Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.863
Filtrar
1.
Food Res Int ; 188: 114442, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823830

RESUMO

The long-term stability of red wine color depends on the formation of polymeric pigments from anthocyanins. Although there is still a lot of uncertainty about the specific structure of this diverse group of pigments, there is consensus that they are reaction products of anthocyanins and other polyphenols. Interactions between anthocyanins and pectic polysaccharides have been suggested to stabilize anthocyanins. This study explores the impact of such interactions by adding pectin during red winemaking. The results demonstrate that these interactions induce the formation of additional polymeric pigments which enhance the pigment stability during fermentation and aging. While initial pigment formation is higher in wines with added pectin, a notable proportion of the complexes degrades in the later stages of fermentation. Presumably, tannins form insoluble complexes with pectin, reducing tannin concentration by more than 300 mg/L. Anthocyanin concentrations decrease by over 400 mg/L, and polymeric pigments double. Anthocyanins that form polymeric pigments with pectic polysaccharides expand the range of pigments in red wines with possible consequences for the sensory properties of the wine. These findings highlight the complex interactions between pectin, anthocyanins, and tannins, and their influence on pigment formation and wine composition during fermentation and aging.


Assuntos
Antocianinas , Fermentação , Pectinas , Taninos , Vinho , Antocianinas/química , Antocianinas/análise , Pectinas/química , Vinho/análise , Taninos/química , Cor , Manipulação de Alimentos/métodos , Pigmentos Biológicos/química , Polímeros/química
2.
Carbohydr Polym ; 339: 122256, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823922

RESUMO

Recently, the intestinal lymphatic transport based on Peyer's patches (PPs) is emerging as a promising absorption pathway for natural polysaccharides. Herein, the aim of this study is to investigate the PP-based oral absorption of a pectic polysaccharide from Smilax china L. (SCLP), as well as its uptake and transport mechanisms in related immune cells. Taking advantages of the traceability of fluorescently labeled SCLP, we confirmed that SCLP could be absorbed into PPs and captured by their mononuclear phagocytes (dendritic cells and macrophages) following oral administration. Subsequently, the systematic in vitro study suggested that the endocytic mechanisms of SCLP by model mononuclear phagocytes (BMDCs and RAW264.7 cells) mainly involved caveolae-mediated endocytosis, macropinocytosis and phagocytosis. More importantly, SCLP directly binds and interacts with toll-like receptor 2 (TLR2) and galectin 3 (Gal-3) receptor, and was taken up by mononuclear phagocytes in receptor-mediated manner. After internalization, SCLP was intracellularly transported primarily through endolysosomal pathway and ultimately localized in lysosomes. In summary, this work reveals novel information and perspectives about the in vivo fate of SCLP, which will contribute to further research and utilization of SCLP and other pectic polysaccharides.


Assuntos
Nódulos Linfáticos Agregados , Smilax , Animais , Camundongos , Células RAW 264.7 , Nódulos Linfáticos Agregados/metabolismo , Smilax/química , Endocitose , Pectinas/química , Pectinas/metabolismo , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Fagócitos/metabolismo , Fagócitos/efeitos dos fármacos , Receptor 2 Toll-Like/metabolismo , Camundongos Endogâmicos BALB C , Masculino , Células Dendríticas/metabolismo , Células Dendríticas/efeitos dos fármacos , Administração Oral
3.
Elife ; 132024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38832933

RESUMO

Modification of pectin, a component of the plant cell wall, is required to facilitate signaling by a RALF peptide, which is essential for many physiological and developmental processes.


Assuntos
Pectinas , Transdução de Sinais , Pectinas/metabolismo , Pectinas/química , Parede Celular/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética
4.
Ultrason Sonochem ; 106: 106883, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38703594

RESUMO

Ultrasound has been widely used in industry due to its high energy and efficiency. This study optimized the ultrasonic-assisted extraction (UAE) process of frosted figs pectin (FFP) using response surface methodology (RSM), and further investigated the effect of ultrasonic power on the structural characteristics and antioxidant activities of FFPs. The UAE method of FFP through RSM was optimized, and the optimal extraction process conditions, particle size of 100 mesh, pH value of 1.95, liquid-solid ratio of 47:1 (mL/g), extraction temperature of 50 °C and extraction time of 65 min, were obtained. The extraction rate of FFP under this condition was 37.97 ± 2.56 %. Then, the four FFPs modified by ultrasound were obtained by changing the ultrasonic power. Research had found that ultrasonic power had little effect on the monosaccharide composition, Zeta potential, as well as the thermal stability and appearance structure of the four FFPs. However, ultrasonic power had a significant impact on other properties of FFP: as the ultrasonic power increased, the DM% and particle size decreased continuously, while the total carbohydrate content increased. Meanwhile, ultrasonic power also had a significant impact on antioxidant activities of FFPs. From the research results, it could be seen that different ultrasonic power had certain changes in its spatial structure and properties, and the structural changes also affected the biological activity of FFP. The study of the effects of ultrasonic power on the physicochemical properties and biological activity of FFP lays the foundation for the development and application of FFP in food additives and natural drug carriers.


Assuntos
Antioxidantes , Fenômenos Químicos , Ficus , Pectinas , Ondas Ultrassônicas , Pectinas/química , Pectinas/isolamento & purificação , Ficus/química , Antioxidantes/química , Temperatura , Tamanho da Partícula , Concentração de Íons de Hidrogênio
5.
Food Chem ; 451: 139505, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38703732

RESUMO

Constructing carrier materials with polysaccharides to enhance the solubility of insoluble active ingredients is a crucial strategy for improving bioavailability. This research constructed pectin-based hesperidin microcapsules (PHM) through self-assembly processes in the deep eutectic solvent, improving the solubility, storage stability, and bioavailability of hesperidin (HES). PHM exhibited high encapsulation efficiency (91.7%) and loading capacity (11.5%), with a small particle size (1.73 µm). The interaction mechanism was clarified through physical characterization and density functional theory (DFT) calculations. The vitro release demonstrated that the release ratio of PHM was only 6.4% in simulated gastric fluid (SGF), but reached 80.9% in simulated intestinal fluid (SIF). The release mechanism of PHM in SGF followed Fickian diffusion, while in SIF followed skeleton dissolution diffusion with a stable rate. Furthermore, the cell cytotoxicity experiments confirmed the remarkable biocompatibility of PHM toward human colon cells, which suggested its potential application in food and pharmaceutical fields.


Assuntos
Cápsulas , Hesperidina , Pectinas , Solubilidade , Pectinas/química , Hesperidina/química , Humanos , Cápsulas/química , Portadores de Fármacos/química , Tamanho da Partícula , Composição de Medicamentos , Disponibilidade Biológica , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Sobrevivência Celular/efeitos dos fármacos , Células CACO-2
6.
Ultrason Sonochem ; 106: 106895, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705082

RESUMO

Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn) leaf has abundant rhamnogalacturonan-I enriched pectic polysaccharides, which exert various health-promoting effects. Nevertheless, the potential relationship between the chemical structure and the biological function of pectic polysaccharides from Tartary buckwheat leaves (TBP) remains unclear. Therefore, to bridge the gap between the chemical structure and the biological function of TBP, the impacts of ultrasound-assisted Fenton degradation (UFD) and mild alkaline de-esterification (MAD) on structural properties and biological effects of TBP were systematically studied. Compared with the native TBP (molecular mass, 9.537 × 104 Da), the molecular masses of degraded TBPs (TBP-MMW, 4.811 × 104 Da; TBP-LMW, 2.101 × 104 Da) were significantly reduced by the UFD modification, while their primary chemical structures were overall stable. Besides, compared with the native TBP (esterification degree, 22.73 %), the esterification degrees of de-esterified TBPs (TBP-MDE, 14.27 %; TBP-LDE, 6.59 %) were notably reduced by the MAD modification, while their primary chemical structures were also overall stable. Furthermore, the results revealed that both UFD and MAD modifications could significantly improve the antioxidant, antiglycation, and immunostimulatory effects of TBP. Indeed, TBP's biological effects were negatively correlated to its molecular mass and esterification degree, while positively linked to its free uronic acids. The findings demonstrate that both UFD and MAD modifications are promising techniques for the structural modification of TBP, which can remarkedly promote its biological effects. Besides, the present results are conducive to better understanding TBP's structure-bioactivity relationship.


Assuntos
Fagopyrum , Pectinas , Folhas de Planta , Ondas Ultrassônicas , Folhas de Planta/química , Fagopyrum/química , Esterificação , Pectinas/química , Pectinas/farmacologia , Ferro/química , Peróxido de Hidrogênio/química , Antioxidantes/química , Antioxidantes/farmacologia , Polissacarídeos/química , Polissacarídeos/farmacologia , Animais
7.
Food Res Int ; 187: 114395, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763655

RESUMO

Pectic polysaccharides are one of the most vital functional ingredients in quinoa microgreens, which exhibit numerous health-promoting benefits. Nevertheless, the detailed information about the structure-function relationships of pectic polysaccharides from quinoa microgreens (QMP) remains unknown, thereby largely restricting their applications as functional foods or fortified ingredients. Therefore, to unveil the possible structure-function relationships of QMP, the mild alkali de-esterification was utilized to modify QMP, and then the correlations of esterification degrees of native and modified QMPs to their biological functions were systematically investigated. The results showed that the modified QMPs with different esterification degrees were successfully prepared by the mild alkali treatment, and the primary chemical structure (e.g., compositional monosaccharides and glycosidic linkages) of the native QMP was overall stable after the de-esterified modification. Furthermore, the results revealed that the antioxidant capacity, antiglycation effect, prebiotic potential, and immunostimulatory activity of the native QMP were negatively correlated to its esterification degree. In addition, both native and modified QMPs exerted immunostimulatory effects through activating the TLR4/NF-κB signaling pathway. These results are conducive to unveiling the precise structure-function relationships of QMP, and can also promote its applications as functional foods or fortified ingredients.


Assuntos
Antioxidantes , Chenopodium quinoa , Esterificação , Chenopodium quinoa/química , Relação Estrutura-Atividade , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/análise , Pectinas/química , Polissacarídeos/química , Prebióticos , Animais , Camundongos , Alimento Funcional , Células RAW 264.7 , NF-kappa B/metabolismo
8.
Carbohydr Polym ; 338: 122236, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38763717

RESUMO

Avicennia marina (Forssk.) Vierh. is a highly salt-tolerant mangrove, and its fruit has been traditionally used for treating constipation and dysentery. In this study, a pectin (AMFPs-0-1) was extracted and isolated from this fruit for the first time, its structure was analyzed, and the effects on the human gut microbiota were investigated. The results indicated that AMFPs-0-1 with a molecular weight of 798 kDa had a backbone consisting of alternating →2)-α-L-Rhap-(1→ and →4)-α-D-GalpA-(1→ residues and side chains composed of →3-α-L-Araf-(1→-linked arabinan with a terminal ß-L-Araf, →5-α-L-Araf-(1→-linked arabinan, and →4)-ß-D-Galp-(1→-linked galactan that linked to the C-4 positions of all α-L-Rhap residues in the backbone. It belongs to a type I rhamnogalacturonan (RG-I) pectin but has no arabinogalactosyl chains. AMFPs-0-1 could be consumed by human gut microbiota and increase the abundance of some beneficial bacteria, such as Bifidobacterium, Mitsuokella, and Megasphaera, which could help fight digestive disorders. These findings provide a structural basis for the potential application of A. marina fruit RG-I pectic polysaccharides in improving human intestinal health.


Assuntos
Avicennia , Fermentação , Frutas , Microbioma Gastrointestinal , Pectinas , Prebióticos , Pectinas/química , Frutas/química , Avicennia/química , Avicennia/microbiologia , Humanos , Microbioma Gastrointestinal/efeitos dos fármacos , Peso Molecular
9.
Sci Rep ; 14(1): 11454, 2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769105

RESUMO

This study focuses on pectin covalently linked in cell walls from two sources, apples and carrots, that was extracted using diluted alkali, and it describes changes in the rheological properties of diluted alkali-soluble pectin (DASP) due to enzymatic treatment. Given DASP's richness of rhamnogalacturonan I (RG-I), RG-I acetyl esterase (RGAE), rhamnogalacturonan endolyase (RGL), and arabinofuranosidase (ABF) were employed in various combinations for targeted degradation of RG-I pectin chains. Enzymatic degradations were followed by structural studies of pectin molecules using atomic force microscopy (AFM) as well as measurements of rheological and spectral properties. AFM imaging revealed a significant increase in the length of branched molecules after incubation with ABF, suggesting that arabinose side chains limit RG-I aggregation. Structural modifications were confirmed by changes in the intensity of bands in the pectin fingerprint and anomeric region on Fourier transform infrared spectra. ABF treatment led to a decrease in the stability of pectic gels, while the simultaneous use of ABF, RGAE, and RGL enzymes did not increase the degree of aggregation compared to the control sample. These findings suggest that the association of pectin chains within the DASP fraction may rely significantly on intermolecular interactions. Two mechanisms are proposed, which involve side chains as short-range attachment points or an extended linear homogalacturonan conformation favoring inter-chain interactions over self-association.


Assuntos
Pectinas , Reologia , Pectinas/química , Pectinas/metabolismo , Microscopia de Força Atômica , Álcalis/química , Glicosídeo Hidrolases/metabolismo , Glicosídeo Hidrolases/química , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Daucus carota/química , Polissacarídeo-Liases/metabolismo , Polissacarídeo-Liases/química , Parede Celular/química , Parede Celular/metabolismo
10.
J Agric Food Chem ; 72(20): 11652-11662, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38738910

RESUMO

Pectin lyases (PNLs) can enhance juice clarity and flavor by degrading pectin in highly esterified fruits, but their inadequate acid resistance leads to rapid activity loss in juice. This study aimed to improve the acid resistance of Aspergillus niger PNL pelA through surface charge design. A modification platform was established by fusing pelA with a protein tag and expressing the fusion enzyme in Escherichia coli. Four single-point mutants were identified to increase the surface charge using computational tools. Moreover, the combined mutant M6 (S514D/S538E) exhibited 99.8% residual activity at pH 3.0. The M6 gene was then integrated into the A. niger genome using a multigene integration system to obtain the recombinant PNL AM6. Notably, AM6 improved the light transmittance of orange juice to 45.3%, which was 8.39 times higher than that of pelA. In conclusion, AM6 demonstrated the best-reported acid resistance, making it a promising candidate for industrial juice clarification.


Assuntos
Aspergillus niger , Sucos de Frutas e Vegetais , Proteínas Fúngicas , Polissacarídeo-Liases , Aspergillus niger/enzimologia , Aspergillus niger/genética , Sucos de Frutas e Vegetais/análise , Polissacarídeo-Liases/genética , Polissacarídeo-Liases/metabolismo , Polissacarídeo-Liases/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Concentração de Íons de Hidrogênio , Manipulação de Alimentos , Ácidos/química , Ácidos/metabolismo , Ácidos/farmacologia , Citrus sinensis/química , Pectinas/química , Pectinas/metabolismo , Estabilidade Enzimática
11.
J Colloid Interface Sci ; 668: 678-690, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38710124

RESUMO

Aerogels, as a unique porous material, are expected to be used as insulation materials to solve the global environmental and energy crisis. Using chitosan, citric acid, pectin and phytic acid as raw materials, an all-biomass-based aerogel with high modulus was prepared by the triple strategy of ionic, physical and chemical cross-linking through directional freezing technique. Based on this three-dimensional network, the aerogel exhibited excellent compressive modulus (24.89 ± 1.76 MPa) over a wide temperature range and thermal insulation properties. In the presence of chitosan, citric acid and phytic acid, the aerogel obtained excellent fire safety (LOI value up to 31.2%) and antibacterial properties (antibacterial activity against Staphylococcus aureus and Escherichia coli reached 81.98% and 67.43%). In addition, the modified aerogel exhibited excellent hydrophobicity (hydrophobic angle of 146°) and oil-water separation properties. More importantly, the aerogel exhibited a biodegradation rate of up to 40.31% for 35 days due to its all-biomass nature. This work provides a green and sustainable strategy for the production of highly environmentally friendly thermal insulation materials with high strength, flame retardant, antibacterial and hydrophobic properties.


Assuntos
Antibacterianos , Quitosana , Ácido Cítrico , Escherichia coli , Géis , Staphylococcus aureus , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Géis/química , Quitosana/química , Ácido Cítrico/química , Biomassa , Interações Hidrofóbicas e Hidrofílicas , Porosidade , Ácido Fítico/química , Pectinas/química , Reagentes de Ligações Cruzadas/química , Testes de Sensibilidade Microbiana , Propriedades de Superfície , Tamanho da Partícula , Temperatura
12.
Food Chem ; 453: 139644, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-38761735

RESUMO

This work developed and characterized the physicochemical properties of a type A gelatin and amidated low-methoxyl pectin complex coacervate (GA-LMAP-CC) hydrogel and evaluated its suitability for preserving the viability of probiotics under in vitro gastrointestinal conditions. The formation of GA-LMAP-CC was achieved via height electrostatic attraction at pH 3 and a mixing ratio of 1, exhibiting thermoreversible gel behavior. The hydrogel had a porosity of 44% and a water absorption capacity of up to 12 times. Water absorption profiles were obtained at different pH values (2, 5, and 7). The influence of GA-LMAP-CC depended on the medium, which controlled the hydration and water absorption rate. GA-LMAP-CC promoted the viability of B. longum BB536 and L. acidophilus strains under simulated gastrointestinal conditions, thereby enhancing their potential for intestinal colonization. The hydrogel has suitable properties for potential application in food and pharmaceutical areas to encapsulate and preserve probiotics.


Assuntos
Gelatina , Hidrogéis , Pectinas , Probióticos , Pectinas/química , Gelatina/química , Probióticos/química , Hidrogéis/química , Viabilidade Microbiana/efeitos dos fármacos , Lactobacillus acidophilus/química , Lactobacillus acidophilus/crescimento & desenvolvimento , Lactobacillus acidophilus/metabolismo , Bifidobacterium/crescimento & desenvolvimento , Bifidobacterium/metabolismo , Concentração de Íons de Hidrogênio , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia
13.
ACS Appl Bio Mater ; 7(5): 3375-3387, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38693867

RESUMO

Encapsulation of natural polymer pectin (Pec) into a zeolitic imidazolate framework-12 (ZIF-12) matrix via a simple chemical method toward anticancer agent gallic acid (GA) detection is reported in this work. GA, a natural phenol found in many food sources, has gained attention by its biological effects on the human body, such as an antioxidant and anti-inflammatory. Therefore, it is crucial to accurately and rapidly determine the GA level in humans. The encapsulation of Pec inside the ZIF-12 has been successfully confirmed from the physiochemical studies such as XRD, Raman, FTIR, and XPS spectroscopy along with morphological FESEM, BET, and HRTEM characterization. Under optimized conditions, the Pec@ZIF-12 composite exhibits wide linear range of 20 nM-250 µM with a detection limit of 2.2 nM; also, it showed excellent selectivity, stability, and reproducibility. Furthermore, the real sample analysis of food samples including tea, coffee, grape, and pomegranate samples shows exceptional recovery percentage in an unspiked manner. So far, there is little literature for encapsulating proteins, enzymes, metals, etc., that have been reported; here, we successfully encapsulated a natural polymer Pec inside the ZIF-12 cage. This encapsulation significantly enhanced the composite electrochemical performance, which could be seen from the overall results. All of these strongly suggest that the proposed Pec@ZIF-12 composite could be used for miniaturized device fabrication for the evaluation of GA in both home and industrial applications.


Assuntos
Antineoplásicos , Técnicas Eletroquímicas , Imidazóis , Zeolitas , Zeolitas/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Imidazóis/química , Teste de Materiais , Ácido Gálico/química , Tamanho da Partícula , Materiais Biocompatíveis/química , Polímeros/química , Pectinas/química , Estruturas Metalorgânicas/química , Humanos
14.
ACS Appl Bio Mater ; 7(5): 3506-3514, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38696441

RESUMO

Horseradish peroxidase (HRP)-mediated hydrogelation, caused by the cross-linking of phenolic groups in polymers in the presence of hydrogen peroxide (H2O2), is an effective route for bioink solidification in 3D bioprinting. Sugar beet pectin (SBP) naturally has cross-linkable phenols through the enzymatic reaction. Therefore, chemical modifications are not required, unlike the various polymers that have been used in the enzymatic cross-linking system. In this study, we report the application of SBP in extrusion-based bioprinting including HRP-mediated bioink solidification. In this system, H2O2 necessary for the solidification of inks is supplied in the gas phase. Cell-laden liver lobule-like constructs could be fabricated using bioinks consisting of 10 U/mL HRP, 4.0 and 6.0 w/v% SBP, and 6.0 × 106 cells/mL human hepatoblastoma (HepG2) cells exposed to air containing 16 ppm of H2O2 concurrently during printing and 10 min postprinting. The HepG2 cells enclosed in the printed constructs maintained their viability, metabolic activity, and hepatic functions from day 1 to day 7 of the culture, which indicates the cytocompatibility of this system. Taken together, this result demonstrates the potential of SBP and HRP cross-linking systems for 3D bioprinting, which can be applied in tissue engineering applications.


Assuntos
Beta vulgaris , Materiais Biocompatíveis , Bioimpressão , Peroxidase do Rábano Silvestre , Teste de Materiais , Pectinas , Impressão Tridimensional , Peroxidase do Rábano Silvestre/metabolismo , Peroxidase do Rábano Silvestre/química , Beta vulgaris/química , Humanos , Pectinas/química , Células Hep G2 , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/síntese química , Peróxido de Hidrogênio/química , Tamanho da Partícula , Sobrevivência Celular/efeitos dos fármacos , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/síntese química , Engenharia Tecidual
15.
Carbohydr Polym ; 337: 122139, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38710550

RESUMO

A novel RG-I pectin-like polysaccharide, YJ3A1, was purified from the flowers of Rosa chinensis and its structure and hepatoprotective effect in vivo and in vitro were investigated. The backbone of this polysaccharide is mainly composed of 1, 4-galactan, 1, 4-linked α-GalpA and 1, 2-linked α-Rhap disaccharide repeating unit attached by 1, 6-linked ß-Galp or 1, 5-linked α-Araf on C-4 of the Rhap. Interestingly, oral administration of YJ3A1 significantly ameliorates NASH-associated inflammation, oxidative stress and fibrosis and does not affect the liver morphology of normal mice at a dose of 50 mg/kg. The mechanism study suggests that the biological activity may associate to inactivating of high-mobility group box 1 protein (HMGB1)/TLR4/NF-κB and Akt signaling pathways by restraining the expression and release of HMGB1, thereby impeding the effect of NASH. The current findings outline a novel leading polysaccharide for new drug candidate development against NASH.


Assuntos
Proteína HMGB1 , NF-kappa B , Hepatopatia Gordurosa não Alcoólica , Pectinas , Rosa , Transdução de Sinais , Receptor 4 Toll-Like , Animais , Rosa/química , Receptor 4 Toll-Like/metabolismo , Proteína HMGB1/metabolismo , NF-kappa B/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Transdução de Sinais/efeitos dos fármacos , Camundongos , Pectinas/farmacologia , Pectinas/química , Pectinas/isolamento & purificação , Masculino , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Polissacarídeos/farmacologia , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Estresse Oxidativo/efeitos dos fármacos
16.
Int J Biol Macromol ; 268(Pt 1): 131769, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38692999

RESUMO

This study investigates the synthesis of selenium nanoparticles (SeNPs), owing to the low cost and abundance of selenium. However, the toxicity of SeNP prompts the development of a selenium nanocomposite (SeNC) containing pectin, keratin, and ferulic acid to improve the bioactivity of Se[0]. Further, incorporating the SeNC in a suitable formulation for drug delivery as a transdermal patch was worth studying. Accordingly, various analytical techniques were used to characterize the SeNPs and the SeNC, confirming successful synthesis and encapsulation. The SeNC exhibited notable particle size of 448.2 ± 50.2 nm, high encapsulation efficiency (98.90 % ± 2.4 %), 28.1 ± 0.45 drug loading, and sustained drug release at pH 5.5. Zeta potential and XPS confirmed the zero-oxidation state. The supramolecular structure was evident from spectral analysis endorsing the semi-crystalline nature of the SeNC and SEM images showcasing flower-shaped structures. Further, the SeNC demonstrated sustained drug release (approx. 22 % at 48 h) and wound-healing potential in L929 fibroblast cells. Subsequently, the SeNC loaded into a gelling agent exhibited shear thinning properties and improved drug release by nearly 58 %. A 3D printed reservoir-type transdermal patch was developed utilizing the SeNC-loaded gel, surpassing commercially available patches in characteristics such as % moisture uptake, tensile strength, and hydrophobicity. The patch, evaluated through permeation studies and CAM assay, exhibited controlled drug release and angiogenic properties for enhanced wound healing. The study concludes that this patch can serve as a smart dressing with tailored functionality for different wound stages, offering a promising novel drug delivery system for wound healing.


Assuntos
Liberação Controlada de Fármacos , Queratinas , Nanogéis , Pectinas , Impressão Tridimensional , Selênio , Adesivo Transdérmico , Selênio/química , Pectinas/química , Queratinas/química , Animais , Nanogéis/química , Camundongos , Oxirredução , Cicatrização/efeitos dos fármacos , Linhagem Celular , Nanocompostos/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Tamanho da Partícula
17.
Int J Biol Macromol ; 270(Pt 1): 131987, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705337

RESUMO

Herein, a polymer-based bioadsorbent was prepared by cross-linking chitosan to filter mud and magnetic pectin (Ch-mPC@FM) for the removal of Bismark Brown R dye (BB-R) from wastewater. Morphological characterization analysis indicated that Ch-mPC@FM had a higher surface area and better pore structure than its components. The Artificial Neuron Network (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) were employed to evaluate the simulation and prediction of the adsorption process based on input variables like temperature, pH, dosage, initial BB-R dye concentration, and contact time. ANFIS and ANN demonstrated significant modeling and predictive accuracy, with R2 > 0.93 and R2 > 0.96, and root mean square error < 0.023 and <0.020, respectively. The Langmuir isotherm and the pseudo-second-order kinetic models provided the best fits to the equilibrium and kinetic data. The thermodynamic assessment showed spontaneous and endothermic adsorption with average entropy and enthalpy changes of 119.32 kJ mol-1 K and 403.47 kJ mol-1, respectively. The study of BB-R dye adsorption on Ch-mPC@FM revealed multiple mechanisms, including electrostatic, complexation, pore filling, cation-π interaction, hydrogen bonding, and π-π interactions. The approximate production cost of US$ 5.809 Kg-1 and excellent adsorption capability render Ch-mPC@FM an inexpensive, pragmatic, and ecologically safe bioadsorbent for BB-R dye removal from wastewater.


Assuntos
Quitosana , Pectinas , Poluentes Químicos da Água , Quitosana/química , Pectinas/química , Adsorção , Cinética , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Termodinâmica , Corantes/química , Purificação da Água/métodos , Concentração de Íons de Hidrogênio , Temperatura , Águas Residuárias/química , Redes Neurais de Computação , Filtração/métodos
18.
Int J Biol Macromol ; 270(Pt 1): 132311, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38740154

RESUMO

The present study aimed to investigate the structural and physicochemical characteristics of alkali-extracted pectic polysaccharide (AkPP) and to evaluate its prebiotic effects. AkPP was obtained from pumpkin pulp using an alkaline extraction method. AkPP, which had a molecular weight (Mw) of mainly 13.67 kDa and an esterification degree of 9.60%, was composed mainly of galacturonic acid (GalA), rhamnose (Rha), galactose, and arabinose. The ratio of the homogalacturonan (HG) region to the rhamnogalacturonan-I (RG-I) region in AkPP was 48.74:43.62. In the nuclear magnetic resonance spectrum, the signals indicating α-1,4-linked D-GalA, α-1,2-linked L-Rha, α-1,2,4-linked L-Rha residues were well resolved, demonstrating the presence of the HG and RG-I regions in its molecular structure. Collectively, AkPP was low methoxyl pectin rich in the RG-I region with short side chains and had a low Mw. Thermal analysis revealed that AkPP had good thermal stability. Compared to inulin, AkPP more effectively promoted the proliferation of Lactobacillus acidophilus, Lacticaseibacillus rhamnosus GG, Lacticaseibacillus casei, and Lacticaseibacillus paracasei and the production of lactic, acetic, and propionic acids. This study presents the unique structural features of AkPP and provides a scientific basis for further investigation of the potential of AkPP as a promising prebiotic.


Assuntos
Cucurbita , Peso Molecular , Pectinas , Prebióticos , Pectinas/química , Cucurbita/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Ramnose/química , Álcalis/química , Soluções , Ácidos Hexurônicos
19.
Int J Biol Macromol ; 270(Pt 2): 132253, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38744359

RESUMO

Lipid metabolism plays an important role in energy homeostasis maintenance in response to stress. Nowadays, hyperlipidemia-related chronic diseases such as obesity, diabetes, atherosclerosis, and fatty liver pose significant health challenges. Dietary polysaccharides (DPs) have gained attention for their effective lipid-lowering properties. This review examines the multifaceted mechanisms that DPs employ to lower lipid levels in subjects with hyperlipidemia. DPs could directly inhibit lipid intake and absorption, promote lipid excretion, and regulate key enzymes involved in lipid metabolism pathways, including triglyceride and cholesterol anabolism and catabolism, fatty acid oxidation, and bile acid synthesis. Additionally, DPs indirectly improve lipid homeostasis by modulating gut microbiota composition and alleviating oxidative stress. Moreover, the lipid-lowering mechanisms of particular structural DPs (including ß-glucan, pectin, glucomannan, inulin, arabinoxylan, and fucoidan) are summarized. The relationship between the structure and lipid-lowering activity of DPs is also discussed based on current researches. Finally, potential breakthroughs and future directions in the development of DPs in lipid-lowering activity are discussed. The paper could provide a reference for further exploring the mechanism of DPs for lipid regulations and utilizing DPs as lipid-lowering dietary ingredients.


Assuntos
Metabolismo dos Lipídeos , Polissacarídeos , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Polissacarídeos/química , Polissacarídeos/farmacologia , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Hiperlipidemias/metabolismo , Hiperlipidemias/tratamento farmacológico , Pectinas/química , Pectinas/farmacologia
20.
Int J Biol Macromol ; 270(Pt 2): 132436, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38761908

RESUMO

Biodegradable self-healing hydrogels with antibacterial property attracted growing attentions in biomedication as wound dressings since they can prevent bacterial infection and promote wound healing process. In this research, a biodegradable self-healing hydrogel with ROS scavenging performance and enhanced tissue adhesion was fabricated from dopamine grafted oxidized pectin (OPD) and naphthoate hydrazide terminated PEO (PEO NH). At the same time, Fe3+ ions were incorporated to endow the hydrogel with near-infrared (NIR) triggered photothermal property to obtain antibacterial activity. The composite hydrogel showed good hemostasis performance based on mussel inspired tissue adhesion with biocompatibility well preserved. As expected, the composition of FeCl3 improved conductivity and endowed photothermal property to the hydrogel. The in vivo wound repairing experiment revealed the 808 nm NIR light triggered photothermal behavior of the hydrogel reduced the inflammation response and promoted wound repairing rate. As a result, this composite FeCl3/hydrogel shows great potential to be an excellent wound dressing for the treatment of infection prong wounds with NIR triggers.


Assuntos
Antioxidantes , Bivalves , Queimaduras , Hidrogéis , Pectinas , Cicatrização , Cicatrização/efeitos dos fármacos , Animais , Hidrogéis/química , Hidrogéis/farmacologia , Pectinas/química , Pectinas/farmacologia , Antioxidantes/farmacologia , Antioxidantes/química , Bivalves/química , Queimaduras/tratamento farmacológico , Queimaduras/terapia , Adesivos Teciduais/química , Adesivos Teciduais/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Camundongos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA