Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 370
Filtrar
1.
Int J Biol Macromol ; 275(Pt 1): 133645, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38964686

RESUMO

Fas-associated protein with death domain (FADD) was initially identified as a crucial adaptor protein in the apoptotic pathway mediated by death receptor (DR). Subsequently, many studies have confirmed that FADD plays a vital role in innate immunity and inflammatory responses in animals. However, the function of this pleiotropic molecule in mollusk species has not been well explored. In this study, we successfully verified the gene sequence of FADD in the Zhikong scallop (Chlamys farreri) and designated it as CfFADD. The CfFADD protein contains a conserved death effector and death domains. Phylogenetic analysis showed that CfFADD is a novel addition to the molluscan FADD family with a close evolutionary relationship with molluscan FADD subfamily proteins. CfFADD mRNA expression in various scallop tissues was significantly induced by challenge with pathogen-associated molecular patterns (lipopolysaccharide, peptidoglycan, and poly(I:C)), suggesting its role in innate immunity in scallops. Co-immunoprecipitation showed that CfFADD interacted with the scallop DR (tumor necrosis factor receptor) and a signaling molecule involved in the Toll-like receptor pathway (interleukin-1 receptor-associated kinase), confirming that CfFADD may be involved in DR-mediated apoptosis and innate immune signaling pathways. Further studies showed that CfFADD interacted with CfCaspase-8 and activated caspase-3. HEK293T cells exhibited distinct apoptotic features after transfection with a CfFADD-expression plasmid, suggesting a functional DR-FADD-caspase apoptotic pathway in scallops. Overexpression of CfFADD led to a significant dose-dependent activation of interferon ß and nuclear factor-κB reporter genes, demonstrating the key role of CfFADD in innate immunity. In summary, our research has confirmed the critical roles of CfFADD in innate immunity and apoptosis and provides valuable information for developing comparative immunology theories.


Assuntos
Apoptose , Proteína de Domínio de Morte Associada a Fas , Imunidade Inata , Filogenia , Transdução de Sinais , Animais , Proteína de Domínio de Morte Associada a Fas/metabolismo , Proteína de Domínio de Morte Associada a Fas/genética , Pectinidae/imunologia , Pectinidae/genética , Humanos , Sequência de Aminoácidos , Moluscos/imunologia , Moluscos/genética , Regulação da Expressão Gênica
2.
Fish Shellfish Immunol ; 151: 109743, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38964433

RESUMO

Adenosine Deaminases Acting on RNA (ADARs) are evolutionarily conserved enzymes known to convert adenosine to inosine in double-stranded RNAs and participate in host-virus interactions. Conducting a meta-analysis of available transcriptome data, we identified and characterised eight ADAR transcripts in Chlamys farreri, a farmed marine scallop susceptible to Acute viral necrosis virus (AVNV) infections and mortality outbreaks. Accordingly, we identified six ADAR genes in the Zhikong scallop genome, revised previous gene annotations, and traced alternative splicing variants. In detail, each ADAR gene encodes a unique combination of functional domains, always including the Adenosine deaminase domain, RNA binding domains and, in one case, two copies of a Z-DNA binding domain. After phylogenetic analysis, five C. farreri ADARs clustered in the ADAR1 clade along with sequences from diverse animal phyla. Gene expression analysis indicated CF051320 as the most expressed ADAR, especially in the eye and male gonad. The other four ADAR1 genes and one ADAR2 gene exhibited variable expression levels, with CF105370 and CF051320 significantly increasing during early scallop development. ADAR-mediated single-base editing, evaluated across adult C. farreri tissues and developmental stages, was mainly detectable in intergenic regions (83 % and 85 %, respectively). Overall, the expression patterns of the six ADAR genes together with the editing and hyper-editing values computed on scallops RNA-seq samples support the adaptive value of ADAR1-mediated editing, particularly in the pre-settling larval stages.


Assuntos
Adenosina Desaminase , Pectinidae , Filogenia , Edição de RNA , Animais , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Pectinidae/genética , Pectinidae/imunologia , Imunidade Inata/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/imunologia , Sequência de Aminoácidos , Transcriptoma , Alinhamento de Sequência/veterinária
3.
Dev Comp Immunol ; 159: 105227, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38986890

RESUMO

Calcium/calmodulin dependent protein kinase kinase (CaMKK), a highly conserved protein kinase, is involved in the downstream processes of various biological activities by phosphorylating and activating 5'-AMP-activated protein kinase (AMPK) in response to the increase of cytosolic-free calcium (Ca2+). In the present study, a CaMKKI was identified from Yesso scallop Patinopecten yessoensis. Its mRNA was ubiquitously expressed in haemocytes and all tested tissues with the highest expression level in mantle. The expression level of PyCaMKKI mRNA in adductor muscle was significantly upregulated at 1, 3 and 6 h after high temperature treatment (25 °C), which was 3.43-fold (p < 0.05), 5.25-fold (p < 0.05), and 5.70-fold (p < 0.05) of that in blank group, respectively. At 3 h after high temperature treatment (25 °C), the protein level of PyAMPKα, as well as the phosphorylation level of PyAMPKα at Thr170 in adductor muscle, and the positive co-localized fluorescence signals of PyCaMKKI and PyAMPKα in haemocyte all increased significantly (p < 0.05) compared to blank group (18 °C). The pull-down assay showed that rPyCaMKKI and rPyAMPKα could bind each other in vitro. After PyCaMKKI was silenced by siRNA, the mRNA and protein levels of PyCaMKKI and PyAMPKα, and the phosphorylation level of PyAMPKα at Thr170 in adductor muscle were significantly down-regulated (p < 0.05) compared with the negative control group receiving an injection of siRNA-NC. These results collectively suggested that PyCaMKKI was involved in the activation of PyAMPKα in response to high temperature stress and would be helpful for understanding the function of PyCaMKKI-PyAMPKα pathway in maintaining energy homeostasis under high temperature stress in scallops.


Assuntos
Proteínas Quinases Ativadas por AMP , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina , Pectinidae , Animais , Pectinidae/imunologia , Pectinidae/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/genética , Fosforilação , Resposta ao Choque Térmico , Hemócitos/metabolismo , RNA Interferente Pequeno/genética , Temperatura Alta , Estresse Fisiológico
4.
Fish Shellfish Immunol ; 151: 109697, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38871139

RESUMO

Myeloid differentiation factor-88 (MyD88) is a key adaptor of the toll-like receptor (TLR) signaling pathway and plays a crucial role in innate immune signal transduction in animals. However, the MyD88-mediated signal transduction mechanism in shellfish has not been well studied. In this study, a new MyD88 gene, CfMyD88-2, was identified in the Zhikong scallop, Chlamys farreri. The 1779 bp long open reading frame encodes 592 amino acids. The N-terminus of CfMyD88-2 contains a conserved death domain (DD), followed by a TIR (TLR/Interleukin-1 Receptor) domain. The results of the multi-sequence comparison showed that the TIR domain sequences were highly conserved. Phylogenetic analysis revealed that CfMyD88-2 was first associated with Mizuhopecten yessoensis MyD88-4 and Argopecten irradians MyD88-4. CfMyD88-2 mRNA was expressed in all scallop tissues, as detected by qRT-PCR, and the expression level was the highest in the mantle and hepatopancreas. In addition, CfMyD88-2 mRNA expression significantly increased after pathogen-associated molecular patterns (PAMPs, such as lipopolysaccharide, peptidoglycan, or polyinosinic-polycytidylic acid) stimulation. The results of the co-immunoprecipitation experiments in HEK293T cells showed that both CfMyD88-1 and CfMyD88-2 interacted with the TLR protein of scallops, suggesting the existence of more than one functional TLR-MyD88 signaling axis in scallops. Dual luciferase reporter gene assays indicated that the overexpressed CfMyD88-2 in HEK293T cells activated interferon (IFN) α, IFN-ß, IFN-γ, and NF-κB reporter genes, indicating that the protein has multiple functions. The results of the subcellular localization experiment uncovered that CfMyD88-2 was mainly localized in the cytoplasm of human cells. In summary, the novel identified CfMyD88-2 can respond to the challenge of PAMPs, participate in TLR immune signaling, and may activate downstream effector genes such as NF-κB gene. These research results will be useful in advancing the theory of innate immunity in invertebrates and provide a reference for the selection of disease-resistant scallops in the future.


Assuntos
Sequência de Aminoácidos , Regulação da Expressão Gênica , Imunidade Inata , Fator 88 de Diferenciação Mieloide , Pectinidae , Filogenia , Alinhamento de Sequência , Receptores Toll-Like , Animais , Imunidade Inata/genética , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/imunologia , Fator 88 de Diferenciação Mieloide/metabolismo , Pectinidae/imunologia , Pectinidae/genética , Receptores Toll-Like/genética , Receptores Toll-Like/imunologia , Receptores Toll-Like/química , Alinhamento de Sequência/veterinária , Regulação da Expressão Gênica/imunologia , Perfilação da Expressão Gênica/veterinária , Transdução de Sinais/imunologia , Humanos , Células HEK293 , Sequência de Bases
5.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731961

RESUMO

Recently, the increase in marine temperatures has become an important global marine environmental issue. The ability of energy supply in marine animals plays a crucial role in avoiding the stress of elevated temperatures. The investigation into anaerobic metabolism, an essential mechanism for regulating energy provision under heat stress, is limited in mollusks. In this study, key enzymes of four anaerobic metabolic pathways were identified in the genome of scallop Chlamys farreri, respectively including five opine dehydrogenases (CfOpDHs), two aspartate aminotransferases (CfASTs) divided into cytoplasmic (CfAST1) and mitochondrial subtype (CfAST2), and two phosphoenolpyruvate carboxykinases (CfPEPCKs) divided into a primitive type (CfPEPCK2) and a cytoplasmic subtype (CfPEPCK1). It was surprising that lactate dehydrogenase (LDH), a key enzyme in the anaerobic metabolism of the glucose-lactate pathway in vertebrates, was absent in the genome of scallops. Phylogenetic analysis verified that CfOpDHs clustered according to the phylogenetic relationships of the organisms rather than substrate specificity. Furthermore, CfOpDHs, CfASTs, and CfPEPCKs displayed distinct expression patterns throughout the developmental process and showed a prominent expression in muscle, foot, kidney, male gonad, and ganglia tissues. Notably, CfASTs displayed the highest level of expression among these genes during the developmental process and in adult tissues. Under heat stress, the expression of CfASTs exhibited a general downregulation trend in the six tissues examined. The expression of CfOpDHs also displayed a downregulation trend in most tissues, except CfOpDH1/3 in striated muscle showing significant up-regulation at some time points. Remarkably, CfPEPCK1 was significantly upregulated in all six tested tissues at almost all time points. Therefore, we speculated that the glucose-succinate pathway, catalyzed by CfPEPCK1, serves as the primary anaerobic metabolic pathway in mollusks experiencing heat stress, with CfOpDH3 catalyzing the glucose-opine pathway in striated muscle as supplementary. Additionally, the high and stable expression level of CfASTs is crucial for the maintenance of the essential functions of aspartate aminotransferase (AST). This study provides a comprehensive and systematic analysis of the key enzymes involved in anaerobic metabolism pathways, which holds significant importance in understanding the mechanism of energy supply in mollusks.


Assuntos
Glucose , Resposta ao Choque Térmico , Pectinidae , Filogenia , Animais , Pectinidae/metabolismo , Pectinidae/genética , Glucose/metabolismo , Resposta ao Choque Térmico/fisiologia , Anaerobiose , Ácido Succínico/metabolismo , Redes e Vias Metabólicas , Aspartato Aminotransferases/metabolismo , Aspartato Aminotransferases/genética
6.
Int J Mol Sci ; 25(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38732036

RESUMO

Bivalves hold an important role in marine aquaculture and the identification of growth-related genes in bivalves could contribute to a better understanding of the mechanism governing their growth, which may benefit high-yielding bivalve breeding. Somatostatin receptor (SSTR) is a conserved negative regulator of growth in vertebrates. Although SSTR genes have been identified in invertebrates, their involvement in growth regulation remains unclear. Here, we identified seven SSTRs (PySSTRs) in the Yesso scallop, Patinopecten yessoensis, which is an economically important bivalve cultured in East Asia. Among the three PySSTRs (PySSTR-1, -2, and -3) expressed in adult tissues, PySSTR-1 showed significantly lower expression in fast-growing scallops than in slow-growing scallops. Then, the function of this gene in growth regulation was evaluated in dwarf surf clams (Mulinia lateralis), a potential model bivalve cultured in the lab, via RNA interference (RNAi) through feeding the clams Escherichia coli containing plasmids expressing double-stranded RNAs (dsRNAs) targeting MlSSTR-1. Suppressing the expression of MlSSTR-1, the homolog of PySSTR-1 in M. lateralis, resulted in a significant increase in shell length, shell width, shell height, soft tissue weight, and muscle weight by 20%, 22%, 20%, 79%, and 92%, respectively. A transcriptome analysis indicated that the up-regulated genes after MlSSTR-1 expression inhibition were significantly enriched in the fat digestion and absorption pathway and the insulin pathway. In summary, we systemically identified the SSTR genes in P. yessoensis and revealed the growth-inhibitory role of SSTR-1 in bivalves. This study indicates the conserved function of somatostatin signaling in growth regulation, and ingesting dsRNA-expressing bacteria is a useful way to verify gene function in bivalves. SSTR-1 is a candidate target for gene editing in bivalves to promote growth and could be used in the breeding of fast-growing bivalves.


Assuntos
Bivalves , Pectinidae , Receptores de Somatostatina , Animais , Pectinidae/genética , Pectinidae/crescimento & desenvolvimento , Pectinidae/metabolismo , Bivalves/genética , Bivalves/crescimento & desenvolvimento , Bivalves/metabolismo , Receptores de Somatostatina/genética , Receptores de Somatostatina/metabolismo , Filogenia , Interferência de RNA , Regulação da Expressão Gênica no Desenvolvimento
7.
Artigo em Inglês | MEDLINE | ID: mdl-38781887

RESUMO

The bay scallop is a eurythermal species with high economic value and now represents the most cultured bivalve species in China. Two subspecies of the bay scallop, the northern subspecies Argopecten irradians irradians Korean population (KK) and the southern subspecies Argopecten irradians concentricus (MM), exhibited distinct adaptations to heat stress. However, the molecular mechanism of heat resistance of the two subspecies remains unclear. In this study, we compared the transcriptomic responses of the two subspecies to heat stress and identified the involved differentially expressed genes (DEGs) and pathways. More DEGs were found in the KK than in the MM when exposed to high temperatures, indicating elevated sensitivity to thermal stress in the KK. Enrichment analysis suggests that KK scallops may respond to heat stress more swiftly by regulating GTPase activity. Meanwhile, MM scallops exhibited higher resistance to heat stress mainly by effective activation of their antioxidant system. Chaperone proteins may play different roles in responses to heat stress in the two subspecies. In both subspecies, the expression levels of antioxidants such as GST were significantly increased; the glycolysis process regulated by PC and PCK1 was greatly intensified; and both apoptotic and anti-apoptotic systems were significantly activated. The pathways related to protein translation and hydrolysis, oxidoreductase activity, organic acid metabolism, and cell apoptosis may also play pivotal roles in the responses to heat stress. The results of this study may provide a theoretical basis for marker-assisted breeding of heat-resistant strains.


Assuntos
Perfilação da Expressão Gênica , Pectinidae , Transcriptoma , Animais , Pectinidae/genética , Pectinidae/fisiologia , Termotolerância/genética , Resposta ao Choque Térmico
8.
Int J Mol Sci ; 25(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38612756

RESUMO

Carotenoids are essential nutrients for humans and animals, and carotenoid coloration represents an important meat quality parameter for many farmed animals. Increasingly, studies have demonstrated that vertebrate carotenoid cleavage oxygenases (CCOs) are essential enzymes in carotenoid metabolism and are therefore potential candidate genes for improving carotenoid deposition. However, our understanding of carotenoid bioavailability and CCOs functions in invertebrates, particularly marine species, is currently quite limited. We previously identified that a CCO homolog, PyBCO-like 1, was the causal gene for carotenoid coloration in the 'Haida golden scallop', a variety of Yesso scallop (Patinopecten yessoensis) characterized by carotenoid enrichment. Here, we found that another CCO-encoding gene named PyBCO2 (ß-carotene oxygenase 2) was widely expressed in P. yessoensis organs/tissues, with the highest expression in striated muscle. Inhibiting BCO2 expression in P. yessoensis through RNA interference led to increased carotenoid (pectenolone and pectenoxanthin) deposition in the striated muscle, and the color of the striated muscle changed from white to light orange. Our results indicate that PyBCO2 might be a candidate gene used for improving carotenoid content in normal Yesso scallops, and also in 'Haida golden scallops'.


Assuntos
Dioxigenases , Pectinidae , Animais , Humanos , beta Caroteno , Músculo Esquelético , Carotenoides , Pectinidae/genética , Dioxigenases/genética
9.
Artigo em Inglês | MEDLINE | ID: mdl-38479276

RESUMO

As ectothermic invertebrates, mollusks are regarded as good environmental indicator species for determining the adverse effects of climate change on marine organisms. In the present study, the effects of cold stress on the tissue structure, antioxidant activity, and expression levels of genes were evaluated in the warm-water noble scallop Chlamys nobilis by simulating natural seawater cooled down during winter from 17 °C to 14 °C, 12 °C, 10 °C, and 9 °C. Firstly, the gill was severely damaged at 10 °C and 9 °C, indicating that it could be used as a visually indicative organ for monitoring cold stress. The methylenedioxyamphetamine (MDA) content significantly increased with the temperatures decreasing, meanwhile, the antioxidant enzyme activities superoxide dismutase (SOD) and catalase (CAT) showed a similar pattern, suggesting that the scallop made a positive response. More importantly, 6179 genes related to low temperatures were constructed in a module-gene clustering heat map including 10 modules. Furthermore, three gene modules about membrane lipid metabolism, amino acid metabolism, and molecular defense were identified. Finally, six key genes were verified, and HEATR1, HSP70B2, PI3K, and ATP6V1B were significantly upregulated, while WNT6 and SHMT were significantly downregulated under cold stress. This study provides a dynamic demonstration of the major gene pathways' response to various low-temperature stresses from a transcriptomic perspective. The findings shed light on how warm-water bivalves can tolerate cold stress and can help in breeding new strains of aquatic organisms with low-temperature resistance.


Assuntos
Antioxidantes , Resposta ao Choque Frio , Pectinidae , Animais , Pectinidae/genética , Pectinidae/fisiologia , Pectinidae/metabolismo , Antioxidantes/metabolismo , Brânquias/metabolismo , Regulação da Expressão Gênica , Transcriptoma , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
10.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38531780

RESUMO

Previous studies have revealed tight metabolic complementarity between bivalves and their endosymbiotic chemosynthetic bacteria, but little is known about their interactions with ectosymbionts. Our analysis of the ectosymbiosis between a deep-sea scallop (Catillopecten margaritatus) and a gammaproteobacterium showed that bivalves could be highly interdependent with their ectosymbionts as well. Our microscopic observation revealed abundant sulfur-oxidizing bacteria (SOB) on the surfaces of the gill epithelial cells. Microbial 16S rRNA gene amplicon sequencing of the gill tissues showed the dominance of the SOB. An analysis of the SOB genome showed that it is substantially smaller than its free-living relatives and has lost cellular components required for free-living. Genomic and transcriptomic analyses showed that this ectosymbiont relies on rhodanese-like proteins and SOX multienzyme complex for energy generation, mainly on the Calvin-Benson-Bassham (CBB) cycle and peripherally on a phosphoenolpyruvate carboxylase for carbon assimilation. Besides, the symbiont encodes an incomplete tricarboxylic acid (TCA) cycle. Observation of the scallop's digestive gland and its nitrogen metabolism pathways indicates it does not fully rely on the ectosymbiont for nutrition. Analysis of the host's gene expression provided evidence that it could offer intermediates for the ectosymbiont to complete its TCA cycle and some amino acid synthesis pathways using exosomes, and its phagosomes, endosomes, and lysosomes might be involved in harvesting nutrients from the symbionts. Overall, our study prompts us to rethink the intimacy between the hosts and ectosymbionts in Bivalvia and the evolution of chemosymbiosis in general.


Assuntos
Bivalves , Pectinidae , Animais , Simbiose , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Bactérias , Genômica , Bivalves/microbiologia , Pectinidae/genética , Genoma Bacteriano , Filogenia
11.
Fish Shellfish Immunol ; 147: 109443, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38354964

RESUMO

The tumor necrosis factor (TNF) receptor-associated factor (TRAF) family has been reported to be involved in many immune pathways. In a previous study, we identified 5 TRAF genes, including TRAF2, 3, 4, 6, and 7, in the bay scallop (Argopecten irradians, Air) and the Peruvian scallop (Argopecten purpuratus, Apu). Since TRAF6 is a key molecular link in the TNF superfamily, we conducted a series of studies targeting the TRAF6 gene in the Air and Apu scallops as well as their hybrid progeny, Aip (Air ♀ × Apu ♂) and Api (Apu ♀ × Air ♂). Subcellular localization assay showed that the Air-, Aip-, and Api-TRAF6 were widely distributed in the cytoplasm of the human embryonic kidney cell line (HEK293T). Additionally, dual-luciferase reporter assay revealed that among TRAF3, TRAF4, and TRAF6, only the overexpression of TRAF6 significantly activated NF-κB activity in the HEK293T cells in a dose-dependent manner. These results suggest a crucial role of TRAF6 in the immune response in Argopecten scallops. To investigate the specific immune mechanism of TRAF6 in Argopecten scallops, we conducted TRAF6 knockdown using RNA interference. Transcriptomic analyses of the TRAF6 RNAi and control groups identified 1194, 2403, and 1099 differentially expressed genes (DEGs) in the Air, Aip, and Api scallops, respectively. KEGG enrichment analyses revealed that these DEGs were primarily enriched in transport and catabolism, amino acid metabolism, peroxisome, lysosome, and phagosome pathways. Expression profiles of 28 key DEGs were confirmed by qRT-PCR assays. The results of this study may provide insights into the immune mechanisms of TRAF in Argopecten scallops and ultimately benefit scallop breeding.


Assuntos
Pectinidae , Fator 6 Associado a Receptor de TNF , Humanos , Animais , Fator 6 Associado a Receptor de TNF/metabolismo , Células HEK293 , Fator 2 Associado a Receptor de TNF/metabolismo , Receptores do Fator de Necrose Tumoral , Pectinidae/genética , Fator 4 Associado a Receptor de TNF/metabolismo
12.
BMC Genomics ; 25(1): 24, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166626

RESUMO

BACKGROUND: Transforming growth factor ß (TGF-ß) superfamily genes can regulate various processes, especially in embryogenesis, adult development, and homeostasis. To understand the evolution and divergence patterns of the TGF-ß superfamily in scallops, genome-wide data from the Bay scallop (Argopecten irradians), the Zhikong scallop (Chlamys farreri) and the Yesso scallop (Mizuhopecten yessoensis) were systematically analysed using bioinformatics methods. RESULTS: Twelve members of the TGF-ß superfamily were identified for each scallop. The phylogenetic tree showed that these genes were grouped into 11 clusters, including BMPs, ADMP, NODAL, GDF, activin/inhibin and AMH. The number of exons and the conserved motif showed some differences between different clusters, while genes in the same cluster exhibited high similarity. Selective pressure analysis revealed that the TGF-ß superfamily in scallops was evolutionarily conserved. The spatiotemporal expression profiles suggested that different TGF-ß members have distinct functions. Several BMP-like and NODAL-like genes were highly expressed in early developmental stages, patterning the embryonic body plan. GDF8/11-like genes showed high expression in striated muscle and smooth muscle, suggesting that these genes may play a critical role in regulating muscle growth. Further analysis revealed a possible duplication of AMH, which played a key role in gonadal growth/maturation in scallops. In addition, this study found that several genes were involved in heat and hypoxia stress in scallops, providing new insights into the function of the TGF-ß superfamily. CONCLUSION: Characteristics of the TGF-ß superfamily in scallops were identified, including sequence structure, phylogenetic relationships, and selection pressure. The expression profiles of these genes in different tissues, at different developmental stages and under different stresses were investigated. Generally, the current study lays a foundation for further study of their pleiotropic biological functions in scallops.


Assuntos
Pectinidae , Animais , Filogenia , Pectinidae/genética , Pectinidae/metabolismo , Genoma , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
13.
Dev Comp Immunol ; 153: 105128, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38163473

RESUMO

Liver kinase B1 (LKB1) is a classical serine/threonine protein kinase and plays an important role in maintaining energy homeostasis through phosphorylate AMP-activated protein kinase α subunit (AMPKα). In this study, a homologous molecule of LKB1 with a typical serine/threonine kinase domain and two nuclear localization sequences (NLSs) was identified in Yesso Scallop Patinopecten yessoensis (PyLKB1). The mRNA transcripts of PyLKB1 were found to be expressed in haemocytes and all the examined tissues, including gill, mantle, gonad, adductor muscle and hepatopancreas, with the highest expression level in hepatopancreas. PyLKB1 was mainly located in cytoplasm and nucleus of scallop haemocytes. At 3 h after high temperature stress treatment (25 °C), the mRNA transcripts of PyLKB1, PyAMPKα, and PyGLUT1 in hepatopancreas, the phosphorylation level of PyAMPKα at Thr170 in hepatopancreas, the positive fluorescence signals of PyLKB1 in haemocytes, glucose analogue 2-NBDG content in haemocytes, and glucose content in hepatopancreas, haemocytes and serum all increased significantly (p < 0.05) compared to blank group (15 °C). However, there was no significant difference at the protein level of PyLKB1 and PyAMPKα. After PyLKB1 was knockdown by siRNA, the mRNA expression level of PyGLUT1, and the glucose content in hepatopancreas and serum were significantly down-regulated (p < 0.05) compared with the negative control group receiving an injection of siRNA-NC. However, there were no significant difference in PyGLUT1 expression, glucose content and glucose analogue 2-NBDG content in haemocytes. These results collectively suggested that PyLKB1-PyAMPKα pathway was activated to promote glucose transport by regulating PyGLUT1 in response to high temperature stress. These results would be helpful for understanding the function of PyLKB1-PyAMPKα pathway in regulating glucose metabolism and maintaining energy homeostasis under high temperature stress in scallops.


Assuntos
Pectinidae , Animais , Temperatura , Pectinidae/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Serina/metabolismo
14.
Int J Biol Macromol ; 256(Pt 1): 128319, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38000607

RESUMO

Interferon regulatory factor (IRF) family proteins are key transcription factors involved in vital physiological processes such as immune defense. However, the function of IRF in invertebrates, especially in marine shellfish is not clear. In this study, a new IRF gene (CfIRF2) was identified in the Zhikong scallop, Chlamys farreri, and its immune function was analyzed. CfIRF2 has an open reading frame of 1107 bp encoding 368 amino acids. The N-terminus of CfIRF2 consists of a typical IRF domain, with conserved amino acid sequences. Phylogenetic analysis suggested close evolutionary relationship with shellfish IRF1 subfamily proteins. Expression pattern analysis showed that CfIRF2 mRNA was expressed in all tissues, with the highest expression in the hepatopancreas and gills. CfIRF2 gene expression was substantially enhanced by a pathogenic virus (such as acute viral necrosis virus) and poly(I:C) challenge. Co-immunoprecipitation assay identified CfIRF2 interaction with the IKKα/ß family protein CfIKK1 of C. farreri, demonstrating a unique signal transduction mechanism in marine mollusks. Moreover, CfIRF2 interacted with itself to form homologous dimers. Overexpression of CfIRF2 in HEK293T cells activated reporter genes containing interferon stimulated response elements and NF-κB genes in a dose-dependent manner and promoted the phosphorylation of protein kinases (JNK, Erk1/2, and P38). Our results provide insights into the functions of IRF in mollusks innate immunity and also provide valuable information for enriching comparative immunological theory for the prevention of diseases in scallop farming.


Assuntos
NF-kappa B , Pectinidae , Humanos , Animais , NF-kappa B/metabolismo , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Filogenia , Células HEK293 , Pectinidae/genética , Imunidade Inata/genética
15.
Environ Toxicol Chem ; 43(4): 748-761, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38088252

RESUMO

Benzo[a]pyrene (B[a]P), a polycyclic aromatic hydrocarbon (PAH) with the most carcinogenic effects of all the PAHs, has multiple toxic effects on marine bivalves. We investigated the interference mechanism of B[a]P on food metabolism (sugars, proteins, and sugars), and on reproductive endocrine and ovarian development in female scallops (Chlamys farreri). Scallops were exposed to different concentrations of B[a]P concentrations of 0, 0.38, 3.8, and 38 µg/L throughout gonadal development. Total cholesterol and triglyceride contents in the digestive glands were increased, and their synthesis genes were upregulated. The plasma glucose contents decreased with the inhibition of glycogen synthesis genes and the induction of glycolysis genes in the digestive gland. The results showed that B[a]P had endocrine-disrupting effects on scallops, that it negatively affected genes related to ovarian cell proliferation, sex differentiation, and egg development, and that it caused damage to ovarian tissue. Our findings supplement the information on B[a]P disruption in gonadal development of marine bivalves. Environ Toxicol Chem 2024;43:748-761. © 2023 SETAC.


Assuntos
Benzo(a)pireno , Pectinidae , Animais , Feminino , Benzo(a)pireno/toxicidade , Benzo(a)pireno/metabolismo , Diferenciação Sexual , Pectinidae/genética , Pectinidae/metabolismo , Alimentos Marinhos , Açúcares/farmacologia
16.
Genomics ; 115(6): 110747, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37977331

RESUMO

Placopecten magellanicus (Gmelin, 1791), a deep-sea Atlantic scallop, holds significant commercial value as a benthic marine bivalve along the northwest Atlantic coast. Recognizing its economic importance, the need to reconstruct its genome assembly becomes apparent, fostering insights into natural resources and generic breeding potential. This study reports a high-quality chromosome-level genome of P. magellanicus, achieved through the integration of Illumina short read sequencing, PacBio HiFi sequencing, and Hi-C sequencing techniques. The resulting assembly spans 1778 Mb with a scaffold N50 of 86.71 Mb. An intriguing observation arises - the genome size of P. magellanicus surpasses that of its Pectinidae family peers by 1.80 to 2.46 times. Within this genome, 28,111 protein-coding genes were identified. Comparative genomic analysis involving five scallop species unveils the critical determinant of this expanded genome: the proliferation of repetitive sequences recently inserted, contributing to its enlarged size. The landscape of whole genome collinearity sheds light on the relationships among scallop species, enhancing our broader understanding of their genomic framework. This genome provides genomic resources for future molecular biology research on scallops and serves as a guide for the exploration of longevity-related genes in scallops.


Assuntos
Bivalves , Pectinidae , Animais , Pectinidae/genética , Bivalves/genética , Alimentos Marinhos , Tamanho do Genoma , Cromossomos/genética
17.
BMC Genomics ; 24(1): 723, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38031026

RESUMO

BACKGROUND: Patinopecten yessoensis, a large and old molluscan group, has been one of the most important aquaculture shellfish in Asian countries because of its high economic value. However, the aquaculture of the species has recently been seriously affected by the frequent outbreaks of Polydora disease, causing great economic losses. Long non-coding RNAs (lncRNAs) exhibit exhibit crucial effects on diverse biological processes, but still remain poorly studied in scallops, limiting our understanding of the molecular regulatory mechanism of P. yessoensis in response to Polydora infestation. RESULTS: In this study, a high-throughput transcriptome analysis was conducted in the mantles of healthy and Polydora-infected P. yessoensis by RNA sequencing. A total of 19,133 lncRNAs with 2,203 known and 16,930 novel were identified. The genomic characterizations of lncRNAs showed shorter sequence and open reading frame (ORF) length, fewer number of exons and lower expression levels in comparison with mRNAs. There were separately 2280 and 1636 differentially expressed mRNAs and lncRNAs (DEGs and DELs) detected in diseased individuals. The target genes of DELs were determined by both co-location and co-expression analyses. Functional enrichment analysis revealed that DEGs involved in melanization and biomineralization were significantly upregulated; further, obviously increased melanin granules were observed in epithelial cells of the edge mantle in diseased scallops by histological and TEM study, indicating the crucial role of melanizaiton and biomineralization in P. yessoensis to resist against Polydora infestation. Moreover, many key genes, such as Tyrs, Frizzled, Wnts, calmodulins, Pifs, perlucin, laccase, shell matrix protein, mucins and chitins, were targeted by DELs. Finally, a core lncRNA-mRNA interactive network involved in melanization and biomineralization was constructed and validated by qRT-PCR. CONCLUSIONS: This work provides valuable resources for studies of lncRNAs in scallops, and adds a new insight into the molecular regulatory mechanisms of P. yessoensis defending against Polydora infestation, which will contribute to Polydora disease control and breeding of disease-resistant varieties in molluscs.


Assuntos
Fenômenos Biológicos , Pectinidae , RNA Longo não Codificante , Humanos , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Biomineralização , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Melhoramento Vegetal , Perfilação da Expressão Gênica , Transcriptoma , Pectinidae/genética , Calmodulina/genética , Redes Reguladoras de Genes
18.
G3 (Bethesda) ; 13(12)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37857308

RESUMO

The Yesso scallop Mizuhopecten yessoensis is an important aquaculture species that was introduced to Western Canada from Japan to establish an economically viable scallop farming industry. This highly fecund species has been propagated in Canadian aquaculture hatcheries for the past 40 years, raising questions about genetic diversity and genetic differences among hatchery stocks. In this study, we compare cultured Canadian and wild Japanese populations of Yesso scallop using double-digest restriction site-associated DNA (ddRAD) sequencing to genotype 21,048 variants in 71 wild-caught scallops from Japan, 65 scallops from the Vancouver Island University breeding population, and 37 scallops obtained from a commercial farm off Vancouver Island, British Columbia. The wild scallops are largely comprised of equally unrelated individuals, whereas cultured scallops are comprised of multiple families of related individuals. The polymorphism rate estimated in wild scallops was 1.7%, whereas in the cultured strains, it ranged between 1.35 and 1.07%. Interestingly, heterozygosity rates were highest in the cultured populations, which is likely due to shellfish hatchery practices of crossing divergent strains to gain benefits of heterosis and to avoid inbreeding. Evidence of founder effects and drift was observed in the cultured strains, including high genetic differentiation between cultured populations and between cultured populations and the wild population. Cultured populations had effective population sizes ranging from 9 to 26 individuals whereas the wild population was estimated at 25,048-56,291 individuals. Further, a depletion of low-frequency variants was observed in the cultured populations. These results indicate significant genetic diversity losses in cultured scallops in Canadian breeding programs.


Assuntos
Pectinidae , Humanos , Animais , Japão , Canadá , Pectinidae/genética , Genômica
19.
Artigo em Inglês | MEDLINE | ID: mdl-37661044

RESUMO

As one of the most carcinogenic persistent organic pollutants (POPs), benzo[a]pyrene (B [a]P) brings high toxicity to marine bivalves. Digestive gland is the most important metabolism-related organ of aquatic animals. This study conducted the digestive gland transcriptome of Chlamys farreri under B[a]P treatment at reproductive stages. And the reproductive-stage dependence metabolism-DNA repair-apoptosis process of scallops under 0, 0.04, 0.4 and 4 µg/L B[a]P was studied by qRT-PCR. The results demonstrated that the detoxification metabolism was disturbed after ovulation except for CYP3A4. In antioxidant system, antioxidant enzyme CAT and GPX, and GGT1 (one of the non-enzymatic antioxidants synthesis gene) continuously served the function of antioxidant defense. Three types of DNA repair were activated under B[a]P stress, however, DNA strand breaks were still serious. B[a]P exposure weakened death receptor pathway as well as enhanced mitochondrial pathway, surprisingly suppressing apoptosis in scallops. In addition, ten indicators were screened by Spearman correlation analysis. This study will provide sound theoretical basis for bivalve toxicology and contribute to the biomonitoring of marine POPs pollution.


Assuntos
Benzo(a)pireno , Pectinidae , Feminino , Animais , Benzo(a)pireno/toxicidade , Antioxidantes , Pectinidae/genética , Dano ao DNA , Apoptose
20.
Fish Shellfish Immunol ; 141: 109030, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37634756

RESUMO

Emerging evidence indicates that the intestinal bacterial communities associated with eukaryotes play critical roles in the physiological activities and health of their hosts. Yesso scallop Patinopecten yessoensis, one of the cold-water aquaculture species in the North Yellow Sea of China, has suffered from massive mortality in recent years. In the present study, P. yessoensis were collected from Zhangzi Island, Dalian from March 2021 to January 2022 to investigate the intestinal bacterial community and physiological indices. 16S rRNA gene sequencing data revealed that the diversity of intestinal bacteria changed significantly over seasons, with the highest Chao1 (237.42) and Shannon (6.13) indices detected in January and the lowest Chao1 (115.44) and Shannon (2.73) indices detected in July. Tenericutes, Proteobacteria and Firmicutes were dominant phyla in the intestinal bacteria of P. yessoensis, among which Firmicutes and Proteobacteria significantly enriched in August and January, respectively. Mycoplasma was the most abundant genus during the sampling period, which exhibited the highest abundance in October (75.26%) and lowest abundance in August (13.15%). The functional profiles of intestinal bacteria also exhibited seasonal variation, with the pathways related to pentose phosphate and deoxyribonucleotides biosynthesis enriched in August while the glycogen biosynthesis pathway enriched in October. Redundancy analysis showed that seawater pH, dissolved inorganic nitrogen and silicate were major environmental factors driving the temporal succession of scallop intestinal bacteria. Correlation clustering analysis suggested that the relative abundances of Endozoicomonas and Vibrio in the intestine were positively correlated with superoxide dismutase activity in hepatopancreas while negatively correlated with malondialdehyde content in hepatopancreas and glycogen content in adductor muscle. All the results revealed that the intestine harbored a lower bacterial diversity and a higher abundance of Vibrio in August, compared to January, which were closely related to the oxidative stress status of scallop in summer. These findings will advance our understanding of the relationship between seasonal alteration in the intestinal bacteria and the physiological status of scallops.


Assuntos
Pectinidae , Animais , Estações do Ano , RNA Ribossômico 16S , Pectinidae/genética , Bactérias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA