Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Biomed Pharmacother ; 177: 117094, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38996707

RESUMO

The cure rate for patients with osteosarcoma (OS) has stagnated over the past few decades. Penfluridol, a first-generation antipsychotic, has demonstrated to prevent lung and esophageal malignancies from proliferation and metastasis. However, the effect of penfluridol on OS and its underlying molecular mechanism remains unclear. This study revealed that penfluridol effectively inhibited cell proliferation and migration, and induced G2/M phase arrest in OS cells. In addition, penfluridol treatment was found to increased reactive oxygen species (ROS) levels in OS cells. Combined with the RNA-Seq results, the anti-OS effect of penfluridol was hypothesized to be attributed to the induction of ferroptosis. Western blot results showed that penfluridol promoted intracellular Fe2+ concentration, membrane lipid peroxidation, and decreased intracellular GSH level to induce ferroptosis. Further studies showed that p62/Keap1/Nrf2 signaling pathway was implicated in penfluridol-induced ferroptosis in OS cells. Overexpression of p62 effectively reversed penfluridol-induced ferroptosis. In vivo, penfluridol effectively inhibited proliferation and prolonged survival in xenograft tumor model. Therefore, penfluridol is a promising drug targeting OS in the future.


Assuntos
Proliferação de Células , Ferroptose , Proteína 1 Associada a ECH Semelhante a Kelch , Camundongos Nus , Fator 2 Relacionado a NF-E2 , Osteossarcoma , Penfluridol , Transdução de Sinais , Ferroptose/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Humanos , Transdução de Sinais/efeitos dos fármacos , Osteossarcoma/tratamento farmacológico , Osteossarcoma/patologia , Osteossarcoma/metabolismo , Animais , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Linhagem Celular Tumoral , Penfluridol/farmacologia , Proliferação de Células/efeitos dos fármacos , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/patologia , Neoplasias Ósseas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Espécies Reativas de Oxigênio/metabolismo , Camundongos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Movimento Celular/efeitos dos fármacos
2.
Diabetes ; 72(1): 126-134, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36256885

RESUMO

Despite significant progress in understanding the pathogenesis of type 2 diabetes (T2D), the condition remains difficult to manage. Hence, new therapeutic options targeting unique mechanisms of action are required. We have previously observed that elevated skeletal muscle succinyl CoA:3-ketoacid CoA transferase (SCOT) activity, the rate-limiting enzyme of ketone oxidation, contributes to the hyperglycemia characterizing obesity and T2D. Moreover, we identified that the typical antipsychotic agent pimozide is a SCOT inhibitor that can alleviate obesity-induced hyperglycemia. We now extend those observations here, using computer-assisted in silico modeling and in vivo pharmacology studies that highlight SCOT as a noncanonical target shared among the diphenylbutylpiperidine (DPBP) drug class, which includes penfluridol and fluspirilene. All three DPBPs tested (pimozide, penfluridol, and fluspirilene) improved glycemia in obese mice. While the canonical target of the DPBPs is the dopamine 2 receptor, studies in obese mice demonstrated that acute or chronic treatment with a structurally unrelated antipsychotic dopamine 2 receptor antagonist, lurasidone, was devoid of glucose-lowering actions. We further observed that the DPBPs improved glycemia in a SCOT-dependent manner in skeletal muscle, suggesting that this older class of antipsychotic agents may have utility in being repurposed for the treatment of T2D.


Assuntos
Antipsicóticos , Diabetes Mellitus Tipo 2 , Hiperglicemia , Animais , Camundongos , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Coenzima A-Transferases , Diabetes Mellitus Tipo 2/tratamento farmacológico , Dopamina , Fluspirileno/farmacologia , Hiperglicemia/tratamento farmacológico , Camundongos Obesos , Penfluridol/farmacologia , Pimozida/farmacologia , Receptores Dopaminérgicos/metabolismo
3.
Cell Commun Signal ; 20(1): 105, 2022 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-35842652

RESUMO

BACKGROUND: Penfluridol (PF) is an FDA-approved antipsychotic drug that has recently been shown to have anticancer activity. However, the anticancer effects and underlying mechanisms of PF are not well-established in gallbladder cancer (GBC). METHODS: The anticancer efficacy of PF on GBC was investigated via a series of cell functions experiments, including cell viability, colony formation, apoptosis assays, and so on. The corresponding signaling changes after PF treatment were explored by western blotting. Then, nude mice were utilized to study and test the anticancer activity of PF in vivo. Besides, glucose consumption and lactic production assays were used to detect the glycolysis alteration. RESULTS: In this study, we discovered that PF greatly inhibited the proliferation and invasion ability of GBC cells (GBCs). The glucose consumption and lactic generation ability of GBCs were dramatically elevated following PF treatment. Additionally, we discovered that inhibiting glycolysis could improve PF's anticancer efficacy. Further studies established that the activation of the AMPK/PFKFB3 signaling pathway medicated glycolysis after PF treatment. We proved mechanistically that inhibition of AMPK/PFKFB3 singling pathway mediated glycolysis was a potential synergetic strategy to improve the anticancer efficacy of PF on GBC. CONCLUSIONS: By inhibiting AMPK, the anticancer effects of PF on GBCs were amplified. As a result, our investigations shed new light on the possibility of repurposing PF as an anticancer drug for GBC, and AMPK inhibition in combination with PF may represent a novel therapeutic strategy for GBC. Video abstract.


Assuntos
Neoplasias da Vesícula Biliar , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Apoptose , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Neoplasias da Vesícula Biliar/diagnóstico , Neoplasias da Vesícula Biliar/tratamento farmacológico , Neoplasias da Vesícula Biliar/metabolismo , Glucose/metabolismo , Glicólise , Camundongos , Camundongos Nus , Penfluridol/farmacologia
4.
Cell Death Dis ; 13(4): 400, 2022 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-35461314

RESUMO

Renal cell carcinoma (RCC) is one of the most lethal genitourinary malignancies with poor prognoses, since it is largely resistant to chemotherapy, radiotherapy, and targeted therapy. The persistence of cancer stem cells (CSCs) is the major cause of treatment failure with RCC. Recent evidence showed that dopamine receptor D2 (DRD2)-targeting antipsychotic drugs such as penfluridol exert oncostatic effects on several cancer types, but the effect of penfluridol on RCC remains unknown. Here, we uncovered penfluridol suppressed in vitro cell growth and in vivo tumorigenicity of various RCC cell lines (Caki-1, 786-O, A498, and ACHN) and enhanced the Sutent (sunitinib)-triggered growth inhibition on clear cell (cc)RCC cell lines. Mechanistically, upregulation of endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR) was critical for autophagy-mediated apoptosis induced by penfluridol. Transcriptional inhibition of OCT4 and Nanog via inhibiting GLI1 was important for penfluridol-induced stemness and proliferation inhibition. The anticancer activities of penfluridol on ccRCC partially occurred through DRD2. In clinical ccRCC specimens, positive correlations of DRD2 with GLI1, OCT4, and Nanog were observed and their expressions were correlated with worse prognoses. Summarizing, DRD2 antagonists such as penfluridol induce UPR signaling and suppress the GLI1/OCT4/Nanog axis in ccRCC cells to reduce their growth through inducing autophagy-mediated apoptosis and stemness inhibition. These drugs can be repurposed as potential agents to treat ccRCC patients.


Assuntos
Antipsicóticos , Morte Celular Autofágica , Carcinoma de Células Renais , Neoplasias Renais , Receptores de Dopamina D2 , Antipsicóticos/farmacologia , Apoptose , Carcinoma de Células Renais/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Neoplasias Renais/tratamento farmacológico , Masculino , Penfluridol/farmacologia , Penfluridol/uso terapêutico , Proteína GLI1 em Dedos de Zinco
5.
Cell Oncol (Dordr) ; 44(5): 1087-1103, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34319576

RESUMO

PURPOSE: Metastasis of lung adenocarcinoma (LADC) is a crucial factor determining patient survival. Repurposing of the antipsychotic agent penfluridol has been found to be effective in the inhibition of growth of various cancers. As yet, however, the anti-metastatic effect of penfluridol on LADC has rarely been investigated. Herein, we addressed the therapeutic potential of penfluridol on the invasion/metastasis of LADC cells harboring different epidermal growth factor receptor (EGFR) mutation statuses. METHODS: MTS viability, transwell migration and invasion, and tumor endothelium adhesion assays were employed to determine cytotoxic and anti-metastatic effects of penfluridol on LADC cells. Protease array, Western blot, immunohistochemistry (IHC), immunofluorescence (IF) staining, and expression knockdown by shRNA or exogenous overexpression by DNA plasmid transfection were performed to explore the underlying mechanisms, both in vitro and in vivo. RESULTS: We found that nontoxic concentrations of penfluridol reduced the migration, invasion and adhesion of LADC cells. Protease array screening identified matrix metalloproteinase-12 (MMP-12) as a potential target of penfluridol to modulate the motility and adhesion of LADC cells. In addition, we found that MMP-12 exhibited the most significantly adverse prognostic effect in LADC among 39 cancer types. Mechanistic investigations revealed that penfluridol inhibited the urokinase plasminogen activator (uPA)/uPA receptor/transforming growth factor-ß/Akt axis to downregulate MMP-12 expression and, subsequently, reverse MMP-12-induced epithelial-mesenchymal transition (EMT). Subsequent analysis of clinical LADC samples revealed a positive correlation between MMP12 and mesenchymal-related gene expression levels. A lower survival rate was found in LADC patients with a SNAl1high/MMP12high profile compared to those with a SNAl1low/MMP12low profile. CONCLUSIONS: Our results indicate that MMP-12 may serve as a useful biomarker for predicting LADC progression and as a promising penfluridol target for treating metastatic LADC.


Assuntos
Adenocarcinoma de Pulmão/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Neoplasias Pulmonares/metabolismo , Metaloproteinase 12 da Matriz/metabolismo , Penfluridol/farmacologia , Proteínas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células A549 , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Animais , Linhagem Celular Tumoral , Reposicionamento de Medicamentos/métodos , Transição Epitelial-Mesenquimal/genética , Humanos , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Masculino , Metaloproteinase 12 da Matriz/genética , Camundongos Endogâmicos NOD , Camundongos SCID , Metástase Neoplásica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
6.
CNS Drugs ; 35(4): 451-460, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33837915

RESUMO

BACKGROUND: Many patients with schizophrenia discontinue antipsychotic medication, frequently with adverse outcomes. Although different antipsychotic formulations are associated with different times to discontinuation, not much is known about discontinuation rates with oral-weekly formulations. Such a formulation of penfluridol is available in both the Netherlands and several other countries. OBJECTIVES: We aimed to investigate the impact of antipsychotic formulations on time to discontinuation, especially the oral-weekly formulation. METHODS: In a large, registry-based, retrospective cohort study from 1 January 2013 to 31 December 2016, we determined the time to medication discontinuation during the follow-up period with antipsychotic formulations, including oral-daily, oral-weekly, depot, or a combination of these. Patients with schizophrenia aged between 18 and 69 years were included and stratified according to the duration of recent antipsychotic use (taking the same formulation for ≤ 60 days or > 60 days before follow-up: short-term or long-term recent antipsychotic use). Medication discontinuation was defined as discontinuation of current antipsychotic formulation. RESULTS: Overall, 8257 patients were included for analyses, with 80% of patients discontinuing antipsychotic medication. Time to discontinuation was longer in those with long-term recent antipsychotic use before the follow-up period and longest for oral-daily formulations. Patterns for discontinuation of oral-weekly and depot formulations were similar, regardless of the duration of recent antipsychotic use before follow-up. More prior discontinuations were associated with shorter time to discontinuation. CONCLUSIONS: Time to discontinuation differed considerably between formulations. The duration of recent antipsychotic use was a strong predictor of time to discontinuation. While oral-daily formulations had the longest time to discontinuation in the long-term recent antipsychotic use group, discontinuation trends were similar for oral-weekly and depot formulations. An oral-weekly formulation, whose administration route is noninvasive, might therefore be considered an alternative to depot formulations.


Assuntos
Preparações de Ação Retardada , Duração da Terapia , Seleção de Pacientes , Penfluridol , Esquizofrenia , Administração Oral , Adulto , Antipsicóticos/administração & dosagem , Antipsicóticos/farmacologia , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/farmacologia , Feminino , Humanos , Masculino , Adesão à Medicação/psicologia , Adesão à Medicação/estatística & dados numéricos , Conduta do Tratamento Medicamentoso/normas , Conduta do Tratamento Medicamentoso/estatística & dados numéricos , Pessoa de Meia-Idade , Países Baixos/epidemiologia , Penfluridol/administração & dosagem , Penfluridol/farmacologia , Prognóstico , Sistema de Registros/estatística & dados numéricos , Esquizofrenia/diagnóstico , Esquizofrenia/tratamento farmacológico , Esquizofrenia/epidemiologia , Psicologia do Esquizofrênico
7.
Anat Rec (Hoboken) ; 304(3): 520-530, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32470200

RESUMO

Penfluridol, a commonly used antipsychotic agent in a clinical setting, exhibits potential anticancer properties against various human malignancies. Here, we investigated the effect of penfluridol on the biological behavior of colorectal cancer (CRC) cells. Cell viability and clonogenic potential were detected by the cell counting kit-8 and colony formation assay. The cell apoptosis and cell cycle distribution were quantified through flow cytometry. Caspase-3 activity, glucose consumption, lactate production, and intracellular ATP levels were evaluated using the corresponding commercial detection kits. The protein levels of related genes were detected through western blotting. Mitochondrial membrane potential was detected using JC-1 staining. A CRC xenograft tumor model was used to validate the antitumor activity of penfluridol in vivo. Penfluridol reduced cell survival and promoted apoptotic cell death effectively through the mitochondria-mediated intrinsic pathway in a dose-dependent manner. Furthermore, the process of glycolysis in HCT-116 and HT-29 cells was inhibited upon penfluridol treatment, as evidenced by the decrease in glucose consumption, lactate production, and intracellular ATP levels. Further mechanistic studies revealed that penfluridol influenced cell apoptosis and glycolysis in CRC cells by downregulating hexokinase-2 (HK-2). The proapoptotic effect and glycolytic inhibition-induced by penfluridol were effectively reversed by HK-2 overexpression. Consistent with in vitro results, penfluridol could also suppress tumor growth and trigger apoptosis in vivo. Penfluridol triggers mitochondrial-mediated apoptosis and induces glycolysis inhibition via modulating HK-2 in CRC and provides a theoretical basis to support penfluridol as a repurposed drug for CRC patients.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Regulação para Baixo/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Hexoquinase/metabolismo , Mitocôndrias/efeitos dos fármacos , Penfluridol/farmacologia , Animais , Antineoplásicos/farmacologia , Caspase 3/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/patologia , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Microbiologyopen ; 10(1): e1148, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33345466

RESUMO

The bacterium Enterococcus faecalis has increasingly attracted global attention as an important opportunistic pathogen due to its ability to form biofilms that are known to increase drug resistance. However, there are still no effective antibiofilm drugs in clinical settings. Here, by drug repurposing, we investigated the antibacterial activity of penfluridol (PF), an oral long-acting antipsychotic approved by the FDA, against E. faecalis type strain and its clinical isolates. It was found that PF inhibited the growth of E. faecalis planktonic cells with the MIC and MBC of 7.81 µg/ml and 15.63 ~ 62.50 µg/ml, respectively. Moreover, PF could significantly prevent the biofilm formation of E. faecalis at the concentration of 1 × MIC. Furthermore, PF significantly eradicated 24 h pre-formed biofilms of E. faecalis in a dose-dependent manner, with a concentration range of 1 × MIC to 8 × MIC. Here, through the checkerboard method with other tested conventional antibiotics, we also determined that gentamycin, penicillin G, and amikacin showed partial synergistic antibacterial effects with PF. Also, PF showed almost no hemolysis on human erythrocytes. In a mouse peritonitis model, a single dose of 20 mg/kg of PF treatment could significantly reduce the bacterial colonization in the liver (~5-fold reduction) and spleen (~3-fold reduction). In conclusion, these findings indicated that after structural optimization, PF has the potential as a new antibacterial agent against E. faecalis.


Assuntos
Antibacterianos/farmacologia , Reposicionamento de Medicamentos/métodos , Enterococcus faecalis/efeitos dos fármacos , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Penfluridol/farmacologia , Animais , Biofilmes/crescimento & desenvolvimento , Modelos Animais de Doenças , Enterococcus faecalis/crescimento & desenvolvimento , Eritrócitos/efeitos dos fármacos , Feminino , Humanos , Camundongos , Camundongos Endogâmicos ICR , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Infecções Oportunistas/tratamento farmacológico , Peritonite/tratamento farmacológico , Peritonite/microbiologia
9.
Mol Oncol ; 14(12): 3121-3134, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32896947

RESUMO

More effective therapy for patients with either muscle-invasive or high-risk non-muscle-invasive urothelial carcinoma of the bladder (UCB) is an unmet clinical need. For this, drug repositioning of clinically approved drugs represents an interesting approach. By repurposing existing drugs, alternative anticancer therapies can be introduced in the clinic relatively fast, because the safety and dosing of these clinically approved pharmacological agents are generally well known. Cationic amphiphilic drugs (CADs) dose-dependently decreased the viability of a panel of human UCB lines in vitro. CADs induced lysosomal puncta formation, a hallmark of lysosomal leakage. Intravesical instillation of the CAD penfluridol in an orthotopic mouse xenograft model of human UCB resulted in significantly reduced intravesical tumor growth and metastatic progression. Furthermore, treatment of patient-derived ex vivo cultured human UCB tissue caused significant partial or complete antitumor responses in 97% of the explanted tumor tissues. In conclusion, penfluridol represents a promising treatment option for bladder cancer patients and warrants further clinical evaluation.


Assuntos
Antineoplásicos/uso terapêutico , Tensoativos/uso terapêutico , Neoplasias da Bexiga Urinária/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Cátions , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Clonais , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , Metástase Neoplásica , Penfluridol/farmacologia , Penfluridol/uso terapêutico , Tensoativos/farmacologia , Neoplasias da Bexiga Urinária/patologia , Urotélio/efeitos dos fármacos , Urotélio/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Int J Mol Sci ; 21(3)2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31979394

RESUMO

: Metastasis is considered a major burden in cancer, being responsible for more than 90% of cancer-related deaths. Tumor angiogenesis is one of the main processes that lead to tumor metastasis. Penfluridol is a classic and commonly used antipsychotic drug, which has a great ability to cross the blood-brain barrier. Recent studies have revealed that penfluridol has significant anti-cancer activity in diverse tumors, such as metastatic breast cancer and glioblastoma. Here, we aim to identify the effect of low doses of penfluridol on tumor microenvironment and compare it with its effect on tumor cells. Although low concentration of penfluridol was not toxic for endothelial cells, it blocked angiogenesis in vitro and in vivo. In vitro, penfluridol inhibited VEGF-induced primary endothelial cell migration and tube formation, and in vivo, it blocked VEGF- and FGF-induced angiogenesis in the matrigel plug assay. VEGF-induced VEGFR2 phosphorylation and the downstream p38 and ERK signaling pathways were not affected in endothelial cells, although VEGF-induced Src and Akt activation were abrogated by penfluridol treatment. When cancer cells were treated with the same low concentration of penfluridol, basal Src activation levels were mildly impaired, thus impacting their cell migration and wound healing efficiency. The potential of cancer-induced paracrine effect on endothelial cells was explored, although that did not seem to be a player for angiogenesis. Overall, our data demonstrates that low penfluridol levels, similar to the ones clinically used for anti-psychotic conditions, suppress angiogenic efficiency in the tumor microenvironment.


Assuntos
Inibidores da Angiogênese/farmacologia , Neoplasias da Mama/metabolismo , Penfluridol/farmacologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Inibidores da Angiogênese/uso terapêutico , Animais , Antipsicóticos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colágeno , Combinação de Medicamentos , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Laminina , Camundongos , Camundongos Endogâmicos C57BL , Penfluridol/uso terapêutico , Proteoglicanas , Transdução de Sinais/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
11.
Gastroenterology ; 158(5): 1433-1449.e27, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31786131

RESUMO

BACKGROUND & AIMS: Prolactin (PRL) signaling is up-regulated in hormone-responsive cancers. The PRL receptor (PRLR) is a class I cytokine receptor that signals via the Janus kinase (JAK)-signal transducer and activator of transcription and mitogen-activated protein kinase pathways to regulate cell proliferation, migration, stem cell features, and apoptosis. Patients with pancreatic ductal adenocarcinoma (PDAC) have high plasma levels of PRL. We investigated whether PRLR signaling contributes to the growth of pancreatic tumors in mice. METHODS: We used immunohistochemical analyses to compare levels of PRL and PRLR in multitumor tissue microarrays. We used structure-based virtual screening and fragment-based drug discovery to identify compounds likely to bind PRLR and interfere with its signaling. Human pancreatic cell lines (AsPC-1, BxPC-3, Panc-1, and MiaPaCa-2), with or without knockdown of PRLR (clustered regularly interspaced short palindromic repeats or small hairpin RNA), were incubated with PRL or penfluridol and analyzed in proliferation and spheroid formation. C57BL/6 mice were given injections of UNKC-6141 cells, with or without knockdown of PRLR, into pancreas, and tumor development was monitored for 4 weeks, with some mice receiving penfluridol treatment for 21 days. Human pancreatic tumor tissues were implanted into interscapular fat pads of NSG mice, and mice were given injections of penfluridol daily for 28 days. Nude mice were given injections of Panc-1 cells, xenograft tumors were grown for 2 weeks, and mice were then given intraperitoneal penfluridol for 35 days. Tumors were collected from mice and analyzed by histology, immunohistochemistry, and immunoblots. RESULTS: Levels of PRLR were increased in PDAC compared with nontumor pancreatic tissues. Incubation of pancreatic cell lines with PRL activated signaling via JAK2-signal transducer and activator of transcription 3 and extracellular signal-regulated kinase, as well as formation of pancospheres and cell migration; these activities were not observed in cells with PRLR knockdown. Pancreatic cancer cells with PRLR knockdown formed significantly smaller tumors in mice. We identified several diphenylbutylpiperidine-class antipsychotic drugs as agents that decreased PRL-induced JAK2 signaling; incubation of pancreatic cancer cells with these compounds reduced their proliferation and formation of panco spheres. Injections of 1 of these compounds, penfluridol, slowed the growth of xenograft tumors in the different mouse models, reducing proliferation and inducing autophagy of the tumor cells. CONCLUSIONS: Levels of PRLR are increased in PDAC, and exposure to PRL increases proliferation and migration of pancreatic cancer cells. Antipsychotic drugs, such as penfluridol, block PRL signaling in pancreatic cancer cells to reduce their proliferation, induce autophagy, and slow the growth of xenograft tumors in mice. These drugs might be tested in patients with PDAC.


Assuntos
Antipsicóticos/farmacologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Neoplasias Pancreáticas/tratamento farmacológico , Penfluridol/farmacologia , Prolactina/metabolismo , Receptores da Prolactina/antagonistas & inibidores , Animais , Antipsicóticos/uso terapêutico , Autofagia/efeitos dos fármacos , Carcinoma Ductal Pancreático/sangue , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Descoberta de Drogas , Técnicas de Silenciamento de Genes , Humanos , Injeções Intraperitoneais , Janus Quinase 2/metabolismo , Masculino , Camundongos , Pâncreas/patologia , Neoplasias Pancreáticas/sangue , Neoplasias Pancreáticas/patologia , Penfluridol/uso terapêutico , Prolactina/sangue , Receptores da Prolactina/genética , Receptores da Prolactina/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Esferoides Celulares , Análise Serial de Tecidos , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Biomed Pharmacother ; 121: 109598, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31733572

RESUMO

Lung cancer remains the leading cause of cancer mortality because of highly malignant and metastatic potential. The current status of lung cancer treatment is limited, and more treatment options are needed. Interesting, antipsychotic drugs have been reported to show anti-cancer effects. In this present study, we investigated the anticancer potential of penfluridol (PF), an anti-schizophrenic drug, in lung cancer and its underlying mechanism in vitro and in vivo. In vitro, it could inhibit the viability of various lung cancer cells with G0/G1 phase arrest via increasing the expression level of p21/p27 and decreasing the expression levels of cyclin-CDK complex. Meanwhile, cell-cycle arrest causes DNA repair in the nucleus, which was associated with the upregulation of H2A.X and p-H2A.X. Moreover, PF could also decrease mitochondrial membrane potential and increase reactive oxygen species levels in the lung cancer cells. These results implied that PF might induce the mitochondria-mediated intrinsic apoptosis. In addition, PF inhibits the migration and invasion of lung cancer cells via downregulation of FAK-MMP signaling. In vivo, oral administration of PF at concentration of 10 mg/kg inhibited tumor growth in A549 xenograft model. Notably, PF is an approved drug and the price is exceedingly cheap, so this study demonstrates the potential of PF to treat lung cancer.


Assuntos
Antipsicóticos/uso terapêutico , Apoptose/efeitos dos fármacos , Fase G1/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Penfluridol/uso terapêutico , Fase de Repouso do Ciclo Celular/efeitos dos fármacos , Células A549 , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antipsicóticos/farmacologia , Apoptose/fisiologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/fisiologia , Relação Dose-Resposta a Droga , Feminino , Fase G1/fisiologia , Inibidores do Crescimento/farmacologia , Inibidores do Crescimento/uso terapêutico , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica/patologia , Penfluridol/farmacologia , Fase de Repouso do Ciclo Celular/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
13.
J Biomed Sci ; 26(1): 63, 2019 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-31470848

RESUMO

BACKGROUND: Chemotherapy is the main treatment for acute myeloid leukemia (AML), but the cure rates for AML patients remain low, and the notorious adverse effects of chemotherapeutic drugs drastically reduce the life quality of patients. Penfluridol, a long-acting oral antipsychotic drug, has an outstanding safety record and exerts oncostatic effects on various solid tumors. Until now, the effect of penfluridol on AML remains unknown. METHODS: AML cell lines harboring wild-type (WT) Fms-like tyrosine kinase 3 (FLT3) and internal tandem duplication (ITD)-mutated FLT3 were used to evaluate the cytotoxic effects of penfluridol by an MTS assay. A flow cytometric analysis and immunofluorescence staining were employed to determine the cell-death phenotype, cell cycle profile, and reactive oxygen species (ROS) and acidic vesicular organelle (AVO) formation. Western blotting and chemical inhibitors were used to explore the underlying mechanisms involved in penfluridol-mediated cell death. RESULTS: We observed that penfluridol concentration-dependently suppressed the cell viability of AML cells with FLT3-WT (HL-60 and U937) and FLT3-ITD (MV4-11). We found that penfluridol treatment not only induced apoptosis as evidenced by increases of nuclear fragmentation, the sub-G1 populations, poly (ADP ribose) polymerase (PARP) cleavage, and caspase-3 activation, but also triggered autophagic responses, such as the light chain 3 (LC3) turnover and AVO formation. Interestingly, blocking autophagy by the pharmacological inhibitors, 3-methyladenine and chloroquine, dramatically enhanced penfluridol-induced apoptosis, indicating the cytoprotective role of autophagy in penfluridol-treated AML cells. Mechanistically, penfluridol-induced apoptosis occurred through activating protein phosphatase 2A (PP2A) to suppress Akt and mitogen-activated protein kinase (MAPK) activities. Moreover, penfluridol's augmentation of intracellular ROS levels was critical for the penfluridol-induced autophagic response. In the clinic, we observed that patients with AML expressing high PP2A had favorable prognoses. CONCLUSIONS: These findings provide a rationale for penfluridol being used as a PP2A activator for AML treatment, and the combination of penfluridol with an autophagy inhibitor may be a novel strategy for AML harboring FLT3-WT and FLT3-ITD.


Assuntos
Antipsicóticos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Leucemia Mieloide Aguda/tratamento farmacológico , Penfluridol/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Tirosina Quinase 3 Semelhante a fms/metabolismo , Linhagem Celular Tumoral , Citoproteção/efeitos dos fármacos , Células HL-60 , Humanos , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Transdução de Sinais , Células U937
14.
Cell Death Dis ; 10(8): 538, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31308361

RESUMO

Anticancer chemotherapeutic drugs mainly trigger apoptosis induction to eliminate malignant cells. However, many cancer cells are chemoresistant because of defective apoptosis induction. Targeting the autophagic pathway is currently regarded as an alternative strategy for cancer drug discovery. Penfluridol, an antipsychotic drug, has been reported to exert oncostatic effects, but the effect of penfluridol on lung cancer remains unknown. Herein, the antitumor activity of penfluridol was determined in vitro in non-small-cell lung cancer (NSCLC) cell lines using MTS, plate clonogenic, and transwell migration assays and in vivo in an orthotopic xenograft model. Flow cytometry, holotomographic microscopy, immunofluorescence, and immunohistochemistry were employed to determine the cell-death phenotype induced by penfluridol in vitro and in vivo. Western blotting and genetic knockdown by small interfering RNA were performed to explore the underlying mechanisms involved in penfluridol-mediated cell death. We uncovered that penfluridol inhibited the viability and motility of NSCLC cells in vitro and in vivo. Penfluridol induced nonapoptotic cell death by blocking autophagic flux and inducing accumulation of autophagosome-related protein, light chain 3 (LC3) B-II, in HCC827 and A549 NSCLC cells, and in an A549 orthotopic xenograft tumor model. Autophagosome accumulation-induced cell viability inhibition by penfluridol was mainly attributed to ATP energy deprivation. Moreover, we observed that patients with lung tumors expressing high LC3B had longer overall and disease-free survival times. Mechanistically, upregulation of endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR) pathways and activation of p38 mitogen-activated protein kinase (MAPK) were critical for penfluridol-induced autophagosome accumulation. Our findings identify that penfluridol acts as an inducer of ER stress and p38 MAPK activation, which led to UPR-mediated nonapoptotic cell death via autophagosome accumulation-caused energy loss. Penfluridol is clinically used for schizophrenia, and our study results strongly support penfluridol as a repurposed drug for treating NSCLC.


Assuntos
Trifosfato de Adenosina/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagossomos/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Penfluridol/farmacologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Células A549 , Animais , Antineoplásicos/uso terapêutico , Autofagia/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Reposicionamento de Medicamentos/métodos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Penfluridol/uso terapêutico , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Int J Pharm Compd ; 23(2): 113-119, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31085776

RESUMO

Schizophrenia is a serious, disabling, enduring, and relapsing mental illness which causes problems with the ability to think, feel, and perceive things clearly. One cause of relapse and readmission to a hospital is poor compliance with antipsychotic medication, often due to its adverse effects. Schizophrenia may also affect a person's insight, interfering with their ability to appreciate the benefit of taking medication long term. The relapse rate is significantly higher in those who have discontinued antipsychotic medication. Penfluridol is an unusual, potent, long-acting, first-generation, oral antipsychotic agent indicated for the treatment of chronic schizophrenia, acute psychosis, and Tourette syndrome. It may be considered a depot medication, as it is administered once a week. Despite this positive analysis, and the unique added value of this medication to psychotic, non-compliant patients, Janssen-Cilag, the sole manufacturer of penfluridol worldwide, decided to stop production in 2009. This decision forced many psychotic patients worldwide to abandon the once-a-week convenient treatment and to replace it with a daily, oral treatment or a depot injection. Because penfluridol is no longer commercially available, it has created an opportunity for compounding pharmacists worldwide to accept this challenge and offer this medication to psychiatrists because of its clinical therapeutics. For the past 5 years, penfluridol has been available to compounding pharmacists in Israel and has received favorable feedback from physicians and patients.


Assuntos
Antipsicóticos/farmacologia , Penfluridol , Esquizofrenia , Administração Oral , Antipsicóticos/química , Humanos , Injeções , Penfluridol/farmacologia
16.
Bioorg Med Chem Lett ; 28(23-24): 3652-3657, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30389290

RESUMO

Several recent reports have highlighted the feasibility of the use of penfluridol, a well-known antipsychotic agent, as a chemotherapeutic agent. In vivo experiments have confirmed the cytotoxic activity of penfluridol in triple-negative breast cancer model, lung cancer model, and further studies have been proposed to assess its anticancer activity and viability for the treatment of glioblastomas. However, penfluridol anticancer activity was observed at a dosage significantly higher than that administered in antipsychotic therapy, thus raising the concern for the potential onset of CNS side effects in patients undergoing intensive pharmacological treatment. In this study, we evaluate the potential CNS toxicity of penfluridol side by side with a set of analogs.


Assuntos
Antineoplásicos/química , Penfluridol/análogos & derivados , Animais , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antipsicóticos/química , Antipsicóticos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Penfluridol/metabolismo , Penfluridol/farmacologia , Penfluridol/uso terapêutico , Ligação Proteica , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/metabolismo , Relação Estrutura-Atividade , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
17.
Mol Cancer Ther ; 17(2): 419-431, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28864683

RESUMO

Non-homologous end joining (NHEJ) is the major pathway responsible for the repair of ionizing radiation (IR)-induced DNA double-strand breaks (DSB), and correspondingly regulates the cellular response to IR. Identification of NHEJ inhibitors could substantially enhance the tumor radiosensitivity and improve the therapeutic efficiency of radiotherapy. In this study, we demonstrated a screening for NHEJ inhibitors using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system and high-resolution melting (HRM) analysis. Because NHEJ is regarded as an error-prone mechanism, the NHEJ-mediated ligation of the site-specific DSB induced by Cas9 nuclease would eventually cause the mutation of the targeted sequence. Then, HRM analysis, a reliable and rapid assay for detecting sequence variation, was performed to evaluate the mutation efficiency of the targeted site. Validating analysis confirmed the NHEJ activities were positively correlated with the mutation frequencies. Next, an approved drug library containing 1,540 compounds was interrogated by using this screening strategy. Our results identified ouabain, a cardiotonic agent, and penfluridol, an antipsychotic agent, have the capacity to restrain NHEJ activity. Further experiments in vitro revealed the radiosensitizing effects of these compounds. Overall, we presented a cell-based screening for NHEJ inhibitors, which could promote the discovery of novel radiosensitizers. Mol Cancer Ther; 17(2); 419-31. ©2017 AACRSee all articles in this MCT Focus section, "Developmental Therapeutics in Radiation Oncology."


Assuntos
Sistemas CRISPR-Cas/genética , Ouabaína/uso terapêutico , Penfluridol/uso terapêutico , Humanos , Ouabaína/farmacologia , Penfluridol/farmacologia , Radiossensibilizantes , Transfecção
18.
Oncotarget ; 8(29): 47632-47641, 2017 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-28512255

RESUMO

Glioblastoma is the most common and lethal brain tumor associated with only 12% median survival rate of patients. Despite the development of advanced surgical, radiation or use of combinations of anti-cancer drugs, treatment for glioblastoma patients is still a challenge. The major contributing factor in glioblastoma progression and resistive nature is its ability to evade the immune surveillance. Hence, modulating the immune system in glioblastoma tumors could be an important strategy for anticancer therapeutics. Penfluridol, an antipsychotic drug has been shown to have anti-cancer properties in our recently published studies. The present study evaluates the immune response of penfluridol in glioblastoma tumors. Our results demonstrated that penfluridol treatment significantly suppressed glioblastoma tumor growth. Our current results demonstrated about 72% suppression of myeloid derived suppressor cells (MDSCs) with penfluridol treatment in mouse bearing U87MG glioblastoma tumors. MDSCs are known to increase regulatory T cells (Treg), which are immunosuppressive in nature and suppresses M1 macrophages that are tumor suppressive in nature. Our results also showed suppression of regulatory T cells as well as elevation of M1 macrophages with penfluridol treatment by 58% and 57% respectively. Decrease in CCL4 as well as IFNγ with penfluridol treatment was also observed indicating decrease in overall tumor inflammation. This is the first report demonstrating immune modulations by penfluridol treatment associated with glioblastoma tumor growth suppression prompting further investigation to establish penfluridol as a treatment option for glioblastoma patients.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Glioblastoma/imunologia , Glioblastoma/patologia , Imunomodulação/efeitos dos fármacos , Penfluridol/farmacologia , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Células Supressoras Mieloides/efeitos dos fármacos , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Baço/anatomia & histologia , Baço/efeitos dos fármacos , Baço/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Oncotarget ; 8(20): 32960-32976, 2017 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-28380428

RESUMO

Glioblastoma (GBM) is the most common brain tumor with poor survival rate. Our results show that penfluridol, an antipsychotic drug significantly reduced the survival of ten adult and pediatric glioblastoma cell lines with IC50 ranging 2-5 µM after 72 hours of treatment and induced apoptosis. Penfluridol treatment suppressed the phosphorylation of Akt at Ser473 and reduced the expression of GLI1, OCT4, Nanog and Sox2 in several glioblastoma cell lines in a concentration-dependent manner. Inhibiting Akt with LY294002 and siRNA, or inhibiting GLI1 using GANT61, cyclopamine, siRNA and CRISPR/Cas9 resulted in enhanced cell growth suppressive effects of penfluridol. On the other hand, overexpression of GLI1 significantly attenuated the effects of penfluridol. Our results further demonstrated that penfluridol treatment inhibited the growth of U87MG tumors by 65% and 72% in subcutaneous and intracranial in vivo glioblastoma tumor models respectively. Immunohistochemical and western blot analysis of tumors revealed reduced pAkt (Ser 473), GLI1, OCT4 and increase in caspase-3 cleavage and TUNEL staining, confirming in vitro findings. Taken together, our results indicate that overall glioblastoma tumor growth suppression by penfluridol was associated with Akt-mediated inhibition of GLI1.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Penfluridol/administração & dosagem , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína GLI1 em Dedos de Zinco/metabolismo , Animais , Antineoplásicos/farmacologia , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/metabolismo , Humanos , Camundongos , Penfluridol/farmacologia , Fosforilação , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Mol Cancer Ther ; 16(1): 205-216, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27811009

RESUMO

It was recently demonstrated the penfluridol inhibited breast tumor growth and metastasis and this was associated with downregulation of α6- and ß4-integrins. In this study, we observed the penfluridol induced reactive oxygen species (ROS) and this was the primary mechanism of action. Penfluridol-mediated growth inhibition, induction of apoptosis, and inhibition of breast cancer cell migration was attenuated after cotreatment with glutathione. Penfluridol also downregulated Sp transcription factors Sp1, Sp3, and Sp4 through epigenetic downregulation of cMyc and cMyc-regulated miRNAs (miR27a and miR20a/miR17) and induction of the miR-regulated Sp transcriptional repressors ZBTB10 and ZBTB4. α6- and ß4-integrins as well as α5- and ß1-integrins are Sp-regulated genes that are also coregulated by the orphan nuclear receptor NR4A1 and these integrins can be targeted by agents such as penfluridol that suppress Sp1, Sp3, and Sp4 and also by NR4A1 antagonists. Mol Cancer Ther; 16(1); 205-16. ©2016 AACR.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Integrinas/genética , Penfluridol/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição Sp/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Genes myc , Humanos , MicroRNAs/genética , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Ligação Proteica , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA