Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31.285
Filtrar
1.
Chem Senses ; 492024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38695158

RESUMO

Gymnema sylvestre (GS) is a traditional medicinal plant known for its hypoglycemic and hypolipidemic effects. Gurmarin (hereafter Gur-1) is the only known active peptide in GS. Gur-1 has a suppressive sweet taste effect in rodents but no or only a very weak effect in humans. Here, 8 gurmarin-like peptides (Gur-2 to Gur-9) and their isoforms are reported in the GS transcriptome. The molecular mechanism of sweet taste suppression by Gur-1 is still largely unknown. Therefore, the complete architecture of human and mouse sweet taste receptors T1R2/T1R3 and their interaction with Gur-1 to Gur-9 were predicted by AlphaFold-Multimer (AF-M) and validated. Only Gur-1 and Gur-2 interact with the T1R2/T1R3 receptor. Indeed, Gur-1 and Gur-2 bind to the region of the cysteine-rich domain (CRD) and the transmembrane domain (TMD) of the mouse T1R2 subunit. In contrast, only Gur-2 binds to the TMD of the human T1R2 subunit. This result suggests that Gur-2 may have a suppressive sweet taste effect in humans. Furthermore, AF-M predicted that Gα-gustducin, a protein involved in sweet taste transduction, interacts with the intracellular domain of the T1R2 subunit. These results highlight an unexpected diversity of gurmarin-like peptides in GS and provide the complete predicted architecture of the human and mouse sweet taste receptor with the putative binding sites of Gur-1, Gur-2, and Gα-gustducin. In addition, gurmarin-like peptides may serve as promising drug scaffolds for the development of antidiabetic molecules.


Assuntos
Gymnema sylvestre , Receptores Acoplados a Proteínas G , Humanos , Gymnema sylvestre/metabolismo , Gymnema sylvestre/química , Animais , Camundongos , Receptores Acoplados a Proteínas G/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Paladar/fisiologia , Ligação Proteica , Sequência de Aminoácidos , Células HEK293
2.
Food Res Int ; 187: 114427, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763677

RESUMO

The scourge of obesity arising from obesogens and poor dieting still ravages our planet as half of the global population may be overweight and obese by 2035. This metabolic disorder is intertwined with type 2 diabetes (T2D), both of which warrant alternative therapeutic options other than clinically approved drugs like orlistat with their tendency of abuse and side effects. In this review, we comprehensively describe the global obesity problem and its connection to T2D. Obesity, overconsumption of fats, the mechanism of fat digestion, obesogenic gut microbiota, inhibition of fat digestion, and natural anti-obesity compounds are discussed. Similar discussions are made for diabetes with regard to glucose regulation, the diabetic gut microbiota, and insulinotropic compounds. The sources and production of anti-obesity bioactive peptides (AOBPs) and anti-diabetic bioactive peptides (ADBPs) are also described while explaining their structure-function relationships, gastrointestinal behaviors, and action mechanisms. Finally, the techno-functional applications of AOBPs and ADBPs are highlighted.


Assuntos
Fármacos Antiobesidade , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Hipoglicemiantes , Obesidade , Peptídeos , Humanos , Obesidade/tratamento farmacológico , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Fármacos Antiobesidade/farmacologia , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Animais
3.
BMC Oral Health ; 24(1): 525, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702623

RESUMO

OBJECTIVE: To evaluate the antibacterial effectiveness of a combination of ε-poly-L-lysine (ε-PL), funme peptide (FP) as well as domiphen against oral pathogens, and assess the efficacy of a BOP® mouthwash supplemented with this combination in reducing halitosis and supragingival plaque in a clinical trial. MATERIALS AND METHODS: The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the compound against Fusobacterium nucleatum, Porphyromonas gingivalis, Streptococcus mutans, and Aggregatibacter actinomycetemcomitans were determined by the gradient dilution method. Subsequently, the CCK-8 assay was used to detect the toxicity of mouthwash on human gingival fibroblastst, and the effectiveness in reducing halitosis and supragingival plaque of the mouthwash supplemented with the combination was analyzed by a randomized, double-blind, parallel-controlled clinical trial. RESULTS: The combination exhibited significant inhibitory effects on tested oral pathogens with the MIC < 1.56% (v/v) and the MBC < 3.13% (v/v), and the mouthwash containing this combination did not inhibit the viability of human gingival fibroblasts at the test concentrations. The clinical trial showed that the test group displayed notably lower volatile sulfur compounds (VSCs) at 0, 10, 24 h, and 7 d post-mouthwash (P < 0.05), compared with the baseline. After 7 days, the VSC levels of the and control groups were reduced by 50.27% and 32.12%, respectively, and notably cutting severe halitosis by 57.03% in the test group. Additionally, the Plaque Index (PLI) of the test and control group decreased by 54.55% and 8.38%, respectively, and there was a significant difference in PLI between the two groups after 7 days (P < 0.01). CONCLUSIONS: The combination of ε-PL, FP and domiphen demonstrated potent inhibitory and bactericidal effects against the tested oral pathogens, and the newly formulated mouthwash added with the combination exhibited anti-dental plaque and anti-halitosis properties in a clinical trial and was safe. TRIAL REGISTRATION: The randomized controlled clinical trial was registered on Chinese Clinical Trial Registry (No. ChiCTR2300073816, Date: 21/07/2023).


Assuntos
Placa Dentária , Halitose , Antissépticos Bucais , Polilisina , Humanos , Halitose/prevenção & controle , Halitose/tratamento farmacológico , Halitose/microbiologia , Antissépticos Bucais/uso terapêutico , Placa Dentária/microbiologia , Placa Dentária/prevenção & controle , Método Duplo-Cego , Masculino , Feminino , Polilisina/uso terapêutico , Adulto , Testes de Sensibilidade Microbiana , Adulto Jovem , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Porphyromonas gingivalis/efeitos dos fármacos , Fusobacterium nucleatum/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Peptídeos/uso terapêutico , Peptídeos/farmacologia , Aggregatibacter actinomycetemcomitans/efeitos dos fármacos , Streptococcus mutans/efeitos dos fármacos
4.
Biochemistry ; 63(10): 1297-1306, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38729622

RESUMO

The DNA damage binding protein 1 (DDB1) is an essential component of protein complexes involved in DNA damage repair and the ubiquitin-proteasome system (UPS) for protein degradation. As an adaptor protein specific to Cullin-RING E3 ligases, DDB1 binds different receptors that poise protein substrates for ubiquitination and subsequent degradation by the 26S proteasome. Examples of DDB1-binding protein receptors are Cereblon (CRBN) and the WD-repeat containing DDB1- and CUL4-associated factors (DCAFs). Cognate substrates of CRBN and DCAFs are involved in cancer-related cellular processes or are mimicked by viruses to reprogram E3 ligases for the ubiquitination of antiviral host factors. Thus, disrupting interactions of DDB1 with receptor proteins might be an effective strategy for anticancer and antiviral drug discovery. Here, we developed fluorescence polarization (FP)-based peptide displacement assays that utilize full-length DDB1 and fluorescein isothiocyanate (FITC)-labeled peptide probes derived from the specific binding motifs of DDB1 interactors. A general FP-based assay condition applicable to diverse peptide probes was determined and optimized. Mutagenesis and biophysical analyses were then employed to identify the most suitable peptide probe. The FITC-DCAF15 L49A peptide binds DDB1 with a dissociation constant of 68 nM and can be displaced competitively by unlabeled peptides at sub-µM to low nM concentrations. These peptide displacement assays can be used to screen small molecule libraries to identify novel modulators that could specifically antagonize DDB1 interactions toward development of antiviral and cancer therapeutics.


Assuntos
Proteínas de Ligação a DNA , Polarização de Fluorescência , Peptídeos , Humanos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/antagonistas & inibidores , Peptídeos/química , Peptídeos/metabolismo , Peptídeos/farmacologia , Polarização de Fluorescência/métodos , Ligação Proteica , Ubiquitina-Proteína Ligases/metabolismo
5.
Molecules ; 29(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731435

RESUMO

Self-assembled peptide-based nanobiomaterials exhibit promising prospects for drug delivery applications owing to their commendable biocompatibility and biodegradability, facile tissue uptake and utilization, and minimal or negligible unexpected toxicity. TFF3 is an active peptide autonomously secreted by gastric mucosal cells, possessing multiple biological functions. It acts on the surface of the gastric mucosa, facilitating the repair process of gastric mucosal damage. However, when used as a drug, TFF3 faces significant challenges, including short retention time in the gastric mucosal cavity and deactivation due to degradation by stomach acid. In response to this challenge, we developed a self-assembled short peptide hydrogel, Rqdl10, designed as a delivery vehicle for TFF3. Our investigation encompasses an assessment of its properties, biocompatibility, controlled release of TFF3, and the mechanism underlying the promotion of gastric mucosal injury repair. Congo red/aniline blue staining revealed that Rqdl10 promptly self-assembled in PBS, forming hydrogels. Circular dichroism spectra indicated the presence of a stable ß-sheet secondary structure in the Rqdl10 hydrogel. Cryo-scanning electron microscopy and atomic force microscopy observations demonstrated that the Rqdl10 formed vesicle-like structures in the PBS, which were interconnected to construct a three-dimensional nanostructure. Moreover, the Rqdl10 hydrogel exhibited outstanding biocompatibility and could sustainably and slowly release TFF3. The utilization of the Rqdl10 hydrogel as a carrier for TFF3 substantially augmented its proliferative and migratory capabilities, while concurrently bolstering its anti-inflammatory and anti-apoptotic attributes following gastric mucosal injury. Our findings underscore the immense potential of the self-assembled peptide hydrogel Rqdl10 for biomedical applications, promising significant contributions to healthcare science.


Assuntos
Mucosa Gástrica , Hidrogéis , Peptídeos , Fator Trefoil-3 , Hidrogéis/química , Fator Trefoil-3/química , Fator Trefoil-3/metabolismo , Mucosa Gástrica/metabolismo , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/lesões , Peptídeos/química , Peptídeos/farmacologia , Animais , Humanos , Sistemas de Liberação de Medicamentos , Camundongos , Cicatrização/efeitos dos fármacos
6.
Molecules ; 29(9)2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38731625

RESUMO

Upon a variety of environmental stresses, eukaryotic cells usually recruit translational stalled mRNAs and RNA-binding proteins to form cytoplasmic condensates known as stress granules (SGs), which minimize stress-induced damage and promote stress adaptation and cell survival. SGs are hijacked by cancer cells to promote cell survival and are consequently involved in the development of anticancer drug resistance. However, the design and application of chemical compounds targeting SGs to improve anticancer drug efficacy have rarely been studied. Here, we developed two types of SG inhibitory peptides (SIPs) derived from SG core proteins Caprin1 and USP10 and fused with cell-penetrating peptides to generate TAT-SIP-C1/2 and SIP-U1-Antp, respectively. We obtained 11 SG-inducing anticancer compounds from cell-based screens and explored the potential application of SIPs in overcoming resistance to the SG-inducing anticancer drug sorafenib. We found that SIPs increased the sensitivity of HeLa cells to sorafenib via the disruption of SGs. Therefore, anticancer drugs which are competent to induce SGs could be combined with SIPs to sensitize cancer cells, which might provide a novel therapeutic strategy to alleviate anticancer drug resistance.


Assuntos
Antineoplásicos , Sorafenibe , Grânulos de Estresse , Humanos , Sorafenibe/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Grânulos de Estresse/metabolismo , Células HeLa , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Peptídeos/farmacologia , Peptídeos/química , Sobrevivência Celular/efeitos dos fármacos , Ubiquitina Tiolesterase/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Linhagem Celular Tumoral , Peptídeos Penetradores de Células/farmacologia , Peptídeos Penetradores de Células/química
7.
J Med Life ; 17(1): 24-27, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38737662

RESUMO

Neurological disorders, ranging from acute forms such as stroke and traumatic brain injury to neurodegenerative diseases like dementia, are the leading cause of disability-adjusted life years (DALYs) worldwide. A promising approach to address these conditions and promote nervous system regeneration is the use of the neuropeptide preparation Cerebrolysin, which has been shown to be effective in both clinical and preclinical studies. Despite claims of similar clinical efficacy and safety by several peptide preparations, concerns regarding their generic composition and efficacy have been previously raised. Based on these reports, we analyzed the peptide composition and neurotrophic activity of several peptide preparations allegedly similar to Cerebrolysin and approved in some countries for treating neurological diseases. Our results demonstrate that these preparations lack relevant biological activity and that the peptide composition is significantly different from Cerebrolysin. peptide.


Assuntos
Aminoácidos , Peptídeos , Aminoácidos/farmacologia , Humanos , Peptídeos/farmacologia , Fármacos Neuroprotetores/farmacologia , Animais
8.
Proc Natl Acad Sci U S A ; 121(21): e2322923121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38739798

RESUMO

The ubiquitin-proteasome system is essential to all eukaryotes and has been shown to be critical to parasite survival as well, including Plasmodium falciparum, the causative agent of the deadliest form of malarial disease. Despite the central role of the ubiquitin-proteasome pathway to parasite viability across its entire life-cycle, specific inhibitors targeting the individual enzymes mediating ubiquitin attachment and removal do not currently exist. The ability to disrupt P. falciparum growth at multiple developmental stages is particularly attractive as this could potentially prevent both disease pathology, caused by asexually dividing parasites, as well as transmission which is mediated by sexually differentiated parasites. The deubiquitinating enzyme PfUCHL3 is an essential protein, transcribed across both human and mosquito developmental stages. PfUCHL3 is considered hard to drug by conventional methods given the high level of homology of its active site to human UCHL3 as well as to other UCH domain enzymes. Here, we apply the RaPID mRNA display technology and identify constrained peptides capable of binding to PfUCHL3 with nanomolar affinities. The two lead peptides were found to selectively inhibit the deubiquitinase activity of PfUCHL3 versus HsUCHL3. NMR spectroscopy revealed that the peptides do not act by binding to the active site but instead block binding of the ubiquitin substrate. We demonstrate that this approach can be used to target essential protein-protein interactions within the Plasmodium ubiquitin pathway, enabling the application of chemically constrained peptides as a novel class of antimalarial therapeutics.


Assuntos
Peptídeos , Plasmodium falciparum , Proteínas de Protozoários , Ubiquitina Tiolesterase , Plasmodium falciparum/enzimologia , Plasmodium falciparum/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/antagonistas & inibidores , Ubiquitina Tiolesterase/genética , Humanos , Peptídeos/química , Peptídeos/metabolismo , Peptídeos/farmacologia , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/antagonistas & inibidores , Antimaláricos/farmacologia , Antimaláricos/química , Ubiquitina/metabolismo , Malária Falciparum/parasitologia , Malária Falciparum/tratamento farmacológico
9.
AAPS PharmSciTech ; 25(5): 108, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730090

RESUMO

Wound healing presents a complex physiological process that involves a sequence of events orchestrated by various cellular and molecular mechanisms. In recent years, there has been growing interest in leveraging nanomaterials and peptides to enhance wound healing outcomes. Nanocarriers offer unique properties such as high surface area-to-volume ratio, tunable physicochemical characteristics, and the ability to deliver therapeutic agents in a controlled manner. Similarly, peptides, with their diverse biological activities and low immunogenicity, hold great promise as therapeutics in wound healing applications. In this review, authors explore the potential of peptides as bioactive components in wound healing formulations, focusing on their antimicrobial, anti-inflammatory, and pro-regenerative properties. Despite the significant progress made in this field, several challenges remain, including the need for standardized characterization methods, optimization of biocompatibility and safety profiles, and translation from bench to bedside. Furthermore, developing multifunctional nanomaterial-peptide hybrid systems represents promising avenues for future research. Overall, the integration of nanomaterials made up of natural or synthetic polymers with peptide-based formulations holds tremendous therapeutic potential in advancing the field of wound healing and improving clinical outcomes for patients with acute and chronic wounds.


Assuntos
Portadores de Fármacos , Peptídeos , Cicatrização , Cicatrização/efeitos dos fármacos , Humanos , Peptídeos/química , Peptídeos/administração & dosagem , Peptídeos/farmacologia , Portadores de Fármacos/química , Animais , Sistemas de Liberação de Medicamentos/métodos , Nanoestruturas/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/química , Nanopartículas/química , Anti-Infecciosos/administração & dosagem , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química
10.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732142

RESUMO

The high mortality rate among patients with acute myocardial infarction (AMI) is one of the main problems of modern cardiology. It is quite obvious that there is an urgent need to create more effective drugs for the treatment of AMI than those currently used in the clinic. Such drugs could be enzyme-resistant peptide analogs of glucagon-like peptide-1 (GLP-1). GLP-1 receptor (GLP1R) agonists can prevent ischemia/reperfusion (I/R) cardiac injury. In addition, chronic administration of GLP1R agonists can alleviate the development of adverse cardiac remodeling in myocardial infarction, hypertension, and diabetes mellitus. GLP1R agonists can protect the heart against oxidative stress and reduce proinflammatory cytokine (IL-1ß, TNF-α, IL-6, and MCP-1) expression in the myocardium. GLP1R stimulation inhibits apoptosis, necroptosis, pyroptosis, and ferroptosis of cardiomyocytes. The activation of the GLP1R augments autophagy and mitophagy in the myocardium. GLP1R agonists downregulate reactive species generation through the activation of Epac and the GLP1R/PI3K/Akt/survivin pathway. The GLP1R, kinases (PKCε, PKA, Akt, AMPK, PI3K, ERK1/2, mTOR, GSK-3ß, PKG, MEK1/2, and MKK3), enzymes (HO-1 and eNOS), transcription factors (STAT3, CREB, Nrf2, and FoxO3), KATP channel opening, and MPT pore closing are involved in the cardioprotective effect of GLP1R agonists.


Assuntos
Cardiotônicos , Receptor do Peptídeo Semelhante ao Glucagon 1 , Transdução de Sinais , Humanos , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Cardiotônicos/farmacologia , Cardiotônicos/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Animais , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/patologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/tratamento farmacológico , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Agonistas do Receptor do Peptídeo 1 Semelhante ao Glucagon
11.
Int J Mol Sci ; 25(9)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38732260

RESUMO

Peptides show high promise in the targeting and intracellular delivery of next-generation biotherapeutics. The main limitation is peptides' susceptibility to proteolysis in biological systems. Numerous strategies have been developed to overcome this challenge by chemically enhancing the resistance to proteolysis. In nature, amino acids, except glycine, are found in L- and D-enantiomers. The change from one form to the other will change the primary structure of polypeptides and proteins and may affect their function and biological activity. Given the inherent chiral nature of biological systems and their high enantiomeric selectivity, there is rising interest in manipulating the chirality of polypeptides to enhance their biomolecular interactions. In this review, we discuss the first examples of up-and-down homeostasis regulation by two enantiomeric drugs: immunostimulant Thymogen (L-Glu-L-Trp) and immunosuppressor Thymodepressin (D-Glu(D-Trp)). This study shows the perspective of exploring chirality to remove the chiral wall between L- and D-biomolecules. The selected clinical result will be discussed.


Assuntos
Peptídeos , Humanos , Estereoisomerismo , Animais , Peptídeos/química , Peptídeos/farmacologia , Imunossupressores/química , Imunossupressores/farmacologia
12.
Nutrients ; 16(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38732526

RESUMO

Distillers' grains are rich in protein and constitute a high-quality source of various bioactive peptides. The purpose of this study is to identify novel bioactive peptides with α-glucosidase inhibitory, antioxidant, and insulin resistance-ameliorating effects from distiller's grains protein hydrolysate. Three novel peptides (YPLPR, AFEPLR, and NDPF) showed good potential bioactivities, and the YPLPR peptide had the strongest bioactivities, whose IC50 values towards α-glucosidase inhibition, radical scavenging rates of 2,2'-azino-bis (3-ethylbenzothiazoline-6- sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) were about 5.31 mmol/L, 6.05 mmol/L, and 7.94 mmol/L, respectively. The glucose consumption of HepG2 cells treated with YPLPR increased significantly under insulin resistance condition. Moreover, the YPLPR peptide also had a good scavenging effect on intracellular reactive oxygen species (ROS) induced by H2O2 (the relative contents: 102.35% vs. 100%). Molecular docking results showed that these peptides could stably combine with α-glucosidase, ABTS, and DPPH free radicals, as well as related targets of the insulin signaling pathway through hydrogen bonding and van der Waals forces. This research presents a potentially valuable natural resource for reducing oxidative stress damage and regulating blood glucose in diabetes, thereby increasing the usage of distillers' grains peptides and boosting their economic worth.


Assuntos
Antioxidantes , Inibidores de Glicosídeo Hidrolases , Resistência à Insulina , Simulação de Acoplamento Molecular , Peptídeos , Inibidores de Glicosídeo Hidrolases/farmacologia , Células Hep G2 , Humanos , Antioxidantes/farmacologia , Peptídeos/farmacologia , Peptídeos/química , Grão Comestível , alfa-Glucosidases/metabolismo , Hidrolisados de Proteína/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Hipoglicemiantes/farmacologia , Simulação por Computador , Insulina , Ácidos Sulfônicos , Compostos de Bifenilo , Picratos , Benzotiazóis
13.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731874

RESUMO

The mitochondrial protein IF1 is upregulated in many tumors and acts as a pro-oncogenic protein through its interaction with the ATP synthase and the inhibition of apoptosis. We have recently characterized the molecular nature of the IF1-Oligomycin Sensitivity Conferring Protein (OSCP) subunit interaction; however, it remains to be determined whether this interaction could be targeted for novel anti-cancer therapeutic intervention. We generated mitochondria-targeting peptides to displace IF1 from the OSCP interaction. The use of one selective peptide led to displacement of the inhibitor IF1 from ATP synthase, as shown by immunoprecipitation. NMR spectroscopy analysis, aimed at clarifying whether these peptides were able to directly bind to the OSCP protein, identified a second peptide which showed affinity for the N-terminal region of this subunit overlapping the IF1 binding region. In situ treatment with the membrane-permeable derivatives of these peptides in HeLa cells, that are silenced for the IF1 inhibitor protein, showed significant inhibition in mitochondrial permeability transition and no effects on mitochondrial respiration. These peptides mimic the effects of the IF1 inhibitor protein in cancer HeLa cells and confirm that the IF1-OSCP interaction inhibits apoptosis. A third peptide was identified which counteracts the anti-apoptotic role of IF1, showing that OSCP is a promising target for anti-cancer therapies.


Assuntos
ATPases Mitocondriais Próton-Translocadoras , Peptídeos , Humanos , Células HeLa , ATPases Mitocondriais Próton-Translocadoras/metabolismo , ATPases Mitocondriais Próton-Translocadoras/antagonistas & inibidores , Peptídeos/farmacologia , Peptídeos/química , Peptídeos/metabolismo , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Apoptose/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Proteína Inibidora de ATPase , Ligação Proteica , Proteínas de Transporte da Membrana Mitocondrial/metabolismo
14.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731881

RESUMO

Aging and age-related diseases are associated with a decline in the capacity of protein turnover. Intrinsically disordered proteins, as well as proteins misfolded and oxidatively damaged, prone to aggregation, are preferentially digested by the ubiquitin-independent proteasome system (UIPS), a major component of which is the 20S proteasome. Therefore, boosting 20S activity constitutes a promising strategy to counteract a decrease in total proteasome activity during aging. One way to enhance the proteolytic removal of unwanted proteins appears to be the use of peptide-based activators of the 20S. In this study, we synthesized a series of peptides and peptidomimetics based on the C-terminus of the Rpt5 subunit of the 19S regulatory particle. Some of them efficiently stimulated human 20S proteasome activity. The attachment of the cell-penetrating peptide TAT allowed them to penetrate the cell membrane and stimulate proteasome activity in HEK293T cells, which was demonstrated using a cell-permeable substrate of the proteasome, TAS3. Furthermore, the best activator enhanced the degradation of aggregation-prone α-synuclein and Tau-441. The obtained compounds may therefore have the potential to compensate for the unbalanced proteostasis found in aging and age-related diseases.


Assuntos
Envelhecimento , Complexo de Endopeptidases do Proteassoma , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Células HEK293 , Envelhecimento/metabolismo , Agregados Proteicos/efeitos dos fármacos , Proteólise/efeitos dos fármacos , alfa-Sinucleína/metabolismo , Peptídeos/farmacologia , Peptídeos/química , Peptídeos/metabolismo , Proteínas tau/metabolismo , Agregação Patológica de Proteínas/metabolismo , Peptidomiméticos/farmacologia , Peptidomiméticos/química
15.
Sci Adv ; 10(18): eadl2991, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38691615

RESUMO

Amyloid fibrils of tau are increasingly accepted as a cause of neuronal death and brain atrophy in Alzheimer's disease (AD). Diminishing tau aggregation is a promising strategy in the search for efficacious AD therapeutics. Previously, our laboratory designed a six-residue, nonnatural amino acid inhibitor D-TLKIVW peptide (6-DP), which can prevent tau aggregation in vitro. However, it cannot block cell-to-cell transmission of tau aggregation. Here, we find D-TLKIVWC (7-DP), a d-cysteine extension of 6-DP, not only prevents tau aggregation but also fragments tau fibrils extracted from AD brains to neutralize their seeding ability and protect neuronal cells from tau-induced toxicity. To facilitate the transport of 7-DP across the blood-brain barrier, we conjugated it to magnetic nanoparticles (MNPs). The MNPs-DP complex retains the inhibition and fragmentation properties of 7-DP alone. Ten weeks of MNPs-DP treatment appear to reverse neurological deficits in the PS19 mouse model of AD. This work offers a direction for development of therapies to target tau fibrils.


Assuntos
Doença de Alzheimer , Modelos Animais de Doenças , Nanopartículas de Magnetita , Proteínas tau , Animais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Proteínas tau/metabolismo , Proteínas tau/química , Camundongos , Humanos , Nanopartículas de Magnetita/química , Amiloide/metabolismo , Amiloide/química , Camundongos Transgênicos , Comportamento Animal/efeitos dos fármacos , Peptídeos/química , Peptídeos/farmacologia , Agregação Patológica de Proteínas/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/efeitos dos fármacos
16.
Sci Rep ; 14(1): 10227, 2024 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702443

RESUMO

Hydrolyzed egg yolk peptide (YPEP) was shown to increase bone mineral density in ovariectomized rats. However, the underlying mechanism of YPEP on osteoporosis has not been explored. Recent studies have shown that Wnt/ß-catenin signaling pathway and gut microbiota may be involved in the regulation of bone metabolism and the progression of osteoporosis. The present study aimed to explore the preventive effect of the YPEP supplementation on osteoporosis in ovariectomized (OVX) rats and to verify whether YPEP can improve osteoporosis by regulating Wnt/ß-catenin signaling pathway and gut microbiota. The experiment included five groups: sham surgery group (SHAM), ovariectomy group (OVX), 17-ß estradiol group (E2: 25 µg /kg/d 17ß-estradiol), OVX with low-dose YPEP group (LYPEP: 10 mg /kg/d YPEP) and OVX with high-dose YPEP group (HYPEP: 40 mg /kg/d YPEP). In this study, all the bone samples used were femurs. Micro-CT analysis revealed improvements in both bone mineral density (BMD) and microstructure by YPEP treatment. The three-point mechanical bending test indicated an enhancement in the biomechanical properties of the YPEP groups. The serum levels of bone alkaline phosphatase (BALP), bone gla protein (BGP), calcium (Ca), and phosphorus (P) were markedly higher in the YPEP groups than in the OVX group. The LYPEP group had markedly lower levels of alkaline phosphatase (ALP), tartrate-resistant acid phosphatase (TRAP) and C-terminal telopeptide of type I collagen (CTX-I) than the OVX group. The YPEP groups had significantly higher protein levels of the Wnt3a, ß-catenin, LRP5, RUNX2 and OPG of the Wnt/ß-catenin signaling pathway compared with the OVX group. Compared to the OVX group, the ratio of OPG/RANKL was markedly higher in the LYPEP group. At the genus level, there was a significantly increase in relative abundance of Lachnospiraceae_NK4A136_group and a decrease in Escherichia_Shigella in YPEP groups, compared with the OVX group. However, in the correlation analysis, there was no correlation between these two bacteria and bone metabolism and microstructure indexes. These findings demonstrate that YPEP has the potential to improve osteoporosis, and the mechanism may be associated with its modulating effect on Wnt/ß-catenin signaling pathway.


Assuntos
Densidade Óssea , Osteoporose , Ovariectomia , Via de Sinalização Wnt , Animais , Ovariectomia/efeitos adversos , Via de Sinalização Wnt/efeitos dos fármacos , Feminino , Osteoporose/prevenção & controle , Osteoporose/metabolismo , Densidade Óssea/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Gema de Ovo/química , Gema de Ovo/metabolismo , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteínas do Ovo/farmacologia , Proteínas do Ovo/metabolismo , Peptídeos/farmacologia , beta Catenina/metabolismo , Fosfatase Alcalina/metabolismo , Fêmur/efeitos dos fármacos , Fêmur/metabolismo , Microtomografia por Raio-X
17.
Sci Rep ; 14(1): 10253, 2024 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704431

RESUMO

The tegument protein pp150 of Human Cytomegalovirus (HCMV) is known to be essential for the final stages of virus maturation and mediates its functions by interacting with capsid proteins. Our laboratory has previously identified the critical regions in pp150 important for pp150-capsid interactions and designed peptides similar in sequence to these regions, with a goal to competitively inhibit capsid maturation. Treatment with a specific peptide (PepCR2 or P10) targeted to pp150 conserved region 2 led to a significant reduction in murine CMV (MCMV) growth in cell culture, paving the way for in vivo testing in a mouse model of CMV infection. However, the general pharmacokinetic parameters of peptides, including rapid degradation and limited tissue and cell membrane permeability, pose a challenge to their successful use in vivo. Therefore, we designed a biopolymer-stabilized elastin-like polypeptide (ELP) fusion construct (ELP-P10) to enhance the bioavailability of P10. Antiviral efficacy and cytotoxic effects of ELP-P10 were studied in cell culture, and pharmacokinetics, biodistribution, and antiviral efficacy were studied in a mouse model of CMV infection. ELP-P10 maintained significant antiviral activity in cell culture, and this conjugation significantly enhanced P10 bioavailability in mouse tissues. The fluorescently labeled ELP-P10 accumulated to higher levels in mouse liver and kidneys as compared to the unconjugated P10. Moreover, viral titers from vital organs of MCMV-infected mice indicated a significant reduction of virus load upon ELP-P10 treatment. Therefore, ELP-P10 has the potential to be developed into an effective antiviral against CMV infection.


Assuntos
Antivirais , Infecções por Citomegalovirus , Elastina , Muromegalovirus , Peptídeos , Fosfoproteínas , Proteínas da Matriz Viral , Animais , Elastina/química , Elastina/metabolismo , Infecções por Citomegalovirus/tratamento farmacológico , Infecções por Citomegalovirus/virologia , Camundongos , Antivirais/farmacologia , Antivirais/farmacocinética , Antivirais/química , Peptídeos/farmacologia , Peptídeos/química , Muromegalovirus/efeitos dos fármacos , Humanos , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/química , Citomegalovirus/efeitos dos fármacos , Capsídeo/metabolismo , Capsídeo/efeitos dos fármacos , Proteínas Recombinantes de Fusão/farmacologia , Proteínas Recombinantes de Fusão/farmacocinética , Modelos Animais de Doenças , Polipeptídeos Semelhantes à Elastina
18.
J Agric Food Chem ; 72(19): 10909-10922, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38689562

RESUMO

Pumpkin (Cucurbita moschata) seed meal (PSM), the major byproduct of pumpkin seed oil industry, was used to prepare angiotensin-converting enzyme (ACE) inhibitory and angiotensin-converting enzyme 2 (ACE2) upregulating peptides. These peptides were isolated and purified from the PSM hydrolysate prepared using Neutrase 5.0 BG by ultrafiltration, Sephadex G-15 column chromatography, and reversed-phase high-performance liquid chromatography. Two peptides with significant ACE inhibition activity were identified as SNHANQLDFHP and PVQVLASAYR with IC50 values of 172.07 and 90.69 µM, respectively. The C-terminal tripeptides of the two peptides contained Pro, Phe, and Tyr, respectively, and PVQVLASAYR also had Val in its N-terminal tripeptide, which was a favorable structure for ACE inhibition. Molecular docking results declared that the two peptides could interact with ACE through hydrogen bonds and hydrophobic interactions. Furthermore, the two peptides performed protective function on EA.hy926 cells by decreasing the secretion of endothelin-1, increasing the release of nitric oxide, and regulating the ACE2 activity. In vitro simulated gastrointestinal digestion showed the two peptides exhibited good stability against gastrointestinal enzyme digestion. In conclusion, PSM is a promising material for preparing antihypertensive peptides.


Assuntos
Enzima de Conversão de Angiotensina 2 , Inibidores da Enzima Conversora de Angiotensina , Cucurbita , Simulação de Acoplamento Molecular , Peptídeos , Peptidil Dipeptidase A , Sementes , Inibidores da Enzima Conversora de Angiotensina/química , Inibidores da Enzima Conversora de Angiotensina/metabolismo , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Cucurbita/química , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/metabolismo , Sementes/química , Humanos , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/química , Hidrolisados de Proteína/química , Hidrolisados de Proteína/metabolismo , Regulação para Cima/efeitos dos fármacos , Linhagem Celular , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo
19.
J Agric Food Chem ; 72(19): 11230-11240, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38709903

RESUMO

Dipeptidyl peptidase-IV (DPP-IV) inhibiting peptides have attracted increased attention because of their possible beneficial effects on glycemic homeostasis. However, the structural basis underpinning their activities has not been well understood. This study combined computational and in vitro investigations to explore the structural basis of DPP-IV inhibitory peptides. We first superimposed the Xaa-Pro-type peptide-like structures from several crystal structures of DPP-IV ligand-protein complexes to analyze the recognition interactions of DPP-IV to peptides. Thereafter, a small set of Xaa-Pro-type peptides was designed to explore the effect of key interactions on inhibitory activity. The intramolecular interaction of Xaa-Pro-type peptides at the first and third positions from the N-terminus was pivotal to their inhibitory activities. Residue interactions between DPP-IV and residues of the peptides at the fourth and fifth positions of the N-terminus contributed significantly to the inhibitory effect of Xaa-Pro-type tetrapeptides and pentapeptides. Based on the interaction descriptors, quantitative structure-activity relationship (QSAR) studies with the DPP-IV inhibitory peptides resulted in valid models with high R2 values (0.90 for tripeptides; 0.91 for tetrapeptides and pentapeptides) and Q2 values (0.33 for tripeptides; 0.68 for tetrapeptides and pentapeptides). Taken together, the structural information on DPP-IV and peptides in this study facilitated the development of novel DPP-IV inhibitory peptides.


Assuntos
Dipeptidil Peptidase 4 , Inibidores da Dipeptidil Peptidase IV , Peptídeos , Relação Quantitativa Estrutura-Atividade , Inibidores da Dipeptidil Peptidase IV/química , Dipeptidil Peptidase 4/química , Dipeptidil Peptidase 4/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Humanos , Sequência de Aminoácidos
20.
EBioMedicine ; 103: 105124, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38701619

RESUMO

BACKGROUND: PolyQ diseases are autosomal dominant neurodegenerative disorders caused by the expansion of CAG repeats. While of slow progression, these diseases are ultimately fatal and lack effective therapies. METHODS: A high-throughput chemical screen was conducted to identify drugs that lower the toxicity of a protein containing the first exon of Huntington's disease (HD) protein huntingtin (HTT) harbouring 94 glutamines (Htt-Q94). Candidate drugs were tested in a wide range of in vitro and in vivo models of polyQ toxicity. FINDINGS: The chemical screen identified the anti-leprosy drug clofazimine as a hit, which was subsequently validated in several in vitro models. Computational analyses of transcriptional signatures revealed that the effect of clofazimine was due to the stimulation of mitochondrial biogenesis by peroxisome proliferator-activated receptor gamma (PPARγ). In agreement with this, clofazimine rescued mitochondrial dysfunction triggered by Htt-Q94 expression. Importantly, clofazimine also limited polyQ toxicity in developing zebrafish and neuron-specific worm models of polyQ disease. INTERPRETATION: Our results support the potential of repurposing the antimicrobial drug clofazimine for the treatment of polyQ diseases. FUNDING: A full list of funding sources can be found in the acknowledgments section.


Assuntos
Clofazimina , Modelos Animais de Doenças , Proteína Huntingtina , Hansenostáticos , PPAR gama , Peptídeos , Peixe-Zebra , Clofazimina/farmacologia , PPAR gama/metabolismo , PPAR gama/genética , Animais , Humanos , Peptídeos/farmacologia , Hansenostáticos/farmacologia , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Doença de Huntington/tratamento farmacológico , Doença de Huntington/metabolismo , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA