Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Microbiol Spectr ; 12(6): e0381123, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38647341

RESUMO

In the nitrogen biogeochemical cycle, the reduction of nitrous oxide (N2O) to N2 by N2O reductase, which is encoded by nosZ gene, is the only biological pathway for N2O consumption. In this study, we successfully isolated a strain of denitrifying Paracoccus denitrificans R-1 from sewage treatment plant sludge. This strain has strong N2O reduction capability, and the average N2O reduction rate was 5.10 ± 0.11 × 10-9 µmol·h-1·cell-1 under anaerobic condition in a defined medium. This reduction was accompanied by the stoichiometric consumption of acetate over time when N2O served as the sole electron acceptor and the reduction can yield energy to support microbial growth, suggesting that microbial N2O reduction is related to the energy generation process. Genomic analysis showed that the gene cluster encoding N2O reductase of P. denitrificans R-1 was composed of nosR, nosZ, nosD, nosF, nosY, nosL, and nosZ, which was identified as that in other strains in clade I. Respiratory inhibitors test indicated that the pathway of electron transport for N2O reduction was different from that of the traditional electron transport chain for aerobic respiration. Cu2+, silver nanoparticles, O2, and acidic conditions can strongly inhibit the reduction, whereas NO3- or NH4+ can promote it. These findings suggest that modular N2O reduction of P. denitrificans R-1 is linked to the electron transport and energy conservation, and dissimilatory N2O reduction is a form of microbial anaerobic respiration. IMPORTANCE: Nitrous oxide (N2O) is a potent greenhouse gas and contributor to ozone layer destruction, and atmospheric N2O has increased steadily over the past century due to human activities. The release of N2O from fixed N is almost entirely controlled by microbial N2O reductase activities. Here, we investigated the ability to obtain energy for the growth of Paracoccus denitrificans R-1 by coupling the oxidation of various electron donors to N2O reduction. The modular N2O reduction process of denitrifying microorganism not only can consume N2O produced by itself but also can consume the external N2O generated from biological or abiotic pathways under suitable condition, which should be critical for controlling the release of N2O from ecosystems into the atmosphere.


Assuntos
Desnitrificação , Óxido Nitroso , Paracoccus denitrificans , Paracoccus denitrificans/metabolismo , Paracoccus denitrificans/genética , Paracoccus denitrificans/crescimento & desenvolvimento , Óxido Nitroso/metabolismo , Transporte de Elétrons , Oxirredutases/metabolismo , Oxirredutases/genética , Oxirredução , Esgotos/microbiologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Elétrons
2.
Appl Biochem Biotechnol ; 188(3): 810-823, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30706416

RESUMO

The performance of fermentation under non-conventional conditions, such as high pressure (HP), is a strategy currently tested for different fermentation processes. In the present work, the purpose was to apply HP (10-50 MPa) to fermentation by Paracoccus denitrificans, a microorganism able to produce polyhydroxyalkanoates (PHA) from glycerol. In general, cell growth and glycerol consumption were both reduced by HP application, more extensively at higher pressure levels, such as 35 or 50 MPa. PHA production and composition was highly dependent on the pressure applied. HP was found to decrease polymer titers, but increase the PHA content in cell dry mass (%), indicating higher ability to accumulate these polymers in the cells. In addition, some levels of HP affected PHA monomeric composition, with the polymer produced at 10 and 35 MPa showing considerable differences relative to the ones obtained at atmospheric pressure. Therefore, it is possible to foresee that the changes in polymer composition may also affect its physical and mechanical properties. Overall, the results of this study demonstrated that HP technology (at specific levels) can be applied to P. denitrificans fermentations without compromising the ability to produce PHA, with potentially interesting effects on polymer composition.


Assuntos
Glicerol/metabolismo , Paracoccus denitrificans/crescimento & desenvolvimento , Paracoccus denitrificans/metabolismo , Poli-Hidroxialcanoatos/biossíntese , Pressão , Biomassa , Reatores Biológicos , Fermentação
3.
Appl Biochem Biotechnol ; 187(1): 338-351, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29946833

RESUMO

To recover a nitrogen resource from high-ammonia-nitrogen wastewater, two amphitrophic hydrogen-oxidizing bacteria (HOB), Paracoccus denitrificans Y5 and P. versutus D6, capable of nitrogen assimilation for single-cell protein (SCP) production were isolated. These two HOB strains could grow autotrophically with H2 as an electron donor, O2 as an electron acceptor, CO2 as a carbon source, and ammonia nitrogen (NH4+-N) as a nitrogen source. The cell molecular formulas of strains Y5 and D6 determined by autotrophic cultivation were C3.33H6.83O2.58N0.77 and C2.87H5.34O3.17N0.57, respectively. The isolated strains could synchronously remove NH4+-N and organic carbon and produce SCP via heterotrophic cultivation. The rates of removal of NH4+-N and soluble chemical oxygen demand reached 35.47 and 49.04%, respectively, for Y5 under mixotrophic cultivation conditions with biogas slurry as a substrate. SCP content of strains Y5 and D6 was 67.34-73.73% based on cell dry weight. Compared with soybean meal, the SCP of Y5 contained a variety of amino acids.


Assuntos
Amônia/metabolismo , Processos Autotróficos , Proteínas de Bactérias/biossíntese , Proteínas Alimentares/metabolismo , Processos Heterotróficos , Hidrogênio/metabolismo , Nitrogênio/metabolismo , Paracoccus denitrificans/metabolismo , Aminoácidos/metabolismo , Amônia/isolamento & purificação , Proteínas de Bactérias/metabolismo , Biocombustíveis , Dióxido de Carbono/metabolismo , Estudos de Viabilidade , Temperatura Alta , Concentração de Íons de Hidrogênio , Nitrogênio/isolamento & purificação , Oxirredução , Paracoccus denitrificans/crescimento & desenvolvimento , Paracoccus denitrificans/isolamento & purificação , Especificidade da Espécie
4.
Biochemistry ; 58(2): 126-136, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30353723

RESUMO

Bacteria must acquire the essential element zinc from extremely limited environments, and this function is performed largely by ATP binding cassette (ABC) transporters. These systems rely on a periplasmic or extracellular solute binding protein (SBP) to bind zinc specifically with a high affinity and deliver it to the membrane permease for import into the cytoplasm. However, zinc acquisition systems in bacteria may be more complex, involving multiple transporters and other periplasmic or extracellular zinc binding proteins. Here we describe the zinc acquisition functions of two zinc SBPs (ZnuA and AztC) and a novel periplasmic metallochaperone (AztD) in Paracoccus denitrificans. ZnuA was characterized in vitro and demonstrated to bind as many as 5 zinc ions with a high affinity. It does not interact with AztD, in contrast to what has been demonstrated for AztC, which is able to acquire a single zinc ion through associative transfer from AztD. Deletions of the corresponding genes singly and in combination show that either AztC or ZnuA is sufficient and essential for robust growth in zinc-limited media. Although AztD cannot support transport of zinc into the cytoplasm, it likely functions to store zinc in the periplasm for transfer through the AztABCD system.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/metabolismo , Metalochaperonas/metabolismo , Paracoccus denitrificans/metabolismo , Periplasma/metabolismo , Zinco/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Bactérias/genética , Calorimetria/métodos , Citoplasma/metabolismo , Metalochaperonas/genética , Mutação , Paracoccus denitrificans/genética , Paracoccus denitrificans/crescimento & desenvolvimento
5.
Appl Microbiol Biotechnol ; 102(20): 8943-8950, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30054702

RESUMO

Despite its ecological importance, essential aspects of microbial N2O reduction-such as the effect of O2 availability on the N2O sink capacity of a community-remain unclear. We studied N2O vs. aerobic respiration in a chemostat culture to explore (i) the extent to which simultaneous respiration of N2O and O2 can occur, (ii) the mechanism governing the competition for N2O and O2, and (iii) how the N2O-reducing capacity of a community is affected by dynamic oxic/anoxic shifts such as those that may occur during nitrogen removal in wastewater treatment systems. Despite its prolonged growth and enrichment with N2O as the sole electron acceptor, the culture readily switched to aerobic respiration upon exposure to O2. When supplied simultaneously, N2O reduction to N2 was only detected when the O2 concentration was limiting the respiration rate. The biomass yields per electron accepted during growth on N2O are in agreement with our current knowledge of electron transport chain biochemistry in model denitrifiers like Paracoccus denitrificans. The culture's affinity constant (KS) for O2 was found to be two orders of magnitude lower than the value for N2O, explaining the preferential use of O2 over N2O under most environmentally relevant conditions.


Assuntos
Óxido Nitroso/metabolismo , Oxigênio/metabolismo , Paracoccus denitrificans/metabolismo , Cinética , Nitrogênio/química , Nitrogênio/metabolismo , Óxido Nitroso/química , Oxirredução , Oxigênio/química , Paracoccus denitrificans/química , Paracoccus denitrificans/crescimento & desenvolvimento
6.
Appl Environ Microbiol ; 84(14)2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29776923

RESUMO

Paracoccus denitrificans is a valuable model organism due to its versatile respiration capability and bioenergetic flexibility, both of which are critical to its survival in different environments. Quorum sensing (QS) plays a crucial role in the regulation of many cell functions; however, whether QS systems play a role in P. denitrificans is unknown. In this study, we demonstrated that iron uptake systems in P. denitrificans were directly regulated by a newly identified QS system. Genes coding for TonB-dependent systems, which transport chelated iron, were transcribed at higher levels in the QS-defective mutants. In contrast, genes coding for the Fbp system, which is TonB independent and transports unchelated ferric iron, were downregulated in the mutants. In brief, QS in P. denitrificans triggers a switch in iron uptake from TonB-dependent to TonB-independent transport during biofilm formation as higher concentrations of iron accumulate in the exopolysaccharide (EPS). Switching from TonB-dependent iron uptake systems to TonB-independent systems not only prevents cells from absorbing excess iron but also conserves energy. Our data suggest that iron uptake strategies are directly regulated by QS in Paracoccus denitrificans to support their survival in available ecological niches.IMPORTANCE As iron is an important trace metal for most organisms, its absorption is highly regulated. Fur has been reported as a prevalent regulator of iron acquisition. In addition, there is a relationship between QS and iron acquisition in pathogenic microbes. However, there have been few studies on the iron uptake strategies of nonpathogenic bacteria. In this study, we demonstrated that iron uptake systems in Paracoccus denitrificans PD1222 were regulated by a newly identified PdeR/PdeI QS system during biofilm formation, and we put forward a hypothesis that QS-dependent iron uptake systems benefit the stability of biofilms. This report elaborates the correlation among QS, iron uptake, and biofilm formation and thus contributes to an understanding of the ecological behavior of environmental bacteria.


Assuntos
Biofilmes/crescimento & desenvolvimento , Transporte Biológico , Ferro/metabolismo , Paracoccus denitrificans/metabolismo , Percepção de Quorum/fisiologia , Adaptação Biológica , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana/genética , Paracoccus denitrificans/crescimento & desenvolvimento
7.
Cell Rep ; 22(4): 1067-1078, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29386127

RESUMO

The biological roles of the three natural F1FO-ATPase inhibitors, ε, ζ, and IF1, on cell physiology remain controversial. The ζ subunit is a useful model for deletion studies since it mimics mitochondrial IF1, but in the F1FO-ATPase of Paracoccus denitrificans (PdF1FO), it is a monogenic and supernumerary subunit. Here, we constructed a P. denitrificans 1222 derivative (PdΔζ) with a deleted ζ gene to determine its role in cell growth and bioenergetics. The results show that the lack of ζ in vivo strongly restricts respiratory P. denitrificans growth, and this is restored by complementation in trans with an exogenous ζ gene. Removal of ζ increased the coupled PdF1FO-ATPase activity without affecting the PdF1FO-ATP synthase turnover, and the latter was not affected at all by ζ reconstitution in vitro. Therefore, ζ works as a unidirectional pawl-ratchet inhibitor of the PdF1FO-ATPase nanomotor favoring the ATP synthase turnover to improve respiratory cell growth and bioenergetics.


Assuntos
Transporte de Íons/genética , Mitocôndrias/metabolismo , Paracoccus denitrificans/crescimento & desenvolvimento , Subunidades Proteicas/genética
8.
J Hazard Mater ; 344: 291-298, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29055833

RESUMO

Although the toxicity of silver nanoparticles (Ag NPs or nanosilver) to model bacteria has been reported, the effects of Ag NPs on microbial denitrification under anoxic conditions and the mechanism of Ag NPs induced-toxicity to denitrification remain unclear. In this study, the effects of Ag NPs on Paracoccus denitrificans under anoxic conditions were investigated, and the mechanism was explored by analyzing the transcriptional and proteomic responses of bacteria to Ag NPs. The presence of 5mg/L Ag NPs led to excessive nitrate accumulation (232.5 versus 5.3mg/L) and increased nitrous oxide emission. Transcriptional analysis indicated that Ag NPs restrained the expression of key genes related to denitrification. Specifically, the genes involved in denitrifying catalytic reduction and electron transfer were significantly down-regulated. Moreover, the expression of the genes responsible for polyhydroxybutyrate synthesis was enhanced, which was adverse to denitrification. Proteomic profiling revealed that the syntheses of the proteins involved in catalytic process, electron transfer, and metabolic process were inhibited by Ag NPs. The activities of nitrate reductase and nitrite reductase in the presence of 5mg/L Ag NPs were only 42% and 61% of those in the control, respectively, indicating the inhibition of denitrifying enzymes. These results improve understanding of the inhibitory mechanism of Ag NPs toward bacterial denitrification.


Assuntos
Desnitrificação/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Paracoccus denitrificans/efeitos dos fármacos , Prata/toxicidade , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Nitrato Redutase/metabolismo , Nitrito Redutases/metabolismo , Paracoccus denitrificans/genética , Paracoccus denitrificans/crescimento & desenvolvimento , Paracoccus denitrificans/metabolismo , Proteômica , Transcrição Gênica
9.
Biochem J ; 474(11): 1769-1787, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28385879

RESUMO

Transcriptional adaptation to nitrate-dependent anabolism by Paracoccus denitrificans PD1222 was studied. A total of 74 genes were induced in cells grown with nitrate as N-source compared with ammonium, including nasTSABGHC and ntrBC genes. The nasT and nasS genes were cotranscribed, although nasT was more strongly induced by nitrate than nasS The nasABGHC genes constituted a transcriptional unit, which is preceded by a non-coding region containing hairpin structures involved in transcription termination. The nasTS and nasABGHC transcripts were detected at similar levels with nitrate or glutamate as N-source, but nasABGHC transcript was undetectable in ammonium-grown cells. The nitrite reductase NasG subunit was detected by two-dimensional polyacrylamide gel electrophoresis in cytoplasmic fractions from nitrate-grown cells, but it was not observed when either ammonium or glutamate was used as the N-source. The nasT mutant lacked both nasABGHC transcript and nicotinamide adenine dinucleotide (NADH)-dependent nitrate reductase activity. On the contrary, the nasS mutant showed similar levels of the nasABGHC transcript to the wild-type strain and displayed NasG protein and NADH-nitrate reductase activity with all N-sources tested, except with ammonium. Ammonium repression of nasABGHC was dependent on the Ntr system. The ntrBC and ntrYX genes were expressed at low levels regardless of the nitrogen source supporting growth. Mutational analysis of the ntrBCYX genes indicated that while ntrBC genes are required for nitrate assimilation, ntrYX genes can only partially restore growth on nitrate in the absence of ntrBC genes. The existence of a regulation mechanism for nitrate assimilation in P. denitrificans, by which nitrate induction operates at both transcriptional and translational levels, is proposed.


Assuntos
Adaptação Fisiológica , Regulação Bacteriana da Expressão Gênica , Modelos Biológicos , Nitratos/metabolismo , Ciclo do Nitrogênio , Paracoccus denitrificans/fisiologia , Compostos de Amônio/metabolismo , Proteínas de Bactérias/agonistas , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Metabolismo Energético , Perfilação da Expressão Gênica , Ácido Glutâmico/metabolismo , Mutagênese Sítio-Dirigida , Mutação , Nitrato Redutase (NADH)/antagonistas & inibidores , Nitrato Redutase (NADH)/química , Nitrato Redutase (NADH)/genética , Nitrato Redutase (NADH)/metabolismo , Paracoccus denitrificans/enzimologia , Paracoccus denitrificans/crescimento & desenvolvimento , Proteômica/métodos , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , Elementos Reguladores de Transcrição , Proteínas Repressoras/agonistas , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transativadores/agonistas , Transativadores/antagonistas & inibidores , Transativadores/genética , Transativadores/metabolismo
10.
Environ Sci Pollut Res Int ; 23(15): 15443-51, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27117152

RESUMO

Nitrate contamination in aquifers has posed human health under high risk because people still rely on groundwater withdrawn from aquifers as drinking water and running water sources. These days, bioelectrochemical technologies have shown a great number of benefits for nitrate remediation via autotrophic denitrification in groundwater. This study tested the working possibility of a denitrifying biocathode when installed into a simulated aquifer. The reactors were filled with sand and synthetic groundwater at various ratios (10, 50, and 100 %) to clarify the effect of various biocathode states (not-buried, half-buried, and fully buried) on nitrate reduction rate and microbial communities. Decreases in specific nitrate reduction rates were found to be correlated with increases in sand/medium ratios. A specific nitrate reduction rate of 322.6 mg m(-2) day(-1) was obtained when the biocathode was fully buried in an aquifer. Microbial community analysis revealed slight differences in the microbial communities of biocathodes at various sand/medium ratios. Various coccus- and rod-shaped bacteria were found to contribute to bioelectrochemical denitrification including Thiobacillus spp. and Paracoccus spp. This study demonstrated that the denitrifying biocathode could work effectively in a saturated aquifer and confirmed the feasibility of in situ application of microbial electrochemical denitrification technology.


Assuntos
Processos Autotróficos , Técnicas Eletroquímicas/métodos , Água Subterrânea/química , Nitratos/análise , Microbiologia da Água , Poluentes Químicos da Água/análise , Biodegradação Ambiental , Desnitrificação , Água Potável/normas , Eletrodos , Água Subterrânea/microbiologia , Modelos Teóricos , Oxirredução , Paracoccus denitrificans/crescimento & desenvolvimento , Thiobacillus/crescimento & desenvolvimento
11.
Biochim Biophys Acta ; 1847(8): 709-16, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25896561

RESUMO

The diheme enzyme MauG catalyzes a six-electron oxidation required for posttranslational modification of a precursor of methylamine dehydrogenase (preMADH) to complete the biosynthesis of its protein-derived tryptophan tryptophylquinone (TTQ) cofactor. One heme is low-spin with ligands provided by His205 and Tyr294, and the other is high-spin with a ligand provided by His35. The side chain methyl groups of Thr67 and Leu70 are positioned at a distance of 3.4Å on either side of His35, maintaining a hydrophobic environment in the proximal pocket of the high-spin heme and restricting the movement of this ligand. Mutation of Thr67 to Ala in the proximal pocket of the high-spin heme prevented reduction of the low-spin heme by dithionite, yielding a mixed-valent state. The mutation also enhanced the stabilization of the charge-resonance-transition of the high-valent bis-FeIV state that is generated by addition of H2O2. The rates of electron transfer from TTQ biosynthetic intermediates to the high-valent form of T67A MauG were similar to that of wild-type MauG. These results are compared to those previously reported for mutation of residues in the distal pocket of the high-spin heme that also affected the redox properties and charge resonance transition stabilization of the high-valent state of the hemes. However, given the position of residue 67, the structure of the variant protein and the physical nature of the T67A mutation, the basis for the effects of the T67A mutation must be different from those of the mutations of the residues in the distal heme pocket.


Assuntos
Proteínas de Bactérias/química , Compostos Férricos/química , Compostos Ferrosos/química , Heme/química , Hemeproteínas/química , Mutação/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Transporte de Elétrons , Compostos Férricos/metabolismo , Compostos Ferrosos/metabolismo , Heme/genética , Heme/metabolismo , Hemeproteínas/genética , Hemeproteínas/metabolismo , Indolquinonas/metabolismo , Modelos Moleculares , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Paracoccus denitrificans/genética , Paracoccus denitrificans/crescimento & desenvolvimento , Paracoccus denitrificans/metabolismo , Processamento de Proteína Pós-Traducional , Rhodobacter sphaeroides/genética , Rhodobacter sphaeroides/crescimento & desenvolvimento , Rhodobacter sphaeroides/metabolismo , Análise Espectral Raman , Triptofano/análogos & derivados , Triptofano/metabolismo
12.
Environ Toxicol Chem ; 34(4): 887-97, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25556815

RESUMO

Proper characterization of nanoparticle (NP) interactions with environmentally relevant bacteria under representative conditions is necessary to enable their sustainable manufacture, use, and disposal. Previous nanotoxicology research based on planktonic growth has not adequately explored biofilms, which serve as the predominant mode of bacterial growth in natural and engineered environments. Copper nanoparticle (Cu-NP) impacts on biofilms were compared with respective planktonic cultures of the ammonium-oxidizing Nitrosomonas europaea, nitrogen-fixing Azotobacter vinelandii, and denitrifying Paracoccus denitrificans using a suite of independent toxicity diagnostics. Median inhibitory concentration (IC50) values derived from adenosine triphosphate (ATP) for Cu-NPs were lower in N. europaea biofilms (19.6 ± 15.3 mg/L) than in planktonic cells (49.0 ± 8.0 mg/L). However, in absorbance-based growth assays, compared with unexposed controls, N. europaea growth rates in biofilms were twice as resilient to inhibition than those in planktonic cultures. Similarly, relative to unexposed controls, growth rates and yields of P. denitrificans in biofilms exposed to Cu-NPs were 40-fold to 50-fold less inhibited than those in planktonic cells. Physiological evaluation of ammonium oxidation and nitrate reduction suggested that biofilms were also less inhibited by Cu-NPs than planktonic cells. Furthermore, functional gene expression for ammonium oxidation (amoA) and nitrite reduction (nirK) showed lower inhibition by NPs in biofilms relative to planktonic-grown cells. These results suggest that biofilms mitigate NP impacts, and that nitrogen-cycling bacteria in wastewater, wetlands, and soils might be more resilient to NPs than planktonic-based assessments suggest.


Assuntos
Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Biofilmes/crescimento & desenvolvimento , Cobre/toxicidade , Poluentes Ambientais/toxicidade , Nanopartículas Metálicas/toxicidade , Fixação de Nitrogênio , Plâncton/microbiologia , Compostos de Amônio/metabolismo , Azotobacter vinelandii/efeitos dos fármacos , Azotobacter vinelandii/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Nitratos/metabolismo , Nitrosomonas europaea/efeitos dos fármacos , Nitrosomonas europaea/crescimento & desenvolvimento , Oxirredução , Paracoccus denitrificans/efeitos dos fármacos , Paracoccus denitrificans/crescimento & desenvolvimento
13.
Prep Biochem Biotechnol ; 45(1): 69-83, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-24547951

RESUMO

In this study, the kinetics of poly-3-hydroxybutyrate (PHB) biosynthesis from glycerol by Paracoccus denitrificans DSMZ 413 were explored in a batch bioreactor. Effects of inorganic and organic nitrogen source, carbon to nitrogen ratio, and other process variables such as pH, aeration, and initial glycerol concentration on PHB production were investigated in a 2.5-L bioreactor. Yeast extract was found to be the best nitrogen source compared to several organic nitrogen sources tested. At pH 6, specific growth rate, product formation rate, and accumulation of PHB within the cell were maximum. Specific growth rate increased with increase in oxygen transfer rate, but moderate oxygen transfer rate promoted PHB production. High glycerol concentration inhibited specific product formation rate but not growth. High initial carbon/nitrogen (C/N) ratio favored PHB accumulation and its productivity. At a C/N ratio of 21.4 (mol mol(-1)), 10.7 g L(-1) of PHB corresponding to 72% of cell dry weight was attained.


Assuntos
Reatores Biológicos , Glicerol/metabolismo , Hidroxibutiratos/metabolismo , Paracoccus denitrificans/metabolismo , Poliésteres/metabolismo , Sulfato de Amônio/metabolismo , Carbono/metabolismo , Fermentação , Concentração de Íons de Hidrogênio , Cinética , Nitrogênio/metabolismo , Paracoccus denitrificans/crescimento & desenvolvimento
14.
Prep Biochem Biotechnol ; 45(5): 491-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-24840098

RESUMO

The biodegradation of high concentration isopropanol (2-propanol, IPA) at 16 g/L was investigated by a solvent-tolerant strain of bacteria identified as Paracoccus denitrificans for the first time by 16S rDNA gene sequencing. The strain P. denitrificans GH3 was able to utilize the high concentration of IPA as the sole carbon source within a minimal salts medium with a cell density of 1.5×10(8) cells/mL. The optimal conditions were found as follows: initial pH 7.0, incubation temperature 30°C, with IPA concentration 8 g/L. Under the optimal conditions, strain GH3 utilized 90.3% of IPA in 7 days. Acetone, the major intermediate of aerobic IPA biodegradation, was also monitored as an indicator of microbial IPA utilization. Both IPA and acetone were completely removed from the medium following 216 hr and 240 hr, respectively. The growth of strain GH3 on IPA as a sole carbon and energy source was well described by the Andrews model with a maximum growth rate (µmax)=0.0277/hr, a saturation constant (KS)=0.7333 g/L, and an inhibition concentration (Ki)=8.9887 g/L. Paracoccus denitrificans GH3 is considered to be well used in degrading IPA in wastewater.


Assuntos
2-Propanol/metabolismo , Paracoccus denitrificans/genética , Paracoccus denitrificans/metabolismo , Acetona/metabolismo , Biodegradação Ambiental , Meios de Cultura , Concentração de Íons de Hidrogênio , Cinética , Dados de Sequência Molecular , Paracoccus denitrificans/crescimento & desenvolvimento , Paracoccus denitrificans/isolamento & purificação , Filogenia , RNA Ribossômico 16S , Solventes/metabolismo , Temperatura
15.
PLoS Comput Biol ; 10(11): e1003933, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25375393

RESUMO

In response to impending anoxic conditions, denitrifying bacteria sustain respiratory metabolism by producing enzymes for reducing nitrogen oxyanions/-oxides (NOx) to N2 (denitrification). Since denitrifying bacteria are non-fermentative, the initial production of denitrification proteome depends on energy from aerobic respiration. Thus, if a cell fails to synthesise a minimum of denitrification proteome before O2 is completely exhausted, it will be unable to produce it later due to energy-limitation. Such entrapment in anoxia is recently claimed to be a major phenomenon in batch cultures of the model organism Paracoccus denitrificans on the basis of measured e(-)-flow rates to O2 and NOx. Here we constructed a dynamic model and explicitly simulated actual kinetics of recruitment of the cells to denitrification to directly and more accurately estimate the recruited fraction (Fden). Transcription of nirS is pivotal for denitrification, for it triggers a cascade of events leading to the synthesis of a full-fledged denitrification proteome. The model is based on the hypothesis that nirS has a low probability (rden, h(-1)) of initial transcription, but once initiated, the transcription is greatly enhanced through positive feedback by NO, resulting in the recruitment of the transcribing cell to denitrification. We assume that the recruitment is initiated as [O2] falls below a critical threshold and terminates (assuming energy-limitation) as [O2] exhausts. With rden = 0.005 h(-1), the model robustly simulates observed denitrification kinetics for a range of culture conditions. The resulting Fden (fraction of the cells recruited to denitrification) falls within 0.038-0.161. In contrast, if the recruitment of the entire population is assumed, the simulated denitrification kinetics deviate grossly from those observed. The phenomenon can be understood as a 'bet-hedging strategy': switching to denitrification is a gain if anoxic spell lasts long but is a waste of energy if anoxia turns out to be a 'false alarm'.


Assuntos
Proteínas de Bactérias/metabolismo , Modelos Biológicos , Óxidos de Nitrogênio/metabolismo , Paracoccus denitrificans/metabolismo , Aerobiose , Proteínas de Bactérias/genética , Biologia Computacional , Desnitrificação , Regulação Bacteriana da Expressão Gênica , Paracoccus denitrificans/genética , Paracoccus denitrificans/crescimento & desenvolvimento , Proteoma/metabolismo , Proteoma/fisiologia
16.
Proc Natl Acad Sci U S A ; 110(16): 6382-7, 2013 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-23576726

RESUMO

Poration of bacterial membranes by antimicrobial peptides such as magainin 2 is a significant activity performed by innate immune systems. Pore formation by soluble forms of amyloid proteins such as islet amyloid polypeptide (IAPP) is implicated in cell death in amyloidoses. Similarities in structure and poration activity of these two systems suggest a commonality of mechanism. Here, we investigate and compare the mechanisms by which these peptides induce membrane leakage and bacterial cell death through the measurement of liposome leakage kinetics and bacterial growth inhibition. For both systems, leakage occurs through the nucleation-dependent formation of stable membrane pores. Remarkably, we observe IAPP and magainin 2 to be fully cross-cooperative in the induction of leakage and inhibition of bacterial growth. The effects are dramatic, with mixtures of these peptides showing activities >100-fold greater than simple sums of the activities of individual peptides. Direct protein-protein interactions cannot be the origin of cooperativity, as IAPP and its enantiomer D-IAPP are equally cross-cooperative. We conclude that IAPP and magainin 2 induce membrane leakage and cytotoxicity through a shared, cross-cooperative, tension-induced poration mechanism.


Assuntos
Amiloide/metabolismo , Peptídeos Catiônicos Antimicrobianos/metabolismo , Permeabilidade da Membrana Celular/fisiologia , Membrana Celular/metabolismo , Paracoccus denitrificans/metabolismo , Sequência de Aminoácidos , Cromatografia Líquida de Alta Pressão , Dicroísmo Circular , Contagem de Colônia Microbiana , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Cinética , Lipossomos/química , Lipossomos/metabolismo , Magaininas/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Paracoccus denitrificans/crescimento & desenvolvimento , Fosfatidilgliceróis , Espectrometria de Fluorescência
17.
J Bacteriol ; 195(12): 2921-30, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23603744

RESUMO

Hypotaurine (HT; 2-aminoethane-sulfinate) is known to be utilized by bacteria as a sole source of carbon, nitrogen, and energy for growth, as is taurine (2-aminoethane-sulfonate); however, the corresponding HT degradation pathway has remained undefined. Genome-sequenced Paracoccus denitrificans PD1222 utilized HT (and taurine) quantitatively for heterotrophic growth and released the HT sulfur as sulfite (and sulfate) and HT nitrogen as ammonium. Enzyme assays with cell extracts suggested that an HT-inducible HT:pyruvate aminotransferase (Hpa) catalyzes the deamination of HT in an initial reaction step. Partial purification of the Hpa activity and peptide fingerprinting-mass spectrometry (PF-MS) identified the Hpa candidate gene; it encoded an archetypal taurine:pyruvate aminotransferase (Tpa). The same gene product was identified via differential PAGE and PF-MS, as was the gene of a strongly HT-inducible aldehyde dehydrogenase (Adh). Both genes were overexpressed in Escherichia coli. The overexpressed, purified Hpa/Tpa showed HT:pyruvate-aminotransferase activity. Alanine, acetaldehyde, and sulfite were identified as the reaction products but not sulfinoacetaldehyde; the reaction of Hpa/Tpa with taurine yielded sulfoacetaldehyde, which is stable. The overexpressed, purified Adh oxidized the acetaldehyde generated during the Hpa reaction to acetate in an NAD(+)-dependent reaction. Based on these results, the following degradation pathway for HT in strain PD1222 can be depicted. The identified aminotransferase converts HT to sulfinoacetaldehyde, which desulfinates spontaneously to acetaldehyde and sulfite; the inducible aldehyde dehydrogenase oxidizes acetaldehyde to yield acetate, which is metabolized, and sulfite, which is excreted.


Assuntos
Acetaldeído/metabolismo , Acetatos/metabolismo , Redes e Vias Metabólicas , Paracoccus denitrificans/crescimento & desenvolvimento , Paracoccus denitrificans/metabolismo , Taurina/análogos & derivados , Escherichia coli/genética , Expressão Gênica , Modelos Biológicos , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Taurina/metabolismo
18.
Bioresour Technol ; 120: 127-32, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22784963

RESUMO

Biological reduction of Fe(III)EDTA is one of the key steps in nitrogen oxides removal in the integrated approach of metal chelate absorption combined with microbial reduction. Paracoccus denitrificans ZGL1 was used as a model bacterium to evaluate the process of Fe(III)EDTA reduction by such microorganisms that could carry out the simultaneous reduction of NO chelated by Fe(II)EDTA (Fe(II)EDTA-NO) and Fe(III)EDTA. Enzymes analysis indicated Fe(III)EDTA reductase of ZGL1 was located both in the membrane and cytoplasmic fractions. Glucose was identified as the most efficient electron donor for Fe(III)EDTA reduction. Better reduction performance was obtained with higher initial cell concentration corresponding to a specific reduction rate of 8.7 µmol h(-1) mg protein(-1). The presence of sulfate and thiosulfate had no influences on both cell growth and Fe(III)EDTA reduction. Fe(III)EDTA reduction rate and cell growth could be inhibited by addition of sulfite mainly due to its direct and indirect toxic effects.


Assuntos
Desnitrificação , Compostos Férricos/metabolismo , Nitratos/metabolismo , Nitritos/metabolismo , Paracoccus denitrificans/metabolismo , Compostos de Enxofre/farmacologia , Águas Residuárias/microbiologia , Biodegradação Ambiental/efeitos dos fármacos , Carbono/farmacologia , Cor , Desnitrificação/efeitos dos fármacos , Ácido Edético/metabolismo , FMN Redutase/metabolismo , Cinética , Oxirredução/efeitos dos fármacos , Paracoccus denitrificans/citologia , Paracoccus denitrificans/efeitos dos fármacos , Paracoccus denitrificans/crescimento & desenvolvimento , Tiossulfatos/metabolismo , Fatores de Tempo , Águas Residuárias/química
19.
J Biol Chem ; 287(9): 6530-8, 2012 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-22235135

RESUMO

Quinohemoprotein amine dehydrogenase (QHNDH), an αßγ heterotrimer present in the periplasm of several Gram-negative bacteria, catalyzes the oxidative deamination of various aliphatic amines such as n-butylamine for assimilation as carbon and energy sources. The γ subunit of mature QHNDH contains a protein-derived quinone cofactor, cysteine tryptophylquinone, and three intrapeptidyl thioether cross-links between Cys and Asp or Glu residues. In its cytoplasmic nascent form, the γ subunit has a 28-residue N-terminal leader peptide that is necessary for the production of active QHNDH but must be removed in the following maturation process. Here, we describe the role of a subtilisin-like serine protease encoded in the fifth ORF of the n-butylamine-utilizing operon of Paracoccus denitrificans (termed ORF5) in QHNDH biogenesis. ORF5 disruption caused bacterial cell growth inhibition in n-butylamine-containing medium and production of inactive QHNDH, in which the γ subunit retained the leader peptide. Supply of plasmid-encoded ORF5 restored the cell growth and production of active QHNDH, containing the correctly processed γ subunit. ORF5 expressed in Escherichia coli but not its catalytic triad mutant cleaved synthetic peptides surrogating for the γ subunit leader peptide, although extremely slowly. The cleaved leader peptide remained unstably bound to ORF5, most likely as an acyl enzyme intermediate attached to the active-site Ser residue. These results demonstrate that ORF5 is essential for QHNDH biogenesis, serving as a processing protease to cleave the γ subunit leader peptide nearly in a disposable manner.


Assuntos
Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Paracoccus denitrificans/enzimologia , Paracoccus denitrificans/genética , Serina Proteases/genética , Serina Proteases/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Dados de Sequência Molecular , Mutagênese/fisiologia , Fases de Leitura Aberta/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/química , Paracoccus denitrificans/crescimento & desenvolvimento , Plasmídeos/genética , Processamento de Proteína Pós-Traducional/fisiologia , Estrutura Terciária de Proteína , Subtilisina/genética , Subtilisina/metabolismo
20.
Microbiology (Reading) ; 158(Pt 3): 826-834, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22174385

RESUMO

The reductases performing the four steps of denitrification are controlled by a network of transcriptional regulators and ancillary factors responding to intra- and extracellular signals, amongst which are oxygen and N oxides (NO and NO2(-)). Although many components of the regulatory network have been identified, there are gaps in our understanding of their role(s) in controlling the expression of the various reductases, in particular the environmentally important N(2)O reductase (N(2)OR). We investigated denitrification phenotypes of Paracoccus denitrificans mutants deficient in: (i) regulatory proteins (three FNR-type transcriptional regulators, NarR, NNR and FnrP, and NirI, which is involved in transcription activation of the structural nir cluster); (ii) functional enzymes (NO reductase and N(2)OR); or (iii) ancillary factors involved in N(2)O reduction (NirX and NosX). A robotized incubation system allowed us to closely monitor changes in concentrations of oxygen and all gaseous products during the transition from oxic to anoxic respiration. Strains deficient in NO reductase were able to grow during denitrification, despite reaching micromolar concentrations of NO, but were unable to return to oxic respiration. The FnrP mutant showed linear anoxic growth in a medium with nitrate as the sole NO(x), but exponential growth was restored by replacing nitrate with nitrite. We interpret this as nitrite limitation, suggesting dual transcriptional control of respiratory nitrate reductase (NAR) by FnrP and NarR. Mutations in either NirX or NosX did not affect the phenotype, but the double mutant lacked the potential to reduce N(2)O. Finally, we found that FnrP and NNR are alternative and equally effective inducers of N(2)OR.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Óxido Nítrico/metabolismo , Oxirredutases/biossíntese , Paracoccus denitrificans/enzimologia , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Aerobiose , Anaerobiose , Proteínas de Bactérias/genética , Meios de Cultura/química , Proteínas de Ligação a DNA/genética , Desnitrificação , Oxigênio/metabolismo , Paracoccus denitrificans/genética , Paracoccus denitrificans/crescimento & desenvolvimento , Paracoccus denitrificans/metabolismo , Transativadores/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA