Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 399
Filtrar
1.
J Chem Phys ; 161(16)2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-39440760

RESUMO

The intricate involvement of Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) in glucose homeostasis and adipogenesis is well-established. However, its role in cancer, particularly luminal bladder cancer, remains debated. The overexpression and activation of PPARγ are implicated in tumorigenesis. Specific gain-of-function mutations (M280I, I290M, and T475M) within the ligand-binding domain of PPARγ are associated with bladder cancer and receptor activation. The underlying molecular pathways prompted by these mutations remain unclear. We employed a dual-basin structure-based model (db-SBM) to explore the conformational dynamics between the inactive and active states of PPARγ and examined the effects of the M280I, I290M, and T475M mutations. Our findings, consistent with the existing literature, reveal heightened ligand-independent transcriptional activity in the I290M and T475M mutants. Both mutants showed enhanced stabilization of the active state compared to the wild-type receptor, with the I290M mutation promoting a specific transition route, making it a prime candidate for further study. Electrostatic analysis identified residues K303 and E488 as pivotal in the I290M activation cascade. Biophysical assays confirmed that disrupting the K303-E488 interaction reduced the thermal stabilization characteristic of the I290M mutation. Our study demonstrates the predictive capabilities of combining simulation and cheminformatics methods, validated by biochemical experiments, to gain insights into molecular activation mechanisms and identify target residues for protein modulation.


Assuntos
PPAR gama , Neoplasias da Bexiga Urinária , PPAR gama/metabolismo , PPAR gama/química , PPAR gama/genética , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia , Humanos , Mutação , Simulação de Dinâmica Molecular , Mutação com Ganho de Função
2.
J Vis Exp ; (211)2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39373467

RESUMO

Increasing levels of compounds have been detected in the environment, causing widespread pollution and posing risks to human health. However, despite their high environmental occurrence, there is very limited information regarding their toxicological effects. It is urgent to develop high-throughput screening (HTS) methods to guide toxicological studies. In this study, a receptor-ligand binding assay using an HTS system was developed to determine the binding potency of environmental pollutants on nuclear receptors. The test is conducted using a microplate reader (i.e., a 96-well plate containing various chemicals) by measuring the fluorescence polarization (FP) of a specific fluorescent probe. This assay consists of four parts: the construction and transformation of recombinant vectors, the expression and purification of the receptor protein (ligand-binding domain), receptor-probe binding, and competitive binding of chemicals with the receptor. The binding potency of two environmental pollutants, perfluorooctanesulfonic acid (PFOS) and triphenyl phosphate (TPHP), with peroxisome proliferator-activated receptor gamma (PPARγ) was determined to illustrate the assay procedure. Finally, the advantages and disadvantages of this method and its potential applications were also discussed.


Assuntos
Poluentes Ambientais , Fluorocarbonos , Ensaios de Triagem em Larga Escala , PPAR gama , Receptores Citoplasmáticos e Nucleares , Poluentes Ambientais/metabolismo , Poluentes Ambientais/química , Ensaios de Triagem em Larga Escala/métodos , PPAR gama/metabolismo , PPAR gama/química , PPAR gama/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/química , Fluorocarbonos/química , Fluorocarbonos/metabolismo , Ácidos Alcanossulfônicos/química , Ácidos Alcanossulfônicos/metabolismo , Humanos , Organofosfatos/metabolismo , Organofosfatos/química , Polarização de Fluorescência/métodos , Corantes Fluorescentes/química
3.
Comput Biol Chem ; 112: 108142, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39004027

RESUMO

This study demonstrated the correlation of molecular structures of Peroxisome proliferator-activated receptor gamma (PPARγ) modulators and their biological activities. Bayesian classification, and recursive partitioning (RP) studies have been applied to a dataset of 323 PPARγ modulators with diverse scaffolds. The results provide a deep insight into the important sub-structural features modulating PPARγ. The molecular docking analysis again confirmed the significance of the identified sub-structural features in the modulation of PPARγ activity. Molecular dynamics simulations further underscored the stability of the complexes formed by investigated modulators with PPARγ. Overall, the integration of many computational approaches unveiled key structural motifs essential for PPARγ modulatory activity that will shed light on the development of effective modulators in the future.


Assuntos
Hipoglicemiantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , PPAR gama , PPAR gama/química , PPAR gama/metabolismo , PPAR gama/agonistas , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Humanos , Teorema de Bayes , Estrutura Molecular
4.
J Chromatogr A ; 1730: 465141, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38986402

RESUMO

Functional protein immobilization forms the basis for bio-detections. A series of one-point, site-specific immobilization methods have been developed, however, it still remains as a challenge how to avoid the proteins to move in all directions as well as conveniently regenerate the bio-devices. Herein, we have developed a bivalent affinity binding-inspired method for PPARγ immobilization using DNA aptamer and nickel-nitrilotriacetic acid (Ni2+-NTA) chelation. The specific DNA aptamer (Apt 2) was selected by an on-column systematic evolution of ligands by exponential enrichment (SELEX) method with affinity of (1.57 ± 0.15) × 105 M-1, determined by isothermal titration calorimetry (ITC). Apt 2 and nickel-nitrilotriacetic acid (Ni2+-NTA) were modified on macroporous silica gels via L-α-allylglycine as a linker. They respectively interacted with PPARγ and 6×His tag via bivalent affinity binding for the receptor immobilization. After comprehensive surface characterization, PPARγ was proved to be successful immobilized. Chromatographic studies revealed that the immobilized PPARγ has conformation selectivity, which discriminated agonist and antagonist of the receptor. Ligand-binding parameters (affinity and rate constant) of four agonists (rosiglitazone, pioglitazone, troglitazone, and magnolol) with PPARγ were determined. Troglitazone showed the lowest dissociation rate constant. The binding affinities (3.28 × 107, 1.91 × 106, 2.25 × 107, and 2.43 × 107 M-1) were highly consistent with the data obtained using purified receptor in solution (2.16 × 107, 4.52 × 106, 1.20 × 107, and 1.56 × 107 M-1), offering reliable bio-detection method for PPARγ and its ligands. Due to the biocompatibility of nuclear receptor with DNA, it is conceivable that the bivalent affinity-based method will be a general method for the immobilization of other nuclear receptors, which may provide selective conformation and improved ligand-binding activity for the receptors.


Assuntos
Aptâmeros de Nucleotídeos , PPAR gama , PPAR gama/química , PPAR gama/metabolismo , Ligantes , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Ligação Proteica , Proteínas Imobilizadas/química , Proteínas Imobilizadas/metabolismo , Ácido Nitrilotriacético/química , Ácido Nitrilotriacético/análogos & derivados , Humanos , Calorimetria
5.
Arch Biochem Biophys ; 758: 110062, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38880320

RESUMO

Carvacrol (CV) is an organic compound found in the essential oils of many aromatic herbs. It is nearly unfeasible to analyze all the current human proteins for a query ligand using in vitro and in vivo methods. This study aimed to clarify whether CV possesses an anti-diabetic feature via Docking-based inverse docking and molecular dynamic (MD) simulation and in vitro characterization against a set of novel human protein targets. Herein, the best poses of CV docking simulations according to binding energy ranged from -7.9 to -3.5 (kcal/mol). After pathway analysis of the protein list through GeneMANIA and WebGestalt, eight interacting proteins (DPP4, FBP1, GCK, HSD11ß1, INSR, PYGL, PPARA, and PPARG) with CV were determined, and these proteins exhibited stable structures during the MD process with CV. In vitro application, statistically significant results were achieved only in combined doses with CV or metformin. Considering all these findings, PPARG and INSR, among these target proteins of CV, are FDA-approved targets for treating diabetes. Therefore, CV may be on its way to becoming a promising therapeutic compound for treating Diabetes Mellitus (DM). Our outcomes expose formerly unexplored potential target human proteins, whose association with diabetic disorders might guide new potential treatments for DM.


Assuntos
Cimenos , Hipoglicemiantes , Metformina , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Monoterpenos , Humanos , Cimenos/farmacologia , Cimenos/química , Metformina/farmacologia , Metformina/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Hipoglicemiantes/uso terapêutico , Monoterpenos/farmacologia , Monoterpenos/química , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo , Receptor de Insulina/metabolismo , PPAR gama/metabolismo , PPAR gama/química , Ligação Proteica , Simulação por Computador , Antígenos CD
6.
Chem Biodivers ; 21(10): e202400752, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38923373

RESUMO

Myricetin (1), Quercetin (2), Kaempferol (3) and Kaempferide (4) were flavonoids with phenolic hydroxyl groups. The antioxidant and pharmacological mechanisms of them were investigated in detail. The lowest hydroxyl dissociation enthalpies of 1, 2, 3 and 4 were calculated by DFT, respectively. The hydroxyl dissociation enthalpies of the four flavonoids at the O2 site are the highest. By analyzing the intramolecular hydrogen bonds and HOMO-LUMO orbitals of the four flavonoids, the reasons for their divergence of hydroxyl dissociation enthalpies and antioxidant mechanisms were further investigated. The UV-vis and IR spectra of four flavonoids were compared. The interactions about electrostatic attraction, p-π conjugation and hydrogen bond combined the flavonoid with the target protein closely. The root mean square deviation of peroxisome proliferator-activated receptor γ combined with 1, 2 and 3 increased, while that of PPARγ combined with 4 decreased.


Assuntos
Antioxidantes , Teoria da Densidade Funcional , Flavonoides , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , PPAR gama , Flavonoides/química , Flavonoides/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , PPAR gama/metabolismo , PPAR gama/química , Quempferóis/química , Quempferóis/farmacologia , Quercetina/química , Quercetina/farmacologia , Humanos , Termodinâmica , Ligação de Hidrogênio , Espectrofotometria Ultravioleta , Estrutura Molecular , Compostos de Bifenilo/antagonistas & inibidores , Compostos de Bifenilo/química , Espectrofotometria Infravermelho
7.
Biomolecules ; 14(6)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38927044

RESUMO

Bisphenol A (BPA) and bisphenol B (BPB) are widely used in the production of plastics, and their potential adverse health effects, particularly on endocrine disruption and metabolic health, have raised concern. Peroxisome proliferator-activated receptor gamma (PPARγ) plays a pivotal role in metabolic regulation and adipogenesis, making it a target of interest in understanding the development of obesity and associated health impacts. In this study, we employ X-ray crystallography and molecular dynamics (MD) simulations to study the interaction of PPARγ with BPA and BPB. Crystallographic structures reveal the binding of BPA and BPB to the ligand binding domain of PPARγ, next to C285, where binding of partial agonists as well as antagonists and inverse agonists of PPARγ signaling has been previously observed. However, no interaction of BPA and BPB with Y437 in the activation function 2 site is observed, showing that these ligands cannot stabilize the active conformation of helix 12 directly. Furthermore, free energy analyses of the MD simulations revealed that I341 has a large energetic contribution to the BPA and BPB binding modes characterized in this study.


Assuntos
Compostos Benzidrílicos , Simulação de Dinâmica Molecular , PPAR gama , Fenóis , Ligação Proteica , Fenóis/química , Fenóis/metabolismo , Compostos Benzidrílicos/química , Compostos Benzidrílicos/metabolismo , PPAR gama/química , PPAR gama/metabolismo , PPAR gama/agonistas , Cristalografia por Raios X , Humanos , Sítios de Ligação , Ligantes
8.
Int J Mol Sci ; 25(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38791384

RESUMO

The PAX8/PPARγ rearrangement, producing the PAX8-PPARγ fusion protein (PPFP), is thought to play an essential role in the oncogenesis of thyroid follicular tumors. To identify PPFP-targeted drug candidates and establish an early standard of care for thyroid tumors, we performed ensemble-docking-based compound screening. Specifically, we investigated the pocket structure that should be adopted to search for a promising ligand compound for the PPFP; the position of the ligand-binding pocket on the PPARγ side of the PPFP is similar to that of PPARγ; however, the shape is slightly different between them due to environmental factors. We developed a method for selecting a PPFP structure with a relevant pocket and high prediction accuracy for ligand binding. This method was validated using PPARγ, whose structure and activity values are known for many compounds. Then, we performed docking calculations to the PPFP for 97 drug or drug-like compounds registered in the DrugBank database with a thiazolidine backbone, which is one of the characteristics of ligands that bind well to PPARγ. Furthermore, the binding affinities of promising ligand candidates were estimated more reliably using the molecular mechanics Poisson-Boltzmann surface area method. Thus, we propose promising drug candidates for the PPFP with a thiazolidine backbone.


Assuntos
Simulação de Acoplamento Molecular , Proteínas de Fusão Oncogênica , PPAR gama , Neoplasias da Glândula Tireoide , Humanos , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , PPAR gama/metabolismo , PPAR gama/química , PPAR gama/genética , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteínas de Fusão Oncogênica/química , Ligantes , Fator de Transcrição PAX8/metabolismo , Fator de Transcrição PAX8/genética , Ligação Proteica , Antineoplásicos/farmacologia , Antineoplásicos/química , Sítios de Ligação , Simulação por Computador
9.
Anal Chim Acta ; 1309: 342666, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38772654

RESUMO

BACKGROUND: Peroxisome proliferator-activated receptors (PPARs) belong to the superfamily of nuclear receptors and represent the targets for the therapeutical treatment of type 2 diabetes, dyslipidemia and hyperglycemia associated with metabolic syndrome. Some medicinal plants have been traditionally used to treat this kind of metabolic diseases. Today only few drugs targeting PPARs have been approved and for this reason, the rapid identification of novel ligands and/or chemical scaffolds starting from natural extracts would benefit of a selective affinity ligand fishing assay. RESULTS: In this paper we describe the development of a new ligand fishing assay based on size exclusion chromatography (SEC) coupled to LC-MS for the analysis of complex samples such as botanical extracts. The known PPARα and PPARγ ligands, WY-14643 and rosiglitazone respectively, were used for system development and evaluation. The system has found application on an Allium lusitanicum methanolic extract, containing saponins, a class of chemical compounds which have attracted interest as PPARs ligands because of their hypolipidemic and insulin-like properties. SIGNIFICANCE: A new SEC-AS-MS method has been developed for the affinity screening of PPARα and PPARγ ligands. The system proved to be highly specific and will be used to improve the throughput for the identification of new selective metabolites from natural souces targeting PPARα and PPARγ.


Assuntos
Cromatografia em Gel , PPAR alfa , PPAR gama , Extratos Vegetais , PPAR gama/metabolismo , PPAR gama/química , PPAR alfa/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Ligantes , Espectrometria de Massas , Rosiglitazona/farmacologia , Rosiglitazona/química , Humanos , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Produtos Biológicos/análise , Pirimidinas
10.
Molecules ; 29(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38792097

RESUMO

Molecular Dynamics (MD) is a computational technique widely used to evaluate a molecular system's thermodynamic properties and conformational behavior over time. In particular, the energy analysis of a protein conformation ensemble produced though MD simulations plays a crucial role in explaining the relationship between protein dynamics and its mechanism of action. In this research work, the HINT (Hydropathic INTeractions) LogP-based scoring function was first used to handle MD trajectories and investigate the molecular basis behind the intricate PPARγ mechanism of activation. The Peroxisome Proliferator-Activated Receptor γ (PPARγ) is an emblematic example of a highly flexible protein due to the extended ω-loop delimiting the active site, and it is responsible for the receptor's ability to bind chemically different compounds. In this work, we focused on the PPARγ complex with Rosiglitazone, a common anti-diabetic compound and analyzed the molecular basis of the flexible ω-loop stabilization effect produced by the Oleic Acid co-binding. The HINT-based analysis of the produced MD trajectories allowed us to account for all of the energetic contributions involved in interconverting between conformational states and describe the intramolecular interactions between the flexible ω-loop and the helix H3 triggered by the allosteric binding mechanism.


Assuntos
Simulação de Dinâmica Molecular , PPAR gama , Humanos , PPAR gama/química , PPAR gama/metabolismo , Ligação Proteica , Conformação Proteica , Rosiglitazona/química , Rosiglitazona/farmacologia , Termodinâmica
11.
Protein J ; 43(3): 577-591, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38642318

RESUMO

Type 2 diabetes mellitus (T2DM) has become a serious public health problem both in our country and worldwide, being the most prevalent type of diabetes. The combined use of drugs in the treatment of T2DM leads to serious side effects, including gastrointestinal problems, liver toxicity, hypoglycemia, and treatment costs. Hence, there has been a growing emphasis on drugs that demonstrate dual interactions. Several studies have suggested that dual-target agents for peroxisome proliferator-activated receptor-γ (PPAR-γ) and alpha-glucosidase (α-glucosidase) could be a potent approach for treating patients with diabetes. We aim to develop new antidiabetic agents that target PPAR-γ and α-glucosidase enzymes using molecular modeling techniques. These compounds show dual interactions, are more effective, and have fewer side effects. The molecular docking method was employed to investigate the enzyme-ligand interaction mechanisms of 159 newly designed compounds with target enzymes. Additionally, we evaluated the ADME properties and pharmacokinetic suitability of these compounds based on Lipinski and Veber's rules. Compound 70, which exhibited favorable ADME properties, demonstrated more effective binding energy with both PPAR-γ and α-glucosidase enzymes (-12,16 kcal/mol, -10.07 kcal/mol) compared to the reference compounds of Acetohexamide (-9.31 kcal/mol, -7.48 kcal/mol) and Glibenclamide (-11.12 kcal/mol, -8.66 kcal/mol). Further, analyses of MM/PBSA binding free energy and molecular dynamics (MD) simulations were conducted for target enzymes with compound 70, which exhibited the most favorable binding affinities with both enzymes. Based on this information, our study aims to contribute to the development of new dual-target antidiabetic agents with improved efficacy, reduced side effects, and enhanced reliability for diabetes treatment.


Assuntos
Inibidores de Glicosídeo Hidrolases , Hipoglicemiantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , PPAR gama , alfa-Glucosidases , PPAR gama/química , PPAR gama/metabolismo , alfa-Glucosidases/química , alfa-Glucosidases/metabolismo , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo
12.
Nat Commun ; 15(1): 3408, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649351

RESUMO

De novo drug design aims to generate molecules from scratch that possess specific chemical and pharmacological properties. We present a computational approach utilizing interactome-based deep learning for ligand- and structure-based generation of drug-like molecules. This method capitalizes on the unique strengths of both graph neural networks and chemical language models, offering an alternative to the need for application-specific reinforcement, transfer, or few-shot learning. It enables the "zero-shot" construction of compound libraries tailored to possess specific bioactivity, synthesizability, and structural novelty. In order to proactively evaluate the deep interactome learning framework for protein structure-based drug design, potential new ligands targeting the binding site of the human peroxisome proliferator-activated receptor (PPAR) subtype gamma are generated. The top-ranking designs are chemically synthesized and computationally, biophysically, and biochemically characterized. Potent PPAR partial agonists are identified, demonstrating favorable activity and the desired selectivity profiles for both nuclear receptors and off-target interactions. Crystal structure determination of the ligand-receptor complex confirms the anticipated binding mode. This successful outcome positively advocates interactome-based de novo design for application in bioorganic and medicinal chemistry, enabling the creation of innovative bioactive molecules.


Assuntos
Aprendizado Profundo , Desenho de Fármacos , PPAR gama , Humanos , Ligantes , PPAR gama/metabolismo , PPAR gama/agonistas , PPAR gama/química , Sítios de Ligação , Ligação Proteica
13.
Int J Biol Macromol ; 268(Pt 1): 131865, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38670200

RESUMO

A previous study reported the use of a biosensing technique based on surface plasmon resonance (SPR) for the ligand binding detection of peroxisome proliferator activator receptor gamma (PPARγ). This detection was designed based on the structural properties of PPARγ. Because of cross-linked protein inactivation and the low molecular weight of conventional ligands, direct ligand binding detection based on SPR has low stability and repeatability. In this study, we report an indirect response methodology based on SPR technology in which anti-His CM5 chip binds fresh PPARγ every cycle, resulting in more stable detection. We developed a remarkable improvement in ligand-protein binding detectability in vitro by introducing two coregulator-related polypeptides into this system. In parallel, a systematic indirect response methodology can reflect the interaction relationship between ligands and proteins to some extent by detecting the changes in SA-SRC1 and GST-NCOR2 binding to PPARγ. Rosiglitazone, a PPARγ agonist with strong affinity, is a potent insulin-sensitizing agent. Some ligands may be competitively exerted at the same sites of PPARγ (binding rosiglitazone). We demonstrated using indirect response methodology that selective PPARγ modulator (SPPARM) candidates of PPARγ can be found by competing for the binding of the rosiglitazone site on PPARγ, although they may have no effect on polypeptides and PPARγ binding.


Assuntos
Coativador 1 de Receptor Nuclear , PPAR gama , Ligação Proteica , Ressonância de Plasmônio de Superfície , Ressonância de Plasmônio de Superfície/métodos , PPAR gama/metabolismo , PPAR gama/química , Ligantes , Coativador 1 de Receptor Nuclear/metabolismo , Coativador 1 de Receptor Nuclear/química , Peptídeos/química , Peptídeos/metabolismo , Humanos , Rosiglitazona/farmacologia , Correpressor 2 de Receptor Nuclear
14.
J Med Chem ; 66(7): 4827-4839, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-36994595

RESUMO

Covalent ligands are generally filtered out of chemical libraries used for high-throughput screening, because electrophilic functional groups are considered to be pan-assay interference compounds (PAINS). Therefore, screening strategies that can distinguish true covalent ligands from PAINS are required. Hydrogen/deuterium-exchange mass spectrometry (HDX-MS) is a powerful tool for evaluating protein stability. Here, we report a covalent modifier screening approach using HDX-MS. In this study, HDX-MS was used to classify peroxisome proliferator-activated receptor γ (PPARγ) and vitamin D receptor ligands. HDX-MS could discriminate the strength of ligand-protein interactions. Our HDX-MS screening method identified LT175 and nTZDpa, which can bind concurrently to the PPARγ ligand-binding domain (PPARγ-LBD) with synergistic activation. Furthermore, iodoacetic acid was identified as a novel covalent modifier that stabilizes the PPARγ-LBD.


Assuntos
Espectrometria de Massa com Troca Hidrogênio-Deutério , PPAR gama , Deutério/química , Ligantes , PPAR gama/química , Espectrometria de Massas/métodos , Medição da Troca de Deutério/métodos
15.
Int J Mol Sci ; 24(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36835226

RESUMO

Isoflavones are plant-derived natural products commonly found in legumes that show a large spectrum of biomedical activities. A common antidiabetic remedy in traditional Chinese medicine, Astragalus trimestris L. contains the isoflavone formononetin (FMNT). Literature reports show that FMNT can increase insulin sensitivity and potentially target the peroxisome proliferator-activated receptor gamma, PPARγ, as a partial agonist. PPARγ is highly relevant for diabetes control and plays a major role in Type 2 diabetes mellitus development. In this study, we evaluate the biological role of FMNT, and three related isoflavones, genistein, daidzein and biochanin A, using several computational and experimental procedures. Our results reveal the FMNT X-ray crystal structure has strong intermolecular hydrogen bonding and stacking interactions which are useful for antioxidant action. Cyclovoltammetry rotating ring disk electrode (RRDE) measurements show that all four isoflavones behave in a similar manner when scavenging the superoxide radical. DFT calculations conclude that antioxidant activity is based on the familiar superoxide σ-scavenging mode involving hydrogen capture of ring-A H7(hydroxyl) as well as the π-π (polyphenol-superoxide) scavenging activity. These results suggest the possibility of their mimicking superoxide dismutase (SOD) action and help explain the ability of natural polyphenols to assist in lowering superoxide concentrations. The SOD metalloenzymes all dismutate O2•- to H2O2 plus O2 through metal ion redox chemistry whereas these polyphenolic compounds do so through suitable hydrogen bonding and stacking intermolecular interactions. Additionally, docking calculations suggest FMNT can be a partial agonist of the PPARγ domain. Overall, our work confirms the efficacy in combining multidisciplinary approaches to provide insight into the mechanism of action of small molecule polyphenol antioxidants. Our findings promote the further exploration of other natural products, including those known to be effective in traditional Chinese medicine for potential drug design in diabetes research.


Assuntos
Produtos Biológicos , Isoflavonas , Superóxido Dismutase , Humanos , Antioxidantes/química , Produtos Biológicos/química , Diabetes Mellitus Tipo 2 , Peróxido de Hidrogênio , Isoflavonas/química , PPAR gama/química , Superóxido Dismutase/química , Superóxidos/química
16.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36835351

RESUMO

Recent progress in the structural and molecular pharmacological understanding of the nuclear receptor, peroxisome proliferator-activated receptor gamma (hPPARγ)-a transcription factor with pleiotropic effects on biological responses-has enabled the investigation of various graded hPPARγ ligands (full agonist, partial agonist, and antagonist). Such ligands are useful tools to investigate the functions of hPPARγ in detail and are also candidate drugs for the treatment of hPPARγ-mediated diseases, such as metabolic syndrome and cancer. This review summarizes our medicinal chemistry research on the design, synthesis, and pharmacological evaluation of a covalent-binding and non-covalent-binding hPPARγ antagonist, both of which have been created based on our working hypothesis of the helix 12 (H12) holding induction/inhibition concept. X-ray crystallographic analyses of our representative antagonists complexed with an hPPARγ ligand binding domain (LBD) indicated the unique binding modes of hPPARγ LBD, which are quite different from the binding modes observed for hPPARγ agonists and partial agonists.


Assuntos
Desenho de Fármacos , PPAR gama , Humanos , Ligantes , Modelos Moleculares , PPAR gama/agonistas , PPAR gama/antagonistas & inibidores , PPAR gama/química , Ligação Proteica
17.
Environ Sci Technol ; 57(9): 3758-3771, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36815762

RESUMO

Liquid crystal monomers (LCMs) are a large family of artificial ingredients that have been widely used in global liquid crystal display (LCD) industries. As a major constituent in LCDs as well as the end products of e-waste dismantling, LCMs are of growing research interest with regard to their environmental occurrences and biochemical consequences. Many studies have analyzed LCMs in multiple environmental matrices, yet limited research has investigated the toxic effects upon exposure to them. In this study, we combined in silico simulation and in vitro assay validation along with omics integration analysis to achieve a comprehensive toxicity elucidation as well as a systematic mechanism interpretation of LCMs for the first time. Briefly, the high-throughput virtual screen and reporter gene assay revealed that peroxisome proliferator-activated receptor gamma (PPARγ) was significantly antagonized by certain LCMs. Besides, LCMs induced global metabolome and transcriptome dysregulation in HK2 cells. Notably, fatty acid ß-oxidation was conspicuously dysregulated, which might be mediated through multiple pathways (IL-17, TNF, and NF-kB), whereas the activation of AMPK and ligand-dependent PPARγ antagonism may play particularly important parts. This study illustrated LCMs as a potential PPARγ antagonist and explored their toxicological mode of action on the trans-omics level, which provided an insightful overview in future chemical risk assessment.


Assuntos
Cristais Líquidos , PPAR gama , Genes Reporter , PPAR gama/antagonistas & inibidores , PPAR gama/química
18.
Med Chem ; 19(6): 594-618, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36597601

RESUMO

INTRODUCTION: The nuclear transcription factor PPARγ, which can modulate cell growth via proliferation and apoptosis-related mechanisms, is a promising target in cancer therapy. This study aims to focus on PPARγ as the target and use virtual screening to find hits. METHODS: A set of 5,677 flavonoid compounds were filtered by subjecting them to descriptor-based drug-likeness and ADMET strategies to discover drug-like compounds. The candidates' modes of binding to PPARγ were then evaluated using docking and MD simulation. PharmMapper was used to identify the potential targets of selected hits. The pharmacological network was constructed based on the GO and KEGG pathway analysis. RESULTS: In primary screening, 3,057 compounds met various drug-likeness criteria and docked well as partial agonists in the PPARγ-LBD. Five compounds (euchrenone b1, kaempferol-7-Orhamnoside, vincetoxicoside B, morusin, and karanjin) were selected with the use of ADMET profiles for further MD simulation investigation. Based on the PharmMapper findings, 52 proteins were then submitted to GO and KEGG enrichment analysis. As expected by GO and KEGG pathway enrichment studies, core targets were enriched in the PI3K-Akt signaling pathway (p < 0.01), indicating that certain chemicals may be involved in cancer processes. CONCLUSION: Our results suggested that the selected compounds might have sufficient drug-likeness, pharmacokinetics, and in silico bioactivity by acting as PPARγ partial agonists. Although much work remains to illuminate extensive cancer therapeutic/ chemopreventive efficacy of flavonoids in vivo, in silico methodology of our cheminformatics research may be able to provide additional data regarding the efficacy and safety of potential candidates for therapeutic targets.


Assuntos
PPAR gama , Fosfatidilinositol 3-Quinases , Simulação de Acoplamento Molecular , PPAR gama/química , Fosfatidilinositol 3-Quinases/metabolismo , Simulação por Computador , Transdução de Sinais
19.
J Biomol Struct Dyn ; 41(12): 5568-5582, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35773777

RESUMO

Type 2 diabetes mellitus remains global health challenge with involvement of both insulin resistance and dysfunctional insulin secretion from the pancreatic ß-cell. Currently, peroxisome proliferator-activated receptor gamma (PPARγ) has been established to play a significant role in glucose homeostasis and insulin sensitization contributing to the pathogenesis of type 2 diabetes mellitus. Hence, this study used in-silico analysis to predict PPARγ antagonists from the natural compounds. ADMET screening, structure-based virtual screening and MM/GBSA calculations of phytochemicals from HPLC analysis of A. precatorius seeds were performed against PPARγ using Maestro Schrodinger suite, followed by the MD simulation of top hit compounds and reference ligand using GROMACS. The quantum chemical calculations of the compounds were performed using Spartan 14 computational chemistry software. The five compounds showed varying degree of binding affinity against PPARγ, the post-docking analysis confirmed strong interaction against the amino acid residues of the binding site of the target. Chlorogenic acid showed the highest docking score (-10.719 kcal/mol) among the compounds comparable to the reference ligand (acarbose = -10.634 kcal/mol). Additionally, MM/GBSA binding free energy (ΔGbind) calculations support the modulatory potential for the docked compounds, which exclusively revealed the highest binding energy for the compounds than the reference ligand (acarbose). The MD simulations suggested the stability of Chlorogenic acid and Quercetin in complex with PPARγ at least in the time period of 90 ns after initial equilibration state with more H-bond observed between the target-hit compounds complex compared to the Acarbose-PPARγ complex. ADMET profile revealed that the five compounds were favorably druggable and promising drug candidates. The quantum chemical calculations showed that the compounds possess better bioactivity and chemical reactivity with favorable intra-molecular charge transfer as electron-donor and electron-acceptor. This study revealed that bioactive compounds especially chlorogenic acid and quercetin identified from A. precatorius seeds demonstrated good modulatory potential against PPARγ compared to acarbose. Therefore, these compounds require further experimental validation for the discovery of new antagonist of PPARγ for developing new anti-diabetes therapy.Communicated by Ramaswamy H. Sarma.


Assuntos
Abrus , Diabetes Mellitus Tipo 2 , PPAR gama/química , Diabetes Mellitus Tipo 2/tratamento farmacológico , Simulação de Acoplamento Molecular , Acarbose , Ácido Clorogênico/farmacologia , Ligantes , Quercetina/farmacologia , Compostos Fitoquímicos/farmacologia , Simulação de Dinâmica Molecular
20.
Comput Biol Med ; 147: 105796, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35809408

RESUMO

Obesity is an abnormal fat accumulation disorder in the metabolic syndrome constellation, and a risk factor for diabetes, cardiovascular disorders, non-alcoholic fatty liver disease (NAFLD), and cancer. Nuclear receptors (Peroxisome proliferator-activated receptor, PPAR) are implicated in metabolic syndrome and NAFLD, and have potential for therapeutic targeting. Nuclear receptors are ligand-dependent transcription factors that have diverse roles in metabolism, including regulating genes involved in lipid and glucose metabolism, modulating inflammatory genes, and are crucial for maintaining metabolic flexibility. PPAR activates adipose triglyceride lipase, which then releases fatty acids as ligands for PPAR, indicating the interdependency of nuclear receptors and lipases. Here, molecular docking was performed with selected phytochemical ligands that can bind with PPAR-α/γ (PDB ID: 2ZNN and 2ATH, respectively) using Glide module of Schrodinger software followed by molecular dynamics simulation study using Desmond module, and ADMET analysis. Interestingly, orlistat which is a well-known lipase and fatty acid synthase inhibitor also demonstrated favorable binding affinity with both PPAR-α/γ (-10.96 kcal/mol against PPARα and -10.26 kcal/mol against PPARγ). The highest docking scores were however shown by the flavonoids - rutin (-14.88 kcal/mol against PPARα and -13.64 kcal/mol against PPARγ), and its aglycone, quercetin (-10.08 kcal/mol in PPARα and -9.89 kcal/mol in PPARγ). The other phytochemicals (genistein, esculin, daidzin, naringenin, daidzein, dihydroxy coumarin, hydroquinone) showed lower binding affinity as dual agonists. The anti-obesity effects were experimentally validated in cultured adipocytes, which revealed better lipid inhibition by rutin and quercetin than orlistat (quercetin > rutin > orlistat) pointing to their strong potential in anti-obesity treatment.


Assuntos
Fármacos Antiobesidade , Síndrome Metabólica , Hepatopatia Gordurosa não Alcoólica , Fármacos Antiobesidade/farmacologia , Fármacos Antiobesidade/uso terapêutico , Humanos , Ligantes , Lipídeos , Simulação de Acoplamento Molecular , Obesidade/tratamento farmacológico , Orlistate/farmacologia , PPAR alfa/química , PPAR alfa/metabolismo , PPAR gama/química , PPAR gama/metabolismo , Compostos Fitoquímicos/farmacologia , Quercetina , Rutina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA