findings, bis-oxindole 3c shows promise as a cancer treatment targeting CDK4.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Relação Estrutura-Atividade , Triazóis , Células MCF-7 , Neoplasias da Mama/patologia , Apoptose , Oxindóis/farmacologia , Oxindóis/química , Antineoplásicos/química , Proliferação de Células , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 4 Dependente de Ciclina/farmacologia
14.
Drug Des Devel Ther ; 17: 3325-3347, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38024529

RESUMO

Background: The present study investigates the potential bioactivity of twelve experimentally designed C-2 quaternary indolinones against Providencia spp., a bacterial group of the Enterobacteriaceae family known to cause urinary tract infections. The study aims to provide insights into the bioactive properties of the investigated compounds and their potential use in developing novel treatments against Providencia spp. The experimental design of indolinones, combined with their unique chemical structure, makes them attractive candidates for further investigation. The results of this research may contribute to the development of novel therapeutic agents to combat Providencia spp. infections. Methods: The synthesized indolinones (moL1-moL12) are evaluated to identify any superior activity, particularly focusing on moL12, which possesses aza functionality. The antimicrobial activities of all twelve compounds are tested in triplicates against six different Gram-positive and Gram-negative organisms, including P. vermicola (P<0.05). Computational methods have been employed to assess the pharmacokinetic properties of the compounds. Results: Among the synthesized indolinones, moL12 exhibits superior activity compared to the other compounds with similar skeleton but different functional moieties. All six strains tested, including P. vermicola, demonstrated sensitivity to moL12. Computational studies support the pharmacokinetic properties of moL12, indicating acceptable absorption, distribution, metabolism, excretion, and toxicity characteristics. Conclusion: Utilizing the PPI approach, we have identified a promising target, FabD, in Gram-negative bacteria. Our analysis has shown that moL12 exhibits significant potential in binding with FabD, thereby, might inhibit cell wall formation, and display superior antimicrobial activity compared to other compounds. Consequently, moL12 may be a potential therapeutic agent that could be used to combat urinary tract infections caused by Providencia spp. The findings of this research hold significant promise for the development of new and effective treatments for bacterial infections.


Assuntos
Anti-Infecciosos , Infecções Urinárias , Humanos , Providencia , Oxindóis/farmacologia , Infecções Urinárias/tratamento farmacológico , Infecções Urinárias/microbiologia , Anti-Infecciosos/farmacologia
15.
Chem Biodivers ; 20(11): e202301176, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37861105

RESUMO

With the potential for coronaviruses to re-emerge and trigger future pandemics, the urgent development of antiviral inhibitors against SARS-CoV-2 is essential. The Mpro enzyme is crucial for disease progression and the virus's life cycle. It possesses allosteric sites that can hinder its catalytic activity, with some of these sites located at or near the dimerization interface. Among them, sites #2 and #5 possess druggable pockets and are predicted to bind drug-like molecules. Consequently, a commercially available ligand library containing ~7 million ligands was used to target site #2 via structure-based virtual screening. After extensive filtering, docking, and post-docking analyses, 53 compounds were chosen for biological testing. An oxindole derivative was identified as a Mpro non-competitive reversible inhibitor with a Ki of 115 µM and an IC50 of 101.9 µM. Throughout the 200 ns-long MD trajectories, our top hit has shown a very stable binding mode, forming several interactions with residues in sites #2 and #5. Moreover, derivatives of our top hit were acquired for biological testing to gain deeper insights into their structure-activity relationship. To sum up, drug-like allosteric inhibitors seem promising and can provide us with an additional weapon in our war against the recent pandemic, and possibly other coronaviruses-caused diseases.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Antivirais/química , Oxindóis/farmacologia , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular
16.
J Nat Prod ; 86(10): 2270-2282, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37792632

RESUMO

Persea americana Mill. (Lauraceae), commonly known as avocado, is a well-known food because of its nutrition and health benefits. The seeds of avocado are major byproducts, and thus their phytochemicals and bioactivities have been of interest for study. The chemical components of avocado seeds were investigated by using UPLC-qTOF-MS/MS-based molecular networking, resulting in the isolation of seven new oxindole alkaloids (1-7) and two new benzoxazinone alkaloids (8 and 9). The chemical structures of the isolated compounds were identified by the analysis of NMR data in combination with computational approaches, including NMR and ECD calculations. Bioactivities of the isolated compounds toward silent information regulation 2 homologue-1 (SIRT1) in HEK293 cells were assessed. The results showed that compound 1 had the most potent effect on SIRT1 activation with an elevated NAD+/NADH ratio with potential for further investigation as an anti-aging agent.


Assuntos
Alcaloides , Persea , Humanos , Persea/química , Oxindóis/farmacologia , Benzoxazinas/análise , Espectrometria de Massas em Tandem , Sirtuína 1 , Células HEK293 , Sementes/química , Alcaloides/farmacologia , Alcaloides/análise , Extratos Vegetais/química
17.
Bioorg Chem ; 141: 106845, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37797453

RESUMO

Blapspirooxindoles A-C (1-3), three novel spirooxindole alkaloids with a unique spiro[chromane-4,3'-indoline]-2,2'-dione motif, blapcumaranons A and B (4 and 5), two new 2-cumaranon derivatives, blapoxindoles A-J (6-15), ten new oxindole alkaloid derivatives, along with one known compound (16), were isolated from the whole bodies of Blaps japanensis. Their structures including absolute configurations were determined by using spectroscopic, X-ray crystallographic, and computational methods. Compounds 1-11 and 13 exist as racemic mixtures in nature, and their (-)- and (+)-antipodes were separated by chiral HPLC. Biological evaluations of these compounds were determined with multiple assays including anti-tumor, anti-inflammatory, and renal protection activities in vitro. Several compounds displayed effective activity in one or more assays.


Assuntos
Alcaloides , Antineoplásicos , Besouros , Neoplasias , Animais , Besouros/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Alcaloides/farmacologia , Oxindóis/farmacologia , Estrutura Molecular
18.
Chem Biodivers ; 20(9): e202300843, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37501576

RESUMO

A novel series of pyrazole-oxindole conjugates were prepared and characterized as potential cytotoxic agents by FT-IR, NMR and HR-MS. The cytotoxic activity of these compounds was tested in the Jurkat acute T cell leukemia, CEM acute lymphoblastic leukemia, MCF10 A mammary epithelial and MDA-MB 231 triple negative breast cancer cell lines. Among the tested conjugates, 5-methyl-3-((3-(1-phenyl)-3-(p-tolyl)-1H-pyrazol-4-yl)methylene)indolin-2-one 6h emerged as the most cytotoxic with a CC50 of 4.36+/-0.2 µM against Jurkat cells. The mechanism of cell death induced by 6h was investigated through the Annexin V-FITC assay via flow cytometry. Reactive oxygen species (ROS) accumulation, mitochondrial health and the cell cycle progression were also evaluated in cells exposed to 6h. Results demonstrated that 6h induces apoptosis in a dose-response manner, without generating ROS and/or altering mitochondrial health. In addition, 6h disrupted the cell cycle distribution causing an increase in DNA fragmentation (Sub G0-G1), and an arrest in the G0-G1 phase. Taken together, the 6h compound revealed a strong potential as an antineoplastic agent evidenced by its cytotoxicity in leukemia cells, the activation of apoptosis and restriction of the cell cycle progression.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Espécies Reativas de Oxigênio/metabolismo , Oxindóis/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Linhagem Celular Tumoral , Apoptose , Antineoplásicos/química , Pirazóis/farmacologia
19.
Molecules ; 28(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37446914

RESUMO

Acute myeloid leukemia (AML) is one of the cancers that grow most aggressively. The challenges in AML management are huge, despite many treatment options. Mutations in FLT3 tyrosine kinase receptors make the currently available therapies less responsive. Therefore, there is a need to find new lead molecules that can specifically target mutated FLT3 to block growth factor signaling and inhibit AML cell proliferation. Our previous studies on FLT3-mutated AML cells demonstrated that ß-elemene and compound 5a showed strong inhibition of proliferation by blocking the mutated FLT3 receptor and altering the key apoptotic genes responsible for apoptosis. Furthermore, we hypothesized that both ß-elemene and compound 5a could be therapeutically effective. Therefore, combining these drugs against mutated FLT3 cells could be promising. In this context, dose-matrix combination-based cellular inhibition analyses, cell morphology studies and profiling of 43 different apoptotic protein targets via combinatorial treatment were performed. Our studies provide strong evidence for the hypothesis that ß-elemene and compound 5a combination considerably increased the therapeutic potential of both compounds by enhancing the activation of several key targets implicated in AML cell death.


Assuntos
Leucemia Mieloide Aguda , Humanos , Oxindóis/farmacologia , Linhagem Celular Tumoral , Leucemia Mieloide Aguda/metabolismo , Mutação , Apoptose , Tirosina Quinase 3 Semelhante a fms/genética , Inibidores de Proteínas Quinases/farmacologia
20.
Molecules ; 28(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37298744

RESUMO

In this study, a series of novel 3-(5-fluoropyridine-3-yl)-2-oxazolidinone derivatives were designed and synthesized based on compounds previously reported, and their antibacterial activity was investigated. Then their antibacterial activity was investigated for the first time. Preliminary screening results showed that all these compounds exhibited antibacterial activity against gram-positive bacteria, including 7 drug-sensitive strains and 4 drug-resistant strains, among which compound 7j exhibited an 8-fold stronger inhibitory effect than linezolid, with a minimum inhibitory concentration (MIC) value of 0.25 µg/mL. Further molecular docking studies predicted the possible binding mode between active compound 7j and the target. Interestingly, these compounds could not only hamper the formation of biofilms, but also have better safety, as confirmed by cytotoxicity experiments. All these results indicate that these 3-(5-fluoropyridine-3-yl)-2-oxazolidinone derivatives have the potential to be developed into novel candidates for the treatment of gram-positive bacterial infections.


Assuntos
Oxazolidinonas , Oxazolidinonas/farmacologia , Oxazolidinonas/química , Oxindóis/farmacologia , Simulação de Acoplamento Molecular , Piperazina/farmacologia , Antibacterianos/química , Bactérias Gram-Positivas , Pirimidinas/farmacologia , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA