RESUMO
Advanced diagnostic materials, such as aptamers, are required due to the scarcity of efficient diagnostic antibodies and the low sensitivity of rapid diagnostic kits at detecting the malaria parasite, Plasmodium falciparum. METHODS: Two peptides M2.9 [(KPTAEQTESPELQSAPEN) and M2.17 (KILFNVYSPLGCTCECWV)] were designed using simple epitope prediction tools and modified against the merozoite surface antigen 2 of P. falciparum (Pf.MSP2) by 3-dimensional modeling based on binding affinity. Based on five prediction tools for hydropathy, M2.17 was selected as an appropriate capture peptide. A peptide-based fluorescence-linked immunosorbent assay (FLISA) and a peptide pair-based fluorescent immunochromatographic test strip (FICT) were developed to detect P. falciparum 3D7 (drug-sensitive) and P. falciparum K1 (multi drugs-resistant) strains. RESULTS: Bioinformatic analysis of two peptides demonstrated the potential binding affinity with the merozoite surface protein 2 of P. falciparum (Pf.MSP2) with a positive hydropathy value. The limit of detection (LOD) of FLISA was 10 parasites/µL and of a peptide pair-linked rapid FICT system was 5 and 200 parasites/µL for P. falciparum 3D7 and K1, respectively. Compared to commercial rapid detection systems (RDTs), a peptide pair-linked FICT system exhibited a 20-fold greater efficiency in detecting P. falciparum 3D7 and specifically discriminated another protozoan spp. CONCLUSION: A peptide pair-linked rapid diagnostic strip could be an alternative to conventional RDTs for monitoring wild-type and drug-resistant malaria parasites.
Assuntos
Malária Falciparum , Peptídeos , Plasmodium falciparum , Proteínas de Protozoários , Malária Falciparum/diagnóstico , Peptídeos/química , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/química , Proteínas de Protozoários/análise , Humanos , Antígenos de Protozoários/imunologia , Antígenos de Protozoários/química , Antígenos de Protozoários/análise , Limite de Detecção , Fluorescência , Sequência de AminoácidosRESUMO
The changes in protein expression are hallmarks of development and disease. Protein expression can be established qualitatively and quantitatively using mass spectrometry (MS). Samples are prepared, proteins extracted and then analyzed using MS and MS/MS. The resulting spectra need to be processed computationally to assign peptide spectrum match. Database searches employ sequence databases or spectral libraries for matching possible peptides with the measured spectra. This route is well established but fails when peptides are not found in sequence repositories. In this case, de novo sequencing of MS/MS spectra can be employed. Many computational algorithms that establish the peptide sequence from MS/MS spectrum alone are available. While de novo sequencing assigns a sequence to an MS/MS spectrum, this assignment can be used in further processes for genome annotation. For example, novel exons can be assigned, known exons can be extended, and splice sites can be validated at the protein level. We compiled an extensive list of such algorithms, grouped them, and discussed the selected approaches. We also provide a roadmap of how de novo sequencing can enter mainstream proteogenomic analysis. In the future, de novo predictions can be added to sample-specific protein databases, including RNA-seq translations. These enriched databases can then be used for proteogenomics studies with existing pipelines.
Assuntos
Algoritmos , Peptídeos , Proteogenômica , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Proteogenômica/métodos , Peptídeos/genética , Peptídeos/análise , Humanos , Bases de Dados de Proteínas , Análise de Sequência de Proteína/métodos , Software , Biologia Computacional/métodos , Sequência de AminoácidosRESUMO
Proteogenomics enables the confirmation and refinement of gene models, the detection of new ones, and the proposition of alternative transcripts using support at the protein level. Such evidence is usually generated using mass spectrometry and subsequent result mapping to various sequence databases. This workflow entails several problems: (1) To speed up the analysis, only a small set of expected proteins is searched; (2) database search tools generally do not provide mapping to the genome; and (3) upon new releases of the sequence databases, expensive rerunning of all results would need to be performed. Therefore, fast and accurate peptide mapping is needed as part of proteogenomic pipelines. Unfortunately, some available tools have technical shortcomings. Thus, a set of test cases was developed to allow tool developers to test their implementations comprehensively. The need for comprehensive testing is exemplified by PGx and PGM, two published tools that could only solve a subset of test cases. Lelantos passed all test cases. A set of comprehensive test cases has been developed to overcome these issues. Many unpublished peptide mapping tools are part of proteogenomic workflows, and such tools would also benefit from comprehensive testing. Finally, peptide mapping may also be crucial for proteomics because sequence databases change over time. In response, peptide remapping should be performed to ensure that peptides identifying a protein are proteotypic in a larger sequence context.
Assuntos
Mapeamento de Peptídeos , Proteogenômica , Proteômica , Software , Proteogenômica/métodos , Proteômica/métodos , Mapeamento de Peptídeos/métodos , Bases de Dados de Proteínas , Humanos , Fluxo de Trabalho , Espectrometria de Massas/métodos , Peptídeos/metabolismo , Biologia Computacional/métodosRESUMO
Protein inference is an often neglected though crucial step in most proteomic experiments. In the bottom-up proteomic approach, the actual molecules of interest, the proteins, are digested into peptides before measurement on a mass spectrometer. This approach introduces a loss of information: The actual proteins must be inferred based on the identified peptides. While this might seem trivial, there are certain problems, one of the biggest being the presence of peptides that are shared among proteins. These amino acid sequences can, based on the database used for identification, belong to more than one protein. If such peptides are identified in a sample, it cannot be said which proteins actually were in the sample, but only an estimate on the most probable proteins or protein groups can be given based on a predefined inference strategy.Here we describe the effect of the chosen database for peptide identification on the number of shared peptides. Afterward, the mainly used protein inference methods will be sketched, and the necessity of stringent false discovery rate on peptide and protein level is discussed. Finally, we explain how the tool "PIA or protein inference algorithms" can be used together with the workflow environment KNIME and OpenMS to perform protein inference in a common proteomic experiment.
Assuntos
Algoritmos , Bases de Dados de Proteínas , Proteínas , Proteômica , Proteômica/métodos , Proteínas/química , Proteínas/análise , Software , Peptídeos/química , Peptídeos/análise , Sequência de Aminoácidos , Biologia Computacional/métodos , Espectrometria de Massas/métodos , HumanosRESUMO
The study examined the antihypertensive effect of peptides derived from pepsin-hydrolyzed corn gluten meal, namely KQLLGY and PPYPW, and their in silico gastrointestinal tract digested fragments, KQL and PPY, respectively. KQLLGY and PPYPW showed higher angiotensin I-converting enzyme (ACE)-inhibitory activity and lower ACE inhibition constant (Ki) values when compared to KQL and PPY. Only KQL showed a mild antihypertensive effect in spontaneously hypertensive rats with -7.83 and - 5.71 mmHg systolic and diastolic blood pressure values, respectively, after 8 h oral administration. During passage through Caco-2 cells, KQL was further degraded to QL, which had reduced ACE inhibitory activity. In addition, molecular dynamics revealed that the QL-ACE complex was less stable compared to the KQL-ACE. This study reveals that structural transformation during peptide permeation plays a vital role in attenuating antihypertensive effect of the ACE inhibitor peptide.
Assuntos
Inibidores da Enzima Conversora de Angiotensina , Anti-Hipertensivos , Peptidil Dipeptidase A , Zea mays , Animais , Humanos , Masculino , Ratos , Inibidores da Enzima Conversora de Angiotensina/química , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/metabolismo , Anti-Hipertensivos/química , Anti-Hipertensivos/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Células CACO-2 , Digestão/efeitos dos fármacos , Trato Gastrointestinal/metabolismo , Glutens/química , Glutens/metabolismo , Hidrólise , Hipertensão/metabolismo , Hipertensão/tratamento farmacológico , Hipertensão/fisiopatologia , Peptídeos/química , Peptídeos/farmacologia , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/metabolismo , Hidrolisados de Proteína/química , Hidrolisados de Proteína/farmacologia , Ratos Endogâmicos SHR , Zea mays/química , Zea mays/metabolismoRESUMO
This study isolated a novel peptide MMGGED with strong calcium-binding capacity from defatted walnut meal and synthesized a novel peptidecalcium chelate COS-MMGGED-Ca with high stability via glycation. Structural characterization and computer simulation identified binding sites, while in vitro digestion stability and calcium transport experiments explored the chelate's properties. Results showed that after glycation, COS-MMGGED bound Ca2+ with 88.75 ± 1.75 %, mainly via aspartic and glutamic acids. COS-MMGGED-Ca released Ca2+ steadily (60.27 %), with thermal denaturation temperature increased by 18 °C and 37 °C compared to MMGGED-Ca, indicating good processing performance. Furthermore, COS-MMGGED significantly enhanced Ca2+ transport across Caco-2 monolayers, 1.13-fold and 1.62-fold higher than CaCl2 and MMGGED, respectively, at 240 h. These findings prove glycation enhances structural properties, stability, calcium loading, and transport of peptidecalcium chelates, providing a scientific basis for developing novel efficient calcium supplements and high-value utilization of walnut meal.
Assuntos
Cálcio , Juglans , Peptídeos , Juglans/química , Humanos , Cálcio/química , Cálcio/metabolismo , Células CACO-2 , Peptídeos/química , Peptídeos/metabolismo , Glicosilação , Quelantes de Cálcio/químicaRESUMO
Fortification of human milk (HM) is often necessary to meet the nutritional requirements of preterm infants. The present experiment aimed to establish whether the supplementation of HM with either an experimental donkey milk-derived fortifier containing whole donkey milk proteins, or with a commercial bovine milk-derived fortifier containing hydrolyzed bovine whey proteins, affects peptide release differently during digestion. The experiment was conducted using an in vitro dynamic system designed to simulate the preterm infant's digestion followed by digesta analysis by means of LC-MS-MS. The different fortifiers did not appear to influence the cumulative intensity of HM peptides. Fortification had a differential impact on the release of either donkey or bovine bioactive peptides. Donkey milk peptides showed antioxidant/ACE inhibitory activities, while bovine peptides showed opioid, dipeptil- and propyl endo- peptidase inhibitory and antimicrobial activity. A slight delay in peptide release from human lactoferrin and α-lactalbumin was observed when HM was supplemented with donkey milk-derived fortifier.
Assuntos
Digestão , Equidae , Proteínas do Leite , Leite Humano , Peptídeos , Humanos , Animais , Leite Humano/química , Leite Humano/metabolismo , Proteínas do Leite/química , Proteínas do Leite/metabolismo , Proteínas do Leite/análise , Bovinos , Peptídeos/química , Peptídeos/metabolismo , Alimentos Fortificados/análise , Espectrometria de Massas em Tandem , Modelos Biológicos , Proteínas do Soro do Leite/química , Proteínas do Soro do Leite/metabolismoRESUMO
Mesenchymal stem cells (MSCs) are expected to be useful therapeutics in osteoarthritis (OA), the most common joint disorder characterized by cartilage degradation. However, evidence is limited with regard to cartilage repair in clinical trials because of the uncontrolled differentiation and weak cartilage-targeting ability of MSCs after injection. To overcome these drawbacks, here we synthesized CuO@MSN nanoparticles (NPs) to deliver Sox9 plasmid DNA (favoring chondrogenesis) and recombinant protein Bmp7 (inhibiting hypertrophy). After taking up CuO@MSN/Sox9/Bmp7 (CSB NPs), the expressions of chondrogenic markers were enhanced while hypertrophic markers were decreased in response to these CSB-engineered MSCs. Moreover, a cartilage-targeted peptide (designated as peptide W) was conjugated onto the surface of MSCs via a click chemistry reaction, thereby prolonging the residence time of MSCs in both the knee joint cavity of mice and human-derived cartilage. In a surgery-induced OA mouse model, the NP and peptide dual-modified W-CSB-MSCs showed an enhancing therapeutic effect on cartilage repair in knee joints compared with other engineered MSCs after intra-articular injection. Most importantly, W-CSB-MSCs accelerated cartilage regeneration in damaged cartilage explants derived from OA patients. Thus, this new peptide and NPs dual engineering strategy shows potential for clinical applications to boost cartilage repair in OA using MSC therapy.
Assuntos
Diferenciação Celular , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Nanopartículas , Osteoartrite , Peptídeos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Animais , Osteoartrite/terapia , Osteoartrite/patologia , Nanopartículas/química , Humanos , Diferenciação Celular/efeitos dos fármacos , Peptídeos/química , Transplante de Células-Tronco Mesenquimais/métodos , Condrogênese/efeitos dos fármacos , Camundongos , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição SOX9/genética , Cartilagem Articular/patologia , Cartilagem Articular/efeitos dos fármacos , Proteína Morfogenética Óssea 7/química , Proteína Morfogenética Óssea 7/farmacologia , Engenharia Tecidual/métodos , Regeneração/efeitos dos fármacosRESUMO
Peripheral artery disease is commonly treated with balloon angioplasty, a procedure involving minimally invasive, transluminal insertion of a catheter to the site of stenosis, where a balloon is inflated to open the blockage, restoring blood flow. However, peripheral angioplasty has a high rate of restenosis, limiting long-term patency. Therefore, angioplasty is sometimes paired with delivery of cytotoxic drugs like paclitaxel to reduce neointimal tissue formation. We pursue intravascular drug delivery strategies that target the underlying cause of restenosis - intimal hyperplasia resulting from stress-induced vascular smooth muscle cell switching from the healthy contractile into a pathological synthetic phenotype. We have established MAPKAP kinase 2 (MK2) as a driver of this phenotype switch and seek to establish convective and contact transfer (coated balloon) methods for MK2 inhibitory peptide delivery to sites of angioplasty. Using a flow loop bioreactor, we showed MK2 inhibition in ex vivo arteries suppresses smooth muscle cell phenotype switching while preserving vessel contractility. A rat carotid artery balloon injury model demonstrated inhibition of intimal hyperplasia following MK2i coated balloon treatment in vivo. These studies establish both convective and drug coated balloon strategies as promising approaches for intravascular delivery of MK2 inhibitory formulations to improve efficacy of balloon angioplasty.
Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Serina-Treonina Quinases , Ratos Sprague-Dawley , Animais , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Peptídeos/química , Peptídeos/farmacologia , Ratos , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/citologia , Angioplastia com Balão/métodos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Sistemas de Liberação de Medicamentos , Hiperplasia/prevenção & controle , Angioplastia , Neointima/prevenção & controle , Neointima/patologiaRESUMO
Bacillus subtilis produces proteases that hydrolyze proteins to produce bioactive peptides. Given the mounting waste from processed shrimp, the antimicrobial potential of peptides isolated from B. subtilis fermented shrimp waste was explored. Among the five peptides screened using molecular docking prediction, PVQ9 (AVFPSIVGRPR) had strong antibacterial activity against four common foodborne Gram-positive bacteria, i.e., Staphylococcus aureus, Bacillus cereus, Mammaliicoccus sciuri, and Kurthia gibsonii. The minimum bactericidal concentrations (MBCs) were 62.5 µg/mL for S. aureus and B. cereus, and 31.3 µg/mL for both M. sciuri and K. gibsonii, with a time-kill of 3 h observed for all strains. Mechanistically, it was demonstrated that PVQ9 could destroy bacterial cell walls, change bacteria cell membrane permeability, bind to bacteria DNA, and cause cell apoptosis. Most importantly, peptide PVQ9 could inhibit the spoilage of bean curd or tofu contaminated with K. gibsonii. These findings suggest that PVQ9 could be a useful preservative in controlling foodborne pathogenic bacteria in soy products and other processed foods.
Assuntos
Antibacterianos , Bacillus subtilis , Fermentação , Testes de Sensibilidade Microbiana , Animais , Antibacterianos/farmacologia , Antibacterianos/química , Bacillus subtilis/metabolismo , Bacillus subtilis/efeitos dos fármacos , Penaeidae/microbiologia , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/metabolismo , Peptídeos/farmacologia , Peptídeos/metabolismo , Peptídeos/química , Microbiologia de Alimentos , Resíduos/análise , Staphylococcus aureus/efeitos dos fármacos , Alimentos de Soja/microbiologia , Simulação de Acoplamento MolecularRESUMO
Dynamic self-assembly has significant implications in the regulation of the enzyme activities. In this study, we present a histidine-based enzyme-mimicking catalyst, formed by the self-assembly of carefully-engineered FH-based short peptides with hemin, showcasing switchable catalytic activity of hemin due to externally induced reversible inclusion of a cucurbit[7]uril-peptide hybrid. 1H NMR, ITC and theoretical simulation are employed to examine the binding affinity between the guest and host components, and UV-vis spectra are used to investigate changes in the hemin coordination environment. The histidine segment of the short peptide can be partially shielded by the cucurbituril and released following addition of the azo compound, leading to a decrease and subsequent restoration of the histidine-hemin coordination affinity and hemin activity. The photoisomeriziable nature of the azo compound enabled the activation of FHH/hemin activity to be switched on and off by exposure to different wavelengths of light. During the operation, the Phe residue remained within the cucurbituril, allowing reversible inclusion and exposure of the histidine residues. The hemin stayed connected to FHH/cucurbit[7]uril hybrid, preventing the severe aggregation of hemin and irreversible deactivation. This work may provide insights into engineering the dynamic behaviors of the cofactor-dependent catalytic assemblies.
Assuntos
Hemina , Histidina , Imidazóis , Peptídeos , Hemina/química , Histidina/química , Catálise , Imidazóis/química , Peptídeos/química , Hidrocarbonetos Aromáticos com Pontes/química , Compostos Azo/química , Estrutura Molecular , Compostos Heterocíclicos com 2 Anéis , Compostos Macrocíclicos , ImidazolidinasRESUMO
In this study, rice husk biochar was engineered with abundant iron ion sites to enhance the enrichment of antioxidant peptides from rice protein hydrolysates through metal-chelating interactions. The π-π interactions and metal ion chelation were identified as the primary mechanisms for the enrichment process. Through peptide sequencing, four peptides were identified: LKFL (P1: Leu-Lys-Phe-Leu), QLLF (P2: Gln-Leu-Leu-Phe), WLAYG (P3: Trp-Leu-Ala-Tyr-Gly), and HFCGG (P4: His-Phe-Cys-Gly-Gly). The vitro analysis and molecular docking revealed that peptides P1-P4 possessed remarkable scavenging ability against radicals and Fe2+ chelating ability. Notably, peptide P4 showed radical scavenging activity comparable to glutathione (GSH) against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis-3-ethylbenzthiazoline-6-sulphonate (ABTS) radicals. Cellular experiments further confirmed that peptide P4 effectively protected HepG2 cells from oxidative stress-induced damage. The modified rice husk biochar proved to be an effective means for enriching rice antioxidant peptides from protein hydrolysates.
Assuntos
Antioxidantes , Carvão Vegetal , Oryza , Peptídeos , Hidrolisados de Proteína , Oryza/química , Hidrolisados de Proteína/química , Antioxidantes/química , Antioxidantes/farmacologia , Peptídeos/química , Peptídeos/farmacologia , Humanos , Carvão Vegetal/química , Células Hep G2 , Proteínas de Plantas/química , Simulação de Acoplamento Molecular , Estresse Oxidativo/efeitos dos fármacosRESUMO
Grape pomace protein isolate was hydrolysed by Alcalase, Flavourzyme and Protease either individually or in combination to produce hydrolysates with antihypertensive and antimicrobial properties. The degree of hydrolysis (DH) ranged between 22 and 52 % for Protease and Flavourzyme, respectively. Among all treatments, hydrolysates prepared using Flavourzyme exhibited the highest angiotensin-converting enzyme inhibitory (ACEi) activity, with an IC50 value of 91 µg/mL. The peptidomics analysis revealed that the peptides identified in Flavourzyme hydrolysate presented molecular features compatible with its bioactivity, like a high density of ACEi sequences per peptide. The hydrolysates were also able to inhibit the growth of Escherichia coli in a range between 9 and 54 % for Alcalase and Alcalase + Flavourzyme, respectively. Peptides in the most active hydrolysate evidenced a high occurrence of proline residues, which is a structural feature of some antimicrobial peptides.
Assuntos
Inibidores da Enzima Conversora de Angiotensina , Escherichia coli , Proteínas de Plantas , Hidrolisados de Proteína , Vitis , Vitis/química , Hidrolisados de Proteína/química , Hidrolisados de Proteína/farmacologia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Inibidores da Enzima Conversora de Angiotensina/química , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Peptídeos/química , Peptídeos/farmacologia , Proteômica , Hidrólise , Peptídeo Hidrolases/metabolismo , Peptídeo Hidrolases/química , Anti-Hipertensivos/química , Anti-Hipertensivos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , EndopeptidasesRESUMO
Hypoglycemic foods have attracted increasing research interest. This study prepared a hypoglycemic product from Bacillus subtilis fermented with Pyropia (PBP), which has promising industrial potential, and elucidated its hypoglycemic mechanism. The aqueous PBP solution was orange, with protein as the main functional component. In vivo experiments demonstrated that PBP could increase insulin secretion and inhibit α-glucosidase activity, resulting in a hypoglycemic effect superior to that of acarbose at the same dose. Molecular docking revealed that the peptides APPVDID, GPPDSPY, PPSSPRP, and SPPPPPA from PBP could inhibit both α-glucosidase and dipeptidyl peptidase-IV (DPP-IV) activities. Pro residues promoted PBP peptide binding to the hydrophobic pocket S1 of DPP-IV. Additionally, PBP reduced inflammation and promoted the growth of beneficial gut bacteria (Prevotellaceae_UCG_003, Lachnospiraceae_UCG_001). This study presents a novel approach for the high-value utilization of Pyropia and a new option for the production of hypoglycemic functional foods and medicines.
Assuntos
Bacillus subtilis , Fermentação , Hipoglicemiantes , Simulação de Acoplamento Molecular , Peptídeos , alfa-Glucosidases , Bacillus subtilis/metabolismo , Bacillus subtilis/química , Animais , Hipoglicemiantes/química , Hipoglicemiantes/metabolismo , Hipoglicemiantes/farmacologia , Peptídeos/química , Peptídeos/metabolismo , Peptídeos/farmacologia , alfa-Glucosidases/metabolismo , alfa-Glucosidases/química , Humanos , Masculino , Dipeptidil Peptidase 4/metabolismo , Dipeptidil Peptidase 4/química , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/metabolismo , Camundongos , Rodófitas/química , Rodófitas/metabolismo , Ratos , Insulina/metabolismo , Insulina/químicaRESUMO
Nonspecific adsorption of biomolecules (notably, proteins) and bacteria from unsterilized food may occur on sensor surfaces, which is still a challenge for food safety sensing. To achieve sensitive detection of unsterilized raw-food materials, in this study, a U-shaped four-in-one peptide with the sequence Ac-FLKLLKKLL-DOPA3-PPPPEEKDQDKEKaa that exhibited anchoring, antifouling, antibacterial, and recognition properties was designed. The peptide-modified sensor surface effectively prevented bacterial adhesion and proliferation while resisting biomolecule adsorption (signal inhibition rate as low as 0.51 % in single-protein solutions). A highly conductive polymer layer of poly(3,4-ethylenedioxythiophene) was introduced to improve the electrochemical performance before U-shaped four-in-one peptide anchoring. The proposed sensor could accurately detect vancomycin, with a wide linear range and limit of detection of 0.05-10 µg mL-1 and 2.06 ng mL-1 (S/N = 3), respectively. Satisfactory recovery rates (101.3-105.3 %) were achieved using diluted fresh goat milk.
Assuntos
Antibacterianos , Compostos Bicíclicos Heterocíclicos com Pontes , Técnicas Eletroquímicas , Contaminação de Alimentos , Cabras , Leite , Peptídeos , Polímeros , Vancomicina , Animais , Leite/química , Polímeros/química , Peptídeos/química , Vancomicina/química , Vancomicina/farmacologia , Vancomicina/análise , Antibacterianos/análise , Antibacterianos/farmacologia , Antibacterianos/química , Contaminação de Alimentos/análise , Compostos Bicíclicos Heterocíclicos com Pontes/química , Técnicas Eletroquímicas/instrumentação , Técnicas Biossensoriais/instrumentação , Incrustação Biológica/prevenção & controleRESUMO
Fish sauce, derived from fermented fish, exhibits a notable antioxidant effect after a six-month fermentation process, and we propose that potential antioxidant peptides were present in the fish sauce. We isolated, purified, and identified potential bioactive antioxidant peptides by using fish sauce fermented for 6 months. Additionally, molecular simulation was employed to investigate the antioxidant action mechanism of these bioactive peptides. The molecular docking results revealed that FS4-1 (MHQLSKK), FS4-2 (VLDNSPER), FS4-3 (MNPPAASIK), FS6-1(VLKQAAAGR), and FS6-2 (SPDVSPRR), could dock with the Keap1 receptor. The primary force (Van der Waals' force and hydrogen bonds) and key sites (GLY509 and ALA510) of Keap1 binding to peptides were determined. The active center was located in the side chain of amino acid Met at positions C7H78 and C7H79. We here identified antioxidant peptides in fish sauce and revealed the antioxidant mechanism through molecular simulations.
Assuntos
Antioxidantes , Produtos Pesqueiros , Peixes , Simulação de Acoplamento Molecular , Peptídeos , Antioxidantes/química , Peptídeos/química , Animais , Produtos Pesqueiros/análise , Proteína 1 Associada a ECH Semelhante a Kelch/química , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Teoria Quântica , Fermentação , Sequência de AminoácidosRESUMO
Necrotizing enterocolitis (NEC) is a lethal gastrointestinal disease affecting premature infants. Although earlier studies have highlighted protective effects of milk-derived peptides against NEC, the role of the human ß-casein-derived peptide BCCY-1 in intestinal barrier protection has never been investigated. Here, we showed that BCCY-1 alleviated the phenotype of NEC, reduced intestinal expression of Toll-like receptor 4 (TLR4) and interleukin-6, and improved the intestinal barrier integrity. NEC-associated multi-organ injury and impaired bone marrow hematopoiesis were also attenuated by BCCY-1. Metabolic screening revealed significant changes in intestinal metabolites in the NEC and NEC + BCCY-1 groups. Further analysis disclosed inhibition of 3-Nitrotyrosine formation due to the preservation of endothelial nitric oxide synthase (eNOS) activity, which was associated with the interactions between BCCY-1 and lipopolysaccharides, leading to disruption of TLR4 signaling. Our findings suggested that BCCY-1 improved intestinal barrier integrity through modulating the TLR4/eNOS/3-Nitrotyrosine axis, highlighting its potential role in the maintenance of intestinal health.
Assuntos
Caseínas , Mucosa Intestinal , Óxido Nítrico Sintase Tipo III , Receptor 4 Toll-Like , Tirosina , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Humanos , Caseínas/química , Caseínas/metabolismo , Caseínas/farmacologia , Tirosina/análogos & derivados , Tirosina/metabolismo , Tirosina/química , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Animais , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Camundongos , Enterocolite Necrosante/metabolismo , Enterocolite Necrosante/tratamento farmacológico , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Peptídeos/química , Peptídeos/farmacologia , Intestinos/efeitos dos fármacosRESUMO
The self-assembling morphologies of proteins, nucleic acids, and peptides are well correlated with their functioning in biological systems. In spite of extensive studies for the morphologies regulating, the directional control of the assembly morphology structure for the peptides still remains challenging. Here, the directional structure control of a bola-like peptide Ac-KIIF-CONH2 (KIIF) was realized by introducing different amount of acetonitrile to the system. The morphologies were characterized by transmission electron microscopy (TEM) and atomic force microscopy (AFM), and the secondary structure was evaluated by circular dichroism (CD) and Fourier transform infrared spectroscopy (FTIR). The results demonstrated that the introducing of different amount of acetonitrile has significantly tuned the hydrophobic interactions amongst the side chains, thus affecting the self-assembling morphologies. As acetonitrile content increased, the assemblies changed from nanotubes to helical/twisted ribbons and then to thin fibrils, with a steady decrease in the width. In contrast, the assemblies changed from thin fibrils to helical/twisted ribbons, and then to matured nanotubes, exhibiting a steady increase in the width with peptide concentration increasing. Complementary molecular dynamics (MD) simulations demonstrated the important role of acetonitrile in controlling the hydrophobic interactions, providing microscopic evidence for the structure transition process. We believe such observations provide important insights into the design and fabrication of functional materials with controlled shape and size.
Assuntos
Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Peptídeos/química , Conformação Proteica em Folha beta , Acetonitrilas/química , Tamanho da Partícula , Propriedades de SuperfícieRESUMO
HYPOTHESIS: Lanthanide Binding Tag (LBT) peptides that coordinate selectively with lanthanide ions can be used to replace the energy intensive processes used for the separation of rare earth elements (REEs). These surface-active biomolecules, once selectively complexed with the trivalent REE cations, can adsorb to air/aqueous interfaces of bubbles for foam-based REEs recovery. Glutaraldehyde, an organic compound that is a homobifunctional crosslinker for proteins and peptides, can be used to enhance the adsorption and interfacial stabilization of lanthanide-bound peptides films. EXPERIMENTS: The stability of the interfacial cross-linked films was tested by measuring their dilational and shear surface rheological properties. Surface activity of the adsorbed species was analyzed using pendant drop tensiometry, while surface density and molecular arrangement were determined using x-ray reflectivity and x-ray fluorescence near total reflection. FINDINGS: Glutaraldehyde cross-linked REE-peptide complexes enhance the adsorption of lanthanides to air-water interfaces, resulting in thicker interfacial structures. Subsequently, these thicker layers enhance the dilational and shear interfacial rheological properties. The interfacial film stabilization and REEs extraction promoted by the cross-linker presented in this work provides an approach to integrate glutaraldehyde as a substitute of common foam stabilizers such as polymers, surfactants, and particles to optimize the recovery of REEs when using biomolecules as extractants.
Assuntos
Reagentes de Ligações Cruzadas , Glutaral , Elementos da Série dos Lantanídeos , Metais Terras Raras , Peptídeos , Glutaral/química , Peptídeos/química , Reagentes de Ligações Cruzadas/química , Metais Terras Raras/química , Metais Terras Raras/isolamento & purificação , Adsorção , Elementos da Série dos Lantanídeos/química , Propriedades de Superfície , Reologia , Tamanho da PartículaRESUMO
Fused in sarcoma (FUS), a multifunctional deoxyribonucleic acid (DNA)/ribonucleic acid (RNA)-binding protein, has been implicated in various cancer types, including sarcoma and leukemia. Despite its association with these diseases, there has been limited exploration of FUS as a cancer therapy target, primarily because its dynamic nature makes it difficult to target specifically. In this study, we explored a kind of ß-sheet peptide foldamer, named ß4-TAT, to influence FUS aggregation by targeting its RNA recognition motifs (RRM). This approach leverages the noncovalent interaction characteristics of peptide self-assembly processes. The ß4 sequence, derived from the FUS RRM ß-sheet, in combination with TAT, a peptide known for its nuclear targeting capability, enables ß4-TAT to bind specifically to the analogous ß4 sequence within FUS. Notably, ß4-TAT effectively induces FUS aggregation within cells, leading to the death of cancer cells. Our work developed a novel peptide foldamer-based strategy for inducing protein aggregation, paving the way for innovative therapeutic approaches in targeting FUS-associated cancers.