Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 558
Filtrar
1.
Int Immunopharmacol ; 133: 112093, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38669947

RESUMO

BACKGROUND: IFI30 is a lysosomal thiol reductase involved in antigen presentation and immune regulation in various cancers, including breast cancer. Despite its known involvement, the precise mechanism, function, and relationship with the PD-L1 axis and immune response remain unclear. METHODS: We conducted an extensive investigation into IFI30 mRNA expression in breast cancer utilizing data from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases. Furthermore, we characterized IFI30 mRNA expression across various cell types using publicly available single-cell RNA sequencing datasets, and assessed protein expression through immunohistochemistry using an in-house breast cancer tissue microarray. Functional experiments were performed to elucidate the effects of IFI30 overexpression on PD-L1 expression and inhibitory efficacy in both macrophages and breast tumor cells. RESULTS: Our study unveiled a marked upregulation of IFI30 expression in breast cancer tissues compared to their normal counterparts, with notable associations identified with tumor stage and prognosis. Additionally, IFI30 expression demonstrated significant correlations with various immune-related signaling pathways, encompassing peptide antigen binding, cytokine binding, and MHC class II presentation. Notably, breast cancer samples exhibiting high IFI30 expression in tumor cells displayed high PD-L1 expression on corresponding cells, alongside a diminished ratio of CD8 + T cell infiltration within the tumor microenvironment. Furthermore, ectopic knockdown of IFI30 in both tumor cells and macrophages resulted in a reduction of PD-L1 expression, while conversely, overexpression of IFI30 led to an increase in PD-L1 expression. CONCLUSIONS: This study offers new insights into the involvement of IFI30 in breast cancer, elucidating its interplay with the PD-L1 axis and immune response dynamics. Our findings suggest that modulation of the IFI30-PD-L1 axis could serve as a promising strategy for regulating T cells infiltration in breast cancer thus treating breast cancer.


Assuntos
Antígeno B7-H1 , Neoplasias da Mama , Imunoterapia , Humanos , Neoplasias da Mama/imunologia , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Feminino , Prognóstico , Imunoterapia/métodos , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Linfócitos T CD8-Positivos/imunologia
2.
Redox Biol ; 70: 103080, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38354630

RESUMO

Growing evidence suggests that dimethylarginine dimethylaminohydrolase 1 (DDAH1), a crucial enzyme for the degradation of asymmetric dimethylarginine (ADMA), is closely related to oxidative stress during the development of multiple diseases. However, the underlying mechanism by which DDAH1 regulates the intracellular redox state remains unclear. In the present study, DDAH1 was shown to interact with peroxiredoxin 1 (PRDX1) and sulfiredoxin 1 (SRXN1), and these interactions could be enhanced by oxidative stress. In HepG2 cells, H2O2-induced downregulation of DDAH1 and accumulation of ADMA were attenuated by overexpression of PRDX1 or SRXN1 but exacerbated by knockdown of PRDX1 or SRXN1. On the other hand, DDAH1 also maintained the expression of PRDX1 and SRXN1 in H2O2-treated cells. Furthermore, global knockout of Ddah1 (Ddah1-/-) or liver-specific knockout of Ddah1 (Ddah1HKO) exacerbated, while overexpression of DDAH1 alleviated liver dysfunction, hepatic oxidative stress and downregulation of PRDX1 and SRXN1 in CCl4-treated mice. Overexpression of liver PRDX1 improved liver function, attenuated hepatic oxidative stress and DDAH1 downregulation, and diminished the differences between wild type and Ddah1-/- mice after CCl4 treatment. Collectively, our results suggest that the regulatory effect of DDAH1 on cellular redox homeostasis under stress conditions is due, at least in part, to the interaction with PRDX1 and SRXN1.


Assuntos
Amidoidrolases , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo Enxofre , Peroxirredoxinas , Animais , Camundongos , Homeostase , Peróxido de Hidrogênio , Estresse Oxidativo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Amidoidrolases/metabolismo
3.
FASEB J ; 38(4): e23494, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38376922

RESUMO

Pathological opening of the mitochondrial permeability transition pore (mPTP) is implicated in the pathogenesis of many disease processes such as myocardial ischemia, traumatic brain injury, Alzheimer's disease, and diabetes. While we have gained insight into mPTP biology over the last several decades, the lack of translation of this knowledge into successful clinical therapies underscores the need for continued investigation and use of different approaches to identify novel regulators of the mPTP with the hope of elucidating new therapeutic targets. Although the mPTP is known to be a voltage-gated channel, the identity of its voltage sensor remains unknown. Here we found decreased gating potential of the mPTP and increased expression and activity of sulfide quinone oxidoreductase (SQOR) in newborn Fragile X syndrome (FXS) mouse heart mitochondria, a model system of coenzyme Q excess and relatively decreased mPTP open probability. We further found that pharmacological inhibition and genetic silencing of SQOR increased mPTP open probability in vitro in adult murine cardiac mitochondria and in the isolated-perfused heart, likely by interfering with voltage sensing. Thus, SQOR is proposed to contribute to voltage sensing by the mPTP and may be a component of the voltage sensing apparatus that modulates the gating potential of the mPTP.


Assuntos
Mitocôndrias Cardíacas , Poro de Transição de Permeabilidade Mitocondrial , Oxirredutases atuantes sobre Doadores de Grupo Enxofre , Animais , Camundongos , Doença de Alzheimer , Lesões Encefálicas Traumáticas , Sulfetos , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética
4.
ACS Chem Neurosci ; 15(2): 290-299, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38141017

RESUMO

Glioma remains one of the most challenging primary brain malignancies to treat. Long noncoding RNAs (lncRNAs) and mRNAs (mRNAs) are implicated in regulating the malignant phenotypes of cancers including glioma. This study aimed to elucidate the functions and mechanisms of lncRNA LINC00265 and mRNA IFI30 in the pathogenesis of glioma. Quantitative real-time polymerase chain reaction (RT-qPCR) analysis revealed the upregulated expression of LINC00265 and IFI30 in glioma cells compared to normal human astrocytes. Western blot (WB) quantified the associated proteins. Glioma stemness and epithelial-to-mesenchymal transition (EMT) were assessed by aldehyde dehydrogenase 1 (ALDH1) activity, sphere formation, and WB. Mechanistic and rescue assays evaluated the LINC00265/miR-let-7d-5p/IFI30/ZNF384/IGF2BP2 axis. The results demonstrated that LINC00265 and IFI30 were highly expressed in glioma cells, promoting stemness and EMT. ZNF384 was identified as a transcription factor that upregulates IFI30. Moreover, LINC00265 elevated ZNF384 by sponging miR-let-7d-5p and recruiting IGF2BP2. In conclusion, LINC00265 and IFI30 act as oncogenes in glioma by driving stemness and EMT, underscoring their potential as therapeutic targets.


Assuntos
Neoplasias Encefálicas , Glioma , MicroRNAs , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glioma/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , RNA não Traduzido/genética
5.
ISME J ; 17(10): 1680-1692, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37468676

RESUMO

Microbial dissimilatory sulfur metabolism utilizing dissimilatory sulfite reductases (Dsr) influenced the biochemical sulfur cycle during Earth's history and the Dsr pathway is thought to be an ancient metabolic process. Here we performed comparative genomics, phylogenetic, and synteny analyses of several Dsr proteins involved in or associated with the Dsr pathway across over 195,000 prokaryotic metagenomes. The results point to an archaeal origin of the minimal DsrABCMK(N) protein set, having as primordial function sulfite reduction. The acquisition of additional Dsr proteins (DsrJOPT) increased the Dsr pathway complexity. Archaeoglobus would originally possess the archaeal-type Dsr pathway and the archaeal DsrAB proteins were replaced with the bacterial reductive-type version, possibly at the same time as the acquisition of the QmoABC and DsrD proteins. Further inventions of two Qmo complex types, which are more spread than previously thought, allowed microorganisms to use sulfate as electron acceptor. The ability to use the Dsr pathway for sulfur oxidation evolved at least twice, with Chlorobi and Proteobacteria being extant descendants of these two independent adaptations.


Assuntos
Sulfito de Hidrogênio Redutase , Proteínas , Filogenia , Oxirredução , Sulfito de Hidrogênio Redutase/genética , Sulfito de Hidrogênio Redutase/metabolismo , Proteínas/metabolismo , Sulfatos/metabolismo , Sulfitos , Enxofre/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética
6.
BMC Genom Data ; 24(1): 34, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344788

RESUMO

BACKGROUND: Evidence shows that genetic factors play important roles in the severity of coronavirus disease 2019 (COVID-19). Sulfatase modifying factor 1 (SUMF1) gene is involved in alveolar damage and systemic inflammatory response. Therefore, we speculate that it may play a key role in COVID-19. RESULTS: We found that rs794185 was significantly associated with COVID-19 severity in Chinese population, under the additive model after adjusting for gender and age (for C allele = 0.62, 95% CI = 0.44-0.88, P = 0.0073, logistic regression). And this association was consistent with this in European population Genetics Of Mortality In Critical Care (GenOMICC: OR for C allele = 0.94, 95% CI = 0.90-0.98, P = 0.0037). Additionally, we also revealed a remarkable association between rs794185 and the prothrombin activity (PTA) in subjects (P = 0.015, Generalized Linear Model). CONCLUSIONS: In conclusion, our study for the first time identified that rs794185 in SUMF1 gene was associated with the severity of COVID-19.


Assuntos
COVID-19 , Sulfatases , Humanos , Sulfatases/genética , COVID-19/genética , Polimorfismo Genético , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética
7.
Cancer Sci ; 114(7): 2835-2847, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37017121

RESUMO

Circular RNAs (circRNAs) play a pivotal role in the tumorigenesis and progression of various cancers. However, the role and mechanisms of circABCA13 in esophageal squamous cell carcinoma (ESCC) are largely unknown. Here, we reported that circABCA13, a novel circular RNA generated by back-splicing of the intron of the ABCA13 gene, is highly expressed in ESCC tumor tissues and cell lines. Upregulation of circABCA13 correlated with TNM stage and a poor prognosis in ESCC patients. While knockdown of circABCA13 in ESCC cells significantly reduced cell proliferation, migration, invasion, and anchorage-independent growth, overexpression of circABCA13 facilitated tumor growth both in vitro and in vivo. In addition, circABCA13 directly binds to miR-4429 and sequesters miR-4429 from its endogenous target, SRXN1 mRNA, which subsequently upregulates SRXN1 and promotes ESCC progression. Consistently, overexpression of miR-4429 or knockdown of SRXN1 abolished malignant behavior promotion of ESCC results from circABCA13 overexpression in vitro and in vivo. Collectively, our study uncovered the oncogenic role of circABCA13 and its mechanism in ESCC, suggesting that circABCA13 could be a potential therapeutic target and a predictive biomarker for ESCC patients.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , MicroRNAs , Humanos , Carcinoma de Células Escamosas do Esôfago/patologia , Neoplasias Esofágicas/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Regulação para Cima/genética , Biomarcadores , Proliferação de Células/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/genética , Movimento Celular/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo
8.
BMC Pediatr ; 23(1): 133, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36959582

RESUMO

BACKGROUND: Multiple sulfatase deficiency (MSD) is a rare lysosomal storage disorder caused due to pathogenic variants in the SUMF1 gene. The SUMF1 gene encodes for formylglycine generating enzyme (FGE) that is involved in the catalytic activation of the family of sulfatases. The affected patients present with a wide spectrum of clinical features including multi-organ involvement. To date, almost 140 cases of MSD have been reported worldwide, with only four cases reported from India. The present study describes two cases of late infantile form of MSD from India and the identification of a novel missense variant in the SUMF1 gene. CASE PRESENTATION: In case 1, a male child presented to us at the age of 6 years. The remarkable presenting features included ichthyosis, presence of irritability, poor social response, thinning of corpus callosum on MRI and, speech regression. Clinical suspicion of MSD was confirmed by enzyme analysis of two sulfatase enzymes followed by gene sequencing. We identified a novel missense variant c.860A > T (p.Asn287Ile) in exon 7 of the SUMF1 gene. In case 2, a two and a half years male child presented with ichthyosis, leukodystrophy and facial dysmorphism. We performed an enzyme assay for two sulfatases, which showed significantly reduced activities thereby confirming MSD diagnosis. CONCLUSION: Overall, present study has added to the existing data on MSD from India. Based on the computational analysis, the novel variant c.860A > T identified in this study is likely to be associated with a milder phenotype and prolonged survival.


Assuntos
Ictiose , Doença da Deficiência de Múltiplas Sulfatases , Masculino , Humanos , Doença da Deficiência de Múltiplas Sulfatases/diagnóstico , Doença da Deficiência de Múltiplas Sulfatases/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Mutação de Sentido Incorreto , Sulfatases/genética
9.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(2): 177-180, 2023 Feb 10.
Artigo em Chinês | MEDLINE | ID: mdl-36709936

RESUMO

OBJECTIVE: To explore the clinical features and genetic basis for a child with early-onset Isolated sulfite oxidase deficiency (ISOD). METHODS: A child with ISOD who was admitted to Weihai Hospital Affiliated to Qingdao University on May 10, 2020 was selected as the study subject. Clinical data of the child was analyzed. The child and her parents were subjected to trio-whole exome sequencing, and candidate variants were verified by Sanger sequencing. RESULTS: The female neonate was transferred to the intensive care unit due to "secondary pollution of amniotic fluid and laborious breathing for 11 minutes", and had developed frequent convulsions. Genetic testing revealed that she has harbored c.1200C>G and c.188G>A compound heterozygous variants of the SUOX gene, which were inherited from her mother and father, respectively. The c.1200C>G has been described previously and was rated as pathogenic based on guidelines from the American College of Medical Genetics and Genomics, whilst the c.188G>A variant was unreported previously and rated as variant of unknown significance. CONCLUSION: The compound heterozygous variants of the SUOX gene probably underlay the ISOD in this child. Above finding has enriched the spectrum of SUOX gene variants and provided a basis for the clinical diagnosis and genetic counseling.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Sulfito Oxidase , Feminino , Humanos , Recém-Nascido , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Aconselhamento Genético , Testes Genéticos , Mutação , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Sulfito Oxidase/genética
10.
J Inherit Metab Dis ; 46(2): 335-347, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36433920

RESUMO

Multiple sulfatase deficiency (MSD) is an ultrarare lysosomal storage disorder due to deficiency of all known sulfatases. MSD is caused by mutations in the Sulfatase Modifying Factor 1 (SUMF1) gene encoding the enzyme responsible for the post-translational modification and activation of all sulfatases. Most MSD patients carry hypomorph SUMF1 variants resulting in variable degrees of residual sulfatase activities. In contrast, Sumf1 null mice with complete deficiency in all sulfatase enzyme activities, have very short lifespan with significant pre-wean lethality, owing to a challenging preclinical model. To overcome this limitation, we genetically engineered and characterized in mice two commonly identified patient-based SUMF1 pathogenic variants, namely p.Ser153Pro and p.Ala277Val. These pathogenic missense variants correspond to variants detected in patients with attenuated MSD presenting with partial-enzyme deficiency and relatively less severe disease. These novel MSD mouse models have a longer lifespan and show biochemical and pathological abnormalities observed in humans. In conclusion, mice harboring the p.Ser153Pro or the p.Ala277Val variant mimic the attenuated MSD and are attractive preclinical models for investigation of pathogenesis and treatments for MSD.


Assuntos
Doenças por Armazenamento dos Lisossomos , Doença da Deficiência de Múltiplas Sulfatases , Humanos , Animais , Camundongos , Doença da Deficiência de Múltiplas Sulfatases/genética , Mutação , Sulfatases , Mutação de Sentido Incorreto , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética
11.
J Clin Lab Anal ; 36(12): e24786, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36441600

RESUMO

BACKGROUND: Multiple sulfatase deficiency (MSD) (MIM#272200) is an ultra-rare autosomal recessive lysosomal storage disorder caused by mutation of the Sulfatase Modifying Factor 1 (SUMF1) gene. METHODS: Herein, we report an eight-year-old boy with a late infantile form of multiple sulfatase deficiency. A combination of copy-number variation sequencing (CNV-seq) and whole-exome sequencing (WES) were used to analyze the genetic cause for the MSD patient. RESULTS: Our results, previously not seen in China, show a novel compound heterozygous mutation with one allele containing a 240.55 kb microdeletion on 3p26.1 encompassing the SETMAR gene and exons 4-9 of the SUMF1 gene, and the other allele containing a novel missense mutation of c.671G>A (p.Arg224Gln) in the SUMF1 gene. Both were inherited from the proband's unaffected parents, one from each. Bioinformatics analyses show the novel variation to be "likely pathogenic." SWISS-MODEL analysis shows that the missense mutation may alter the three-dimensional (3D) structure. CONCLUSIONS: In summary, this study reported a novel compound heterozygous with microdeletion in SUMF1 gene, which has not been reported in China. The complex clinical manifestations of MSD may delay diagnosis; however, molecular genetic analysis of the SUMF1 gene can be performed to help obtain an early diagnosis.


Assuntos
Doença da Deficiência de Múltiplas Sulfatases , Masculino , Humanos , Criança , Doença da Deficiência de Múltiplas Sulfatases/genética , Doença da Deficiência de Múltiplas Sulfatases/diagnóstico , Sulfatases/genética , Mutação/genética , Mutação de Sentido Incorreto , Biologia Computacional , Histona-Lisina N-Metiltransferase/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética
12.
Drug Resist Updat ; 65: 100886, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36370665

RESUMO

BACKGROUND: Colorectal cancer (CRC) is the 3rd most common cancer worldwide. CircRNAs are promising novel biomarkers for CRC. T regulatory (Treg) cells express the immune checkpoint receptor of cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) and promote tumor immunological tolerance. We therefore investigate the biological functions and mechanisms of circQSOX1 in CRC tumorigenesis; involvement of circQSOX1 in promoting Treg cell-mediated CRC immune escape in anti-CTLA-4 therapy. METHODS: Bioinformatics analyses were performed for circQSOX1expressions, specific binding sites, and N6-methyladenosine (m6A) motifs of circQSOX1, thatwere further validated with a series of experiments. Functions of circQSOX1 in promoting CRC development, Treg cells-based immune escape, and anti-CTLA-4 therapy response were investigated both in vitro and in vivo. RESULTS: High circQSOX1 expression was associated with carcinogenesis and poor clinical outcome of CRC patients. METTL3-mediated RNA m6A modification on circQSOX1 could be read by IGF2BP2 in CRC cells. CircQSOX1 promoted CRC development by regulating miR-326/miR-330-5p/PGAM1 axis. CircQSOX1 regulated glycolysis and promoted immune escape of CRC cells, and inhibits anti-CTLA-4 therapy response in CRC patients. CONCLUSION: m6A-modified circQSOX1 facilitated CRC tumorigenesis by sponging miR-326 and miR-330-5p to promotes PGAM1 expression, which further promoted CRC immune escape by activating glycolysis and inactivating the anti-CTLA-4 therapy response of CRC. Combined treatment with sh-circQSOX1 and anti-CTLA-4 could be a strategy to overcome Treg cell-mediated CRC immune therapy resistance.


Assuntos
Neoplasias Colorretais , MicroRNAs , Humanos , RNA Circular/genética , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/patologia , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Linhagem Celular Tumoral , Carcinogênese/genética , Adenosina , Proliferação de Células , Metiltransferases/genética , Metiltransferases/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo
13.
Int J Mol Sci ; 23(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36232488

RESUMO

Oat is a food and forage crop species widely cultivated worldwide, and it is also an important forage grass in plateau regions of China, where there is a high level of ultraviolet radiation and sunlight. Screening suitable reference genes for oat under UV-B and high-light stresses is a prerequisite for ensuring the accuracy of real-time quantitative PCR (qRT-PCR) data used in plant adaptation research. In this study, eight candidate reference genes (sulfite oxidase, SUOX; victorin binding protein, VBP; actin-encoding, Actin1; protein PSK SIMULATOR 1-like, PSKS1; TATA-binding protein 2-like, TBP2; ubiquitin-conjugating enzyme E2, UBC2; elongation factor 1-alpha, EF1-α; glyceraldehyde-3-phosphate dehydrogenase 1, GAPDH1;) were selected based on previous studies and our oat transcriptome data. The expression stability of these reference genes in oat roots, stems, and leaves under UV-B and high-light stresses was first calculated using three frequently used statistical software (geNorm, NormFinder, and BestKeeper), and then the comprehensive stability of these genes was evaluated using RefFinder. The results showed that the most stably expressed reference genes in the roots, stems, and leaves of oat under UV-B stress were EF1-α, TBP2, and PSKS1, respectively; the most stably expressed reference genes in the roots, stems, and leaves under high-light stress were PSKS1, UBC2, and PSKS1, respectively. PSKS1 was the most stably expressed reference gene in all the samples. The reliability of the selected reference genes was further validated by analysis of the expression of the phenylalanine ammonia-lyase (PAL) gene. This study highlights reference genes for accurate quantitative analysis of gene expression in different tissues of oat under UV-B and high-light stresses.


Assuntos
Avena , Fator 1 de Elongação de Peptídeos , Actinas/genética , Avena/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Gliceraldeído-3-Fosfato Desidrogenases/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Fator 1 de Elongação de Peptídeos/genética , Fenilalanina Amônia-Liase/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Padrões de Referência , Reprodutibilidade dos Testes , Proteína de Ligação a TATA-Box/genética , Enzimas de Conjugação de Ubiquitina/genética , Raios Ultravioleta
14.
Orphanet J Rare Dis ; 17(1): 392, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36303223

RESUMO

BACKGROUND: Isolated sulfite oxidase deficiency (ISOD) caused by sulfite oxidase gene (SUOX) mutations is a rare neurometabolic disease associated with ectopia lentis (EL). However, few genotype-phenotype correlations have been established yet. METHODS: Potentially pathogenic SUOX mutations were screened from a Chinese cohort of congenital EL using panel-based next-generation sequencing and analyzed with multiple bioinformatics tools. The genotype-phenotype correlations were evaluated via a systematic review of SUOX mutations within our data and from the literature. RESULTS: A novel paternal missense mutation, c.205G > C (p.A69P), and a recurrent maternal nonsense mutation, c.1200 C > G (p.Y400*), of SUOX were identified in a 4-year-old boy from 312 probands. The biochemical assays manifested elevated urine sulfite and S-sulfocysteine accompanied by decreased homocysteine in the blood. The patient had bilateral EL and normal fundus, yet minimal neurological involvement and normal brain structure. Molecular modeling simulation revealed the p.A69P mutant had an unstable structure but an unchanged affinity for sulfite, while the truncated p.Y400* mutant showed decreased binding capacity. Genotype-phenotype analysis demonstrated patients with biallelic missense mutations had milder symptoms (P = 0.023), later age of onset (P < 0.001), and a higher incidence of regression (P = 0.017) than other genotypes. No correlations were found regarding EL and other neurological symptoms. CONCLUSION: The data from this study not only enrich the known mutation spectrum of SUOX but also suggest that missense mutations are associated with mild and atypical symptoms.


Assuntos
Ectopia do Cristalino , Humanos , Mutação/genética , Estudos de Associação Genética , Sulfitos , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética
15.
Redox Biol ; 56: 102423, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36029648

RESUMO

Mitochondrial dysfunction is a key contributor to necroptosis. We have investigated the contribution of p53, sulfiredoxin, and mitochondrial peroxiredoxin 3 to necroptosis in acute pancreatitis. Late during the course of pancreatitis, p53 was localized in mitochondria of pancreatic cells undergoing necroptosis. In mice lacking p53, necroptosis was absent, and levels of PGC-1α, peroxiredoxin 3 and sulfiredoxin were upregulated. During the early stage of pancreatitis, prior to necroptosis, sulfiredoxin was upregulated and localized into mitochondria. In mice lacking sulfiredoxin with pancreatitis, peroxiredoxin 3 was hyperoxidized, p53 localized in mitochondria, and necroptosis occurred faster; which was prevented by Mito-TEMPO. In obese mice, necroptosis occurred in pancreas and adipose tissue. The lack of p53 up-regulated sulfiredoxin and abrogated necroptosis in pancreas and adipose tissue from obese mice. We describe here a positive feedback between mitochondrial H2O2 and p53 that downregulates sulfiredoxin and peroxiredoxin 3 leading to necroptosis in inflammation and obesity.


Assuntos
Pancreatite , Peroxirredoxina III , Doença Aguda , Animais , Regulação para Baixo , Peróxido de Hidrogênio/metabolismo , Camundongos , Camundongos Obesos , Necroptose , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Peroxirredoxina III/genética , Peroxirredoxina III/metabolismo , Proteína Supressora de Tumor p53/genética
16.
J Hepatol ; 77(5): 1410-1421, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35777586

RESUMO

Augmenter of liver regeneration (ALR), a ubiquitous fundamental life protein, is expressed more abundantly in the liver than other organs. Expression of ALR is highest in hepatocytes, which also constitutively secrete it. ALR gene transcription is regulated by NRF2, FOXA2, SP1, HNF4α, EGR-1 and AP1/AP4. ALR's FAD-linked sulfhydryl oxidase activity is essential for protein folding in the mitochondrial intermembrane space. ALR's functions also include cytochrome c reductase and protein Fe/S maturation activities. ALR depletion from hepatocytes leads to increased oxidative stress, impaired ATP synthesis and apoptosis/necrosis. Loss of ALR's functions due to homozygous mutation causes severe mitochondrial defects and congenital progressive multiorgan failure, suggesting that individuals with one functional ALR allele might be susceptible to disorders involving compromised mitochondrial function. Genetic ablation of ALR from hepatocytes induces structural and functional mitochondrial abnormalities, dysregulation of lipid homeostasis and development of steatohepatitis. High-fat diet-fed ALR-deficient mice develop non-alcoholic steatohepatitis (NASH) and fibrosis, while hepatic and serum levels of ALR are lower than normal in human NASH and NASH-cirrhosis. Thus, ALR deficiency may be a critical predisposing factor in the pathogenesis and progression of NASH.


Assuntos
Regeneração Hepática , Hepatopatia Gordurosa não Alcoólica , Trifosfato de Adenosina/metabolismo , Animais , Citocromos c/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Humanos , Lipídeos , Fígado/patologia , Regeneração Hepática/fisiologia , Camundongos , Mitocôndrias/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo
17.
Clin Chim Acta ; 532: 115-122, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35679912

RESUMO

BACKGROUND: Isolated sulfite oxidase deficiency (ISOD) is a rare type of life-threatening neurometabolic disorders characterized by neonatal intractable seizures and severe developmental delay with an autosomal recessive mode of inheritance. Germline mutation in SUOX gene causes ISOD. Till date, only 32 mutations of SUOX gene have been identified and reported to be associated with ISOD. METHODS: Here, we investigated a 5-days old Chinese female child, presented with intermittent tremor or seizures of limbs, neonatal encephalopathy, subarachnoid cyst and haemorrhage, dysplasia of corpus callosum, neonatal convulsion, hyperlactatemia, severe metabolic acidosis, hyperglycemia, and hyperkalemia. RESULTS: Whole exome sequencing identified a novel homozygous transition (c.1227G > A) in exon 6 of the SUOX gene in the proband. This novel homozygous variant leads to the formation of a truncated sulfite oxidase (p.Trp409*) of 408 amino acids. This variant causes partial loss of the dimerization domain of sulfite oxidase. Hence, it is a loss-of-function variant. Proband's father and mother is carrying this novel variant in a heterozygous state. This variant was not found in 200 ethnically matched normal healthy control individuals. CONCLUSIONS: Our study not only expanded the mutational spectrum of SUOX gene associated with ISOD, but also strongly suggested the significance of whole exome sequencing for identifying candidate genes and novel disease-causing variants.


Assuntos
Doenças do Recém-Nascido , Sulfito Oxidase , Erros Inatos do Metabolismo dos Aminoácidos , Feminino , Humanos , Recém-Nascido , Mutação , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Linhagem , Convulsões , Sulfito Oxidase/deficiência , Sulfito Oxidase/genética , Sulfito Oxidase/metabolismo , Sequenciamento do Exoma
18.
Comput Biol Chem ; 98: 107691, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35605307

RESUMO

Methanogenic archaea carry homologs of dissimilatory sulfite reductase (Dsr), called Dsr Like proteins (DsrLP). Dsr reduces sulfite to sulfide, a key step in an Earth's ancient metabolic process called dissimilatory sulfate reduction. The DsrLPs do not function as Dsr, and a computational approach is needed to develop hypotheses for guiding wet bench investigations on DsrLP's function. To make the computational analysis process efficient, the DsrLP amino acid sequences were transformed using only eight alphabets functionally representing twenty amino acids. The resultant reduced amino acid sequences were analyzed to identify conserved signature patterns in DsrLPs. Many of these patterns mapped on critical structural elements of Dsr and some were associated tightly with particular DsrLP groups. A search into the UniProtKB database identified several proteins carrying DsrLP's signature patterns; cysteine desulfurase, nucleosidase, and uroporphyrinogen III methylase were such matches. These outcomes provided clues to the functions of DsrLPs and highlighted the utility of the computational approach used.


Assuntos
Sulfito de Hidrogênio Redutase , Oxirredutases atuantes sobre Doadores de Grupo Enxofre , Sequência de Aminoácidos , Archaea/metabolismo , Sulfito de Hidrogênio Redutase/metabolismo , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Sulfitos
19.
Mol Cell Biol ; 42(5): e0005122, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35412358

RESUMO

Intracellular antioxidant enzymes are critical for maintenance of redox homeostasis, but whether and how they contribute to the malignancy of cancer cells remains poorly understood. Sulfiredoxin (Srx) is a unique oxidoreductase in that it not only restores peroxidase activity of peroxiredoxins (Prxs) but also functions as a pivotal stimulator of oncogenic signaling. We found that abnormally high level of Srx promotes colorectal cancer (CRC) malignancy by stimulating gelatin degradation, invadopodia formation, and cell invasion. Fascin, an actin-bundling protein, was discovered and validated as one of the critical downstream targets of Srx activation. We demonstrated that depletion of Srx in CRC cells leads to upregulation of miR-143-3p, which mediates degradation of fascin mRNA through binding to conserved sites within the 3' untranslated region (UTR). Depletion of fascin in CRC cells recapitulates the effect of Srx loss, and restoration of fascin in Srx-depleted cells by miR-143-3p inhibitor or overexpression rescues defects in cell invasion. Therefore, our data demonstrate that the Srx-miR143-fascin axis plays a key role in promoting the malignancy of human CRC cells. In the future, the Srx-miR143-fascin axis can be used as a functional pathway to evaluate the efficacy of therapeutic drugs or be targeted to develop promising chemotherapeutics for treatment of CRC patients.


Assuntos
MicroRNAs , Oxirredutases atuantes sobre Doadores de Grupo Enxofre , Proteínas de Transporte , Humanos , MicroRNAs/genética , Proteínas dos Microfilamentos , Invasividade Neoplásica , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Peroxirredoxinas/genética
20.
Bull Exp Biol Med ; 172(5): 587-591, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35352250

RESUMO

The study involving 2830 subjects (1444 patients with type 2 diabetes mellitus and 1386 healthy controls) an association of the rs1046495 polymorphism of the GFER gene encoding FADdependent sulfhydryl oxidase with low risk of the disease in non-obese patients (OR=0.76, 95%CI 0.57-0.99, p=0.029). The protective effect of the polymorphic gene variant remained significant in individuals who consumed fresh vegetables and fruits (p=0.014), proteins (p=0.0017), and did not consume carbohydrate- and fat-reach food (p=0.0047). The association of the minor allele rs1046495-C with type 2 diabetes mellitus can be explained by its more pronounced effect on the expression of the GFER enzyme that through glutathionation maintains the ROS level for optimal functioning of complexes III and IV of the electron transport chain and promotes the formation of disulfide bonds in the CHCHD4 chaperone molecule. Impaired activity of this molecule underlies mitochondrial dysfunction, one of the key pathological changes in patients with type 2 diabetes mellitus.


Assuntos
Diabetes Mellitus Tipo 2 , Oxirredutases atuantes sobre Doadores de Grupo Enxofre , Alelos , Diabetes Mellitus Tipo 2/genética , Marcadores Genéticos , Predisposição Genética para Doença , Genótipo , Humanos , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA