Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.571
Filtrar
1.
PeerJ ; 12: e17252, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38708345

RESUMO

Background: Periodontitis is a chronic infectious disease, characterized by an exacerbated inflammatory response and a progressive loss of the supporting tissues of the teeth. Porphyromonas gingivalis is a key etiologic agent in periodontitis. Cystatin C is an antimicrobial salivary peptide that inhibits the growth of P. gingivalis. This study aimed to evaluate the antimicrobial activity of this peptide and its effect on cytokine production, nitric oxide (NO) release, reactive oxygen species (ROS) production, and programmed cell death in human macrophages infected with P. gingivalis. Methods: Monocyte-derived macrophages generated from peripheral blood were infected with P. gingivalis (MOI 1:10) and stimulated with cystatin C (2.75 µg/ml) for 24 h. The intracellular localization of P. gingivalis and cystatin C was determined by immunofluorescence and transmission electron microscopy (TEM). The intracellular antimicrobial activity of cystatin C in macrophages was assessed by counting Colony Forming Units (CFU). ELISA assay was performed to assess inflammatory (TNFα, IL-1ß) and anti-inflammatory (IL-10) cytokines. The production of nitrites and ROS was analyzed by Griess reaction and incubation with 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA), respectively. Programmed cell death was assessed with the TUNEL assay, Annexin-V, and caspase activity was also determined. Results: Our results showed that cystatin C inhibits the extracellular growth of P. gingivalis. In addition, this peptide is internalized in the infected macrophage, decreases the intracellular bacterial load, and reduces the production of inflammatory cytokines and NO. Interestingly, peptide treatment increased ROS production and substantially decreased bacterial-induced macrophage apoptosis. Conclusions: Cystatin C has antimicrobial and immuno-regulatory activity in macrophages infected with P. gingivalis. These findings highlight the importance of understanding the properties of cystatin C for its possible therapeutic use against oral infections such as periodontitis.


Assuntos
Cistatina C , Macrófagos , Óxido Nítrico , Porphyromonas gingivalis , Espécies Reativas de Oxigênio , Porphyromonas gingivalis/imunologia , Humanos , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/microbiologia , Cistatina C/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Óxido Nítrico/metabolismo , Citocinas/metabolismo , Periodontite/microbiologia , Periodontite/imunologia , Periodontite/tratamento farmacológico , Periodontite/patologia , Apoptose/efeitos dos fármacos
2.
BMC Oral Health ; 24(1): 530, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704553

RESUMO

OBJECTIVE: Explore the therapeutic mechanism of Coptidis Rhizome (CR) in periodontitis using network pharmacology, and validate it through molecular docking and in vitro experiments. METHODS: Screened potential active components and target genes of CR from TCMSP and Swiss databases. Identified periodontitis-related target genes using GeneCards. Found common target genes using Venny. Conducted GO and KEGG pathway analysis. Performed molecular docking and in vitro experiments using Berberine, the main active component of CR, on lymphocytes from healthy and periodontitis patients. Assessed effects on inflammatory factors using CCK-8, flow cytometry, and ELISA. RESULTS: Fourteen active components and 291 targets of CR were identified. 30 intersecting target genes with periodontitis were found. GO and KEGG analysis revealed oxidative stress response and IL-17 signaling pathway as key mechanisms. Molecular docking showed strong binding of Berberine with ALOX5, AKT1, NOS2, and TNF. In vitro experiments have demonstrated the ability of berberine to inhibit the expression of Th17 + and other immune related cells in LPS stimulated lymphocytes, and reduce the secretion of IL-6, IL-8, and IL-17. CONCLUSION: CR treats periodontitis through a multi-component, multi-target, and multi-pathway approach. Berberine, its key component, acts through the IL-17 signaling pathway to exert anti-inflammatory effects.


Assuntos
Berberina , Medicamentos de Ervas Chinesas , Simulação de Acoplamento Molecular , Farmacologia em Rede , Periodontite , Humanos , Periodontite/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/farmacologia , Berberina/farmacologia , Berberina/uso terapêutico , Coptis chinensis , Rizoma , Interleucina-17/metabolismo , Transdução de Sinais/efeitos dos fármacos , Técnicas In Vitro , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo
3.
Acta Odontol Scand ; 83: 238-248, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700145

RESUMO

OBJECTIVE: The aim of this work was to explore the potential of polyphenol supplement consumption in enhancing the treatment of periodontitis and diabetes mellitus in both diabetic animals and humans. MATERIALS AND METHODS: A comprehensive search across eight databases (MEDLINE, EBSCO, Taylor & Francis, PRIMO, Web of Science, Wiley Online Library, ScienceDirect, and SAGE Journals) and two registers (ClinicalTrials.gov and Cochrane Library Trials) was conducted. Methodological quality assessment employed the Cochrane Collaboration Risk of Bias Assessment Tool for randomised controlled trials and the Systematic Review Centre for Laboratory Animal Experimentation Risk of Bias Tool for experimental animal studies. RESULTS: Ten articles meeting inclusion criteria were identified. Three clinical studies demonstrated significant reductions in probing depth (PD) and clinical attachment loss (CAL). Ginger supplementation showed a decrease in CAL (-0.57 ± 0.50 vs. -0.14 ± 0.35, p = 0.003) and PD (-0.52 ± 0.51 vs. -0.19 ± 0.51, p = 0.04), while resveratrol supplementation exhibited a reduction in PD (-1.1 ± 0.58 vs. -0.6 ± 0.47, p < 0.001). Additionally, cranberry juice supplementation led to a decrease in PD (-0.56 ± 0.03, p < 0.001). However, there was no significant improvement in inflammation status. Although polyphenol supplementation did not impact fasting blood glucose levels, it did result in improved insulin resistance (3.66 ± 0.97 vs. 4.49 ± 1.56, p = 0.045). In diabetic animals, six studies reported a significant reduction (p < 0.05) in bone loss along with marked improvements in inflammation status. CONCLUSIONS: Despite the promising results observed in the included studies, the overall evidence supporting the positive effects of polyphenols on periodontal and diabetes mellitus status, along with their anti-inflammatory properties, remains inadequate.


Assuntos
Periodontite , Polifenóis , Polifenóis/administração & dosagem , Polifenóis/uso terapêutico , Periodontite/tratamento farmacológico , Periodontite/complicações , Humanos , Animais , Diabetes Mellitus/tratamento farmacológico , Suplementos Nutricionais
4.
Int J Oral Sci ; 16(1): 38, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734708

RESUMO

Periodontitis is a chronic inflammatory and immune reactive disease induced by the subgingival biofilm. The therapeutic effect for susceptible patients is often unsatisfactory due to excessive inflammatory response and oxidative stress. Sinensetin (Sin) is a nature polymethoxylated flavonoid with anti-inflammatory and antioxidant activities. Our study aimed to explore the beneficial effect of Sin on periodontitis and the specific molecular mechanisms. We found that Sin attenuated oxidative stress and inflammatory levels of periodontal ligament cells (PDLCs) under inflammatory conditions. Administered Sin to rats with ligation-induced periodontitis models exhibited a protective effect against periodontitis in vivo. By molecular docking, we identified Bach1 as a strong binding target of Sin, and this binding was further verified by cellular thermal displacement assay and immunofluorescence assays. Chromatin immunoprecipitation-quantitative polymerase chain reaction results also revealed that Sin obstructed the binding of Bach1 to the HMOX1 promoter, subsequently upregulating the expression of the key antioxidant factor HO-1. Further functional experiments with Bach1 knocked down and overexpressed verified Bach1 as a key target for Sin to exert its antioxidant effects. Additionally, we demonstrated that Sin prompted the reduction of Bach1 by potentiating the ubiquitination degradation of Bach1, thereby inducing HO-1 expression and inhibiting oxidative stress. Overall, Sin could be a promising drug candidate for the treatment of periodontitis by targeting binding to Bach1.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Estresse Oxidativo , Periodontite , Ubiquitinação , Estresse Oxidativo/efeitos dos fármacos , Periodontite/tratamento farmacológico , Periodontite/prevenção & controle , Periodontite/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Ubiquitinação/efeitos dos fármacos , Ratos , Masculino , Modelos Animais de Doenças , Antioxidantes/farmacologia , Ratos Sprague-Dawley , Humanos , Imunoprecipitação da Cromatina , Western Blotting , Reação em Cadeia da Polimerase em Tempo Real , Simulação de Acoplamento Molecular , Ligamento Periodontal/efeitos dos fármacos , Ligamento Periodontal/metabolismo , Ligamento Periodontal/citologia
5.
Int Immunopharmacol ; 133: 112094, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38652969

RESUMO

Periodontitis is a bacteria-induced inflammatory disease that damages the tissues supporting the teeth, gums, periodontal ligaments, and alveolar bone. Conventional treatments such as surgical procedures, anti-inflammatory drugs, and antibiotics, are somewhat effective; however, these may lead to discomfort and adverse events, thereby affecting patient outcomes. Therefore, this study aimed to find an effective method to prevent the onset of periodontal disease and explore the specific mechanisms of their action.The impact of thiostrepton on Porphyromonas gingivalis and periodontal ligament stem cells was evaluated in an inflammatory microenvironment. In vivo experiments were performed using a mouse periodontitis model to assess the effectiveness of locally applied thiostrepton combined with a silk fibroin hydrogel in impeding periodontitis progression. Thiostrepton exhibited significant antimicrobial effects against Porphyromonas gingivalis and anti-inflammatory properties by regulating the MAPK pathway through DUSP2. Locally applied thiostrepton effectively impeded the progression of periodontitis and reduced tissue damage. Thiostrepton treatment is a promising and tolerable preventive strategy for periodontitis, offering antimicrobial and anti-inflammatory benefits. These findings suggest the potential of thiostrepton as a valuable addition to periodontitis management, warranting further research and clinical exploration to improve patient outcomes.


Assuntos
Antibacterianos , Anti-Inflamatórios , Periodontite , Porphyromonas gingivalis , Animais , Porphyromonas gingivalis/efeitos dos fármacos , Periodontite/tratamento farmacológico , Camundongos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Ligamento Periodontal/efeitos dos fármacos , Ligamento Periodontal/patologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Células-Tronco/efeitos dos fármacos , Masculino , Periodonto/efeitos dos fármacos , Periodonto/microbiologia , Periodonto/patologia
6.
BMC Neurol ; 24(1): 112, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580923

RESUMO

BACKGROUND: Streptococcus intermedius is a member of the S. anginosus group and is part of the normal oral microbiota. It can cause pyogenic infections in various organs, primarily in the head and neck area, including brain abscesses and meningitis. However, ventriculitis due to periodontitis has not been reported previously. CASE PRESENTATION: A 64-year-old male was admitted to the hospital with a headache, fever and later imbalance, blurred vision, and general slowness. Neurological examination revealed nuchal rigidity and general clumsiness. Meningitis was suspected, and the patient was treated with dexamethasone, ceftriaxone and acyclovir. A brain computer tomography (CT) scan was normal, and cerebrospinal fluid (CSF) Gram staining and bacterial cultures remained negative, so the antibacterial treatment was discontinued. Nine days after admission, the patient's condition deteriorated. The antibacterial treatment was restarted, and a brain magnetic resonance imaging revealed ventriculitis. A subsequent CT scan showed hydrocephalus, so a ventriculostomy was performed. In CSF Gram staining, chains of gram-positive cocci were observed. Bacterial cultures remained negative, but a bacterial PCR detected Streptococcus intermedius. An orthopantomography revealed advanced periodontal destruction in several teeth and periapical abscesses, which were subsequently operated on. The patient was discharged in good condition after one month. CONCLUSIONS: Poor dental health can lead to life-threatening infections in the central nervous system, even in a completely healthy individual. Primary bacterial ventriculitis is a diagnostic challenge, which may result in delayed treatment and increased mortality.


Assuntos
Infecções Bacterianas do Sistema Nervoso Central , Ventriculite Cerebral , Meningite , Periodontite , Masculino , Humanos , Pessoa de Meia-Idade , Streptococcus intermedius , Ventriculite Cerebral/complicações , Ventriculite Cerebral/diagnóstico por imagem , Ventriculite Cerebral/tratamento farmacológico , Antibacterianos/uso terapêutico , Meningite/diagnóstico , Periodontite/complicações , Periodontite/tratamento farmacológico
7.
Oral Health Prev Dent ; 22: 171-180, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687029

RESUMO

PURPOSE: To investigate the microbiological outcomes obtained with either subgingival debridement (SD) in conjunction with a gel containing sodium hypochlorite and amino acids followed by subsequent application of a cross-linked hyaluronic acid gel (xHyA) gel, or with SD alone. MATERIALS AND METHODS: Forty-eight patients diagnosed with stages II-III (grades A/B) generalised periodontitis were randomly treated with either SD (control) or SD plus adjunctive sodium hypochlorite/amino acids and xHyA gel (test). Subgingival plaque samples were collected from the deepest site per quadrant in each patient at baseline and after 3 and 6 months. Pooled sample analysis was performed using a multiplex polymerase chain reaction (PCR)-based method for the identification of detection frequencies and changes in numbers of the following bacteria: Aggregatibacter actinomycetemcomitans (A.a), Porphyromonas gingivalis (P.g), Tannerella forsythia (T.f), Treponema denticola (T.d), and Prevotella intermedia (P.i). RESULTS: In terms of detection frequency, in the test group, statistically significant reductions were found for P.g, T.f, T.d and P.i (p < 0.05) after 6 months. In the control group, the detection frequencies of all investigated bacterial species at 6 months were comparable to the baseline values (p > 0.05). The comparison of the test and control groups revealed statistically significant differences in detection frequency for P.g (p = 0.034), T.d (p < 0.01) and P.i (p = 0.02) after 6 months, favouring the test group. Regarding reduction in detection frequency scores, at 6 months, statistically significant differences in favour of the test group were observed for all investigated bacterial species: A.a (p = 0.028), P.g (p = 0.028), T.f (p = 0.004), T.d (p <0.001), and P.i (p = 0.003). CONCLUSIONS: The present microbiological results, which are related to short-term outcomes up to 6 months post-treatment, support the adjunctive subgingival application of sodium hypochlorite/amino acids and xHyA to subgingival debridement in the treatment of periodontitis.


Assuntos
Aggregatibacter actinomycetemcomitans , Aminoácidos , Placa Dentária , Ácido Hialurônico , Porphyromonas gingivalis , Prevotella intermedia , Hipoclorito de Sódio , Tannerella forsythia , Treponema denticola , Humanos , Ácido Hialurônico/uso terapêutico , Hipoclorito de Sódio/uso terapêutico , Aggregatibacter actinomycetemcomitans/efeitos dos fármacos , Aggregatibacter actinomycetemcomitans/isolamento & purificação , Porphyromonas gingivalis/efeitos dos fármacos , Feminino , Pessoa de Meia-Idade , Masculino , Prevotella intermedia/efeitos dos fármacos , Tannerella forsythia/efeitos dos fármacos , Treponema denticola/efeitos dos fármacos , Adulto , Placa Dentária/microbiologia , Aminoácidos/uso terapêutico , Desbridamento Periodontal/métodos , Carga Bacteriana/efeitos dos fármacos , Géis , Terapia Combinada , Seguimentos , Reagentes de Ligações Cruzadas/uso terapêutico , Bolsa Periodontal/microbiologia , Bolsa Periodontal/terapia , Periodontite/microbiologia , Periodontite/terapia , Periodontite/tratamento farmacológico
8.
ACS Biomater Sci Eng ; 10(5): 2742-2761, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38639082

RESUMO

Periodontitis is a common condition characterized by a bacterial infection and the disruption of the body's immune-inflammatory response, which causes damage to the teeth and supporting tissues and eventually results in tooth loss. Current therapy involves the systemic and local administration of antibiotics. However, the existing treatments cannot exert effective, sustained release and maintain an effective therapeutic concentration of the drug at the lesion site. Hydrogels are used to treat periodontitis due to their low cytotoxicity, exceptional water retention capability, and controlled drug release profile. Hydrogels can imitate the extracellular matrix of periodontal cells while offering suitable sites to load antibiotics. This article reviews the utilization of hydrogels for periodontitis therapy based on the pathogenesis and clinical manifestations of the disease. Additionally, the latest therapeutic strategies for smart hydrogels and the main techniques for hydrogel preparation have been discussed. The information will aid in designing and preparing future hydrogels for periodontitis treatment.


Assuntos
Antibacterianos , Hidrogéis , Periodontite , Hidrogéis/química , Hidrogéis/uso terapêutico , Periodontite/tratamento farmacológico , Humanos , Antibacterianos/uso terapêutico , Animais
9.
Front Immunol ; 15: 1374900, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605968

RESUMO

Introduction: Cells expressing taste signaling elements in non-gustatory tissues have been described as solitary chemosensory cells (SCCs) or tuft cells. These "taste-like" cells play a critical role in the maintenance of tissue homeostasis. Although the expression of SCC markers and taste signaling constituents has been identified in mouse gingivae, their role in periodontal homeostasis is still unclear. Methods: Public RNA sequencing datasets were re-analyzed and further validated with RT-PCR/qRT-PCR and immunofluorescent staining to explore the expression of TAS2Rs and downstream signaling constituents in mouse gingival fibroblasts (MGFs). The specific action of salicin on MGFs via Tas2r143 was validated with RNA silence, heterologous expression of taste receptor/Gα-gustducin and calcium imaging. The anti-inflammatory effects of salicin against LPS-induced MGFs were investigated in cell cultures, and were further validated with a ligature-induced periodontitis mouse model using Ga-gustducin-null (Gnat3-/-) mice. Results: The expression of Tas2r143, Gnat3, Plcb2, and TrpM5 was detected in MGFs. Moreover, salicin could activate Tas2r143, elicited taste signaling and thus inhibited LPS-induced chemokines expression (CXCL1, CXCL2, and CXCL5) in MGFs. Consistently, salicin-treatment inhibited periodontal bone loss, inflammatory/chemotactic factors expression, and neutrophil infiltration in periodontitis mice, while these effects were abolished in Gnat3-/- mice. Discussion: Gingival fibroblasts play a critical role in the maintenance of periodontal homeostasis via "SCC-like" activity. Salicin can activate Tas2r143-mediated bitter taste signaling and thus alleviate periodontitis in mouse, indicating a promising approach to the resolution of periodontal inflammation via stimulating the "SCC-like" function of gingival fibroblasts.


Assuntos
Álcoois Benzílicos , Fibroblastos , Glucosídeos , Periodontite , Transducina , Animais , Camundongos , Fibroblastos/metabolismo , Lipopolissacarídeos , Periodontite/tratamento farmacológico , Periodontite/metabolismo
10.
J Nanobiotechnology ; 22(1): 181, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622641

RESUMO

Periodontitis is an inflammatory disease induced by the complex interactions between the host immune system and the microbiota of dental plaque. Oxidative stress and the inflammatory microenvironment resulting from periodontitis are among the primary factors contributing to the progression of the disease. Additionally, the presence of dental plaque microbiota plays a significant role in affecting the condition. Consequently, treatment strategies for periodontitis should be multi-faceted. In this study, a reactive oxygen species (ROS)-responsive drug delivery system was developed by structurally modifying hyaluronic acid (HA) with phenylboronic acid pinacol ester (PBAP). Curcumin (CUR) was encapsulated in this drug delivery system to form curcumin-loaded nanoparticles (HA@CUR NPs). The release results indicate that CUR can be rapidly released in a ROS environment to reach the concentration required for treatment. In terms of uptake, HA can effectively enhance cellular uptake of NPs because it specifically recognizes CD44 expressed by normal cells. Moreover, HA@CUR NPs not only retained the antimicrobial efficacy of CUR, but also exhibited more pronounced anti-inflammatory and anti-oxidative stress functions both in vivo and in vitro. This provides a good potential drug delivery system for the treatment of periodontitis, and could offer valuable insights for dental therapeutics targeting periodontal diseases.


Assuntos
Ácidos Borônicos , Curcumina , Placa Dentária , Glicóis , Nanopartículas Multifuncionais , Nanopartículas , Periodontite , Humanos , Curcumina/farmacologia , Espécies Reativas de Oxigênio , Ésteres , Periodontite/tratamento farmacológico , Ácido Hialurônico/farmacologia
11.
J Nanobiotechnology ; 22(1): 207, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664778

RESUMO

Several studies suggest that oral pathogenic biofilms cause persistent oral infections. Among these is periodontitis, a prevalent condition brought on by plaque biofilm. It can even result in tooth loss. Furthermore, the accumulation of germs around a dental implant may lead to peri-implantitis, which damages the surrounding bone and gum tissue. Furthermore, bacterial biofilm contamination on the implant causes soft tissue irritation and adjacent bone resorption, severely compromising dental health. On decontaminated implant surfaces, however, re-osseointegration cannot be induced by standard biofilm removal techniques such as mechanical cleaning and antiseptic treatment. A family of nanoparticles known as nanozymes (NZs) comprise highly catalytically active multivalent metal components. The most often employed NZs with antibacterial activity are those that have peroxidase (POD) activity, among other types of NZs. Since NZs are less expensive, more easily produced, and more stable than natural enzymes, they hold great promise for use in various applications, including treating microbial infections. NZs have significantly contributed to studying implant success rates and periodontal health maintenance in periodontics and implantology. An extensive analysis of the research on various NZs and their applications in managing oral health conditions, including dental caries, dental pulp disorders, oral ulcers, peri-implantitis, and bacterial infections of the mouth. To combat bacteria, this review concentrates on NZs that imitate the activity of enzymes in implantology and periodontology. With a view to the future, there are several ways that NZs might be used to treat dental disorders antibacterially.


Assuntos
Antibacterianos , Biofilmes , Implantes Dentários , Peri-Implantite , Periodontite , Peri-Implantite/tratamento farmacológico , Peri-Implantite/microbiologia , Humanos , Periodontite/tratamento farmacológico , Periodontite/microbiologia , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/uso terapêutico , Biofilmes/efeitos dos fármacos , Implantes Dentários/microbiologia , Animais , Nanopartículas/química , Bactérias/efeitos dos fármacos
12.
BMC Oral Health ; 24(1): 510, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689229

RESUMO

BACKGROUND: Periodontitis is a chronic osteolytic inflammatory disease, where anti-inflammatory intervention is critical for restricting periodontal damage and regenerating alveolar bone. Ropinirole, a dopamine D2 receptor agonist, has previously shown therapeutic potential for periodontitis but the underlying mechanism is still unclear. METHODS: Human gingival fibroblasts (HGFs) treated with LPS were considered to mimic periodontitis in vitro. The dosage of Ropinirole was selected through the cell viability of HGFs evaluation. The protective effects of Ropinirole on HGFs were evaluated by detecting cell viability, cell apoptosis, and pro-inflammatory factor levels. The molecular docking between NAT10 and Ropinirole was performed. The interaction relationship between NAT10 and KLF6 was verified by ac4C Acetylated RNA Immunoprecipitation followed by qPCR (acRIP-qPCR) and dual-luciferase reporter assay. RESULTS: Ropinirole alleviates LPS-induced damage of HGFs by promoting cell viability, inhibiting cell apoptosis and the levels of IL-1ß, IL-18, and TNF-α. Overexpression of NAT10 weakens the effects of Ropinirole on protecting HGFs. Meanwhile, NAT10-mediated ac4C RNA acetylation promotes KLF6 mRNA stability. Upregulation of KLF6 reversed the effects of NAT10 inhibition on HGFs. CONCLUSIONS: Taken together, Ropinirole protected HGFs through inhibiting the NAT10 ac4C RNA acetylation to decrease the KLF6 mRNA stability from LPS injury. The discovery of this pharmacological and molecular mechanism of Ropinirole further strengthens its therapeutic potential for periodontitis.


Assuntos
Fibroblastos , Indóis , Fator 6 Semelhante a Kruppel , Acetiltransferases N-Terminal , Periodontite , Humanos , Acetilação/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Gengiva/efeitos dos fármacos , Gengiva/metabolismo , Indóis/farmacologia , Indóis/uso terapêutico , Fator 6 Semelhante a Kruppel/metabolismo , Lipopolissacarídeos , Simulação de Acoplamento Molecular , Periodontite/tratamento farmacológico , Periodontite/metabolismo , Acetiltransferases N-Terminal/antagonistas & inibidores
13.
Int Immunopharmacol ; 132: 111984, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38565043

RESUMO

Periodontitis is a chronic inflammatory disease with the destruction of supporting periodontal tissue. This study evaluated the role of insulin-like growth factor 2 (IGF2) in periodontitis by inhibiting the polarization of M1 macrophages via the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway. IGF2 was enriched in the gingival tissue of murine periodontitis model identified by RNA sequencing. IGF2 application alleviated the expression of pro-inflammatory factors and promoted osteogenesis and the expression of related genes and proteins in a dose-dependent manner in periodontitis. The result of micro-CT verified this finding. Both in vivo and in vitro results revealed that IGF2 decreased the polarization of M1 macrophages and pro-inflammatory factors by immunofluorescence staining, flow cytometry, western blotting and RT-PCR. IGF2 application promoted the osteogenic ability of periodontal ligament fibroblasts (PDLFs) indirectly via its inhibition of M1 polarization evaluated by alkaline phosphatase and alizarin red staining. Then, the cGAS/STING pathway was upregulated in periodontitis and macrophages challenged by LPS, the inhibition of which led to downregulation of M1 polarization. Furthermore, IGF2 could downregulate cGAS, STING and the phosphorylation of P65. Collectively, our study indicates IGF2 can regulate the polarization of M1 macrophages via the cGAS/STING pathway and highlights the promising future of IGF2 as a therapeutic treatment for periodontitis.


Assuntos
Fator de Crescimento Insulin-Like II , Macrófagos , Proteínas de Membrana , Nucleotidiltransferases , Periodontite , Animais , Humanos , Masculino , Camundongos , Regeneração Óssea/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fator de Crescimento Insulin-Like II/metabolismo , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Nucleotidiltransferases/metabolismo , Osteogênese/efeitos dos fármacos , Ligamento Periodontal/metabolismo , Ligamento Periodontal/citologia , Ligamento Periodontal/patologia , Periodontite/imunologia , Periodontite/metabolismo , Periodontite/tratamento farmacológico , Transdução de Sinais
14.
J Dent ; 143: 104907, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428718

RESUMO

OBJECTIVES: Down Syndrome (DS) adults are at risk for periodontitis. Previous reports indicated difficulties in periodontopathogen reduction or eradication in DS individuals after periodontal treatment. This case series follows the subgingival microbial changes in adult DS individuals with periodontitis who received chlorhexidine adjunct non-surgical therapy plus 12-month recalls. METHODS: Twenty periodontitis DS participants (7 females; 25.5 ± 5.6 years of age; 3 with generalized periodontitis) partook in a study involving non-surgical mechanical periodontal therapy, twice daily chlorhexidine gel toothbrushing, chlorhexidine mouthwash, and monthly recalls. The subgingival microbiota profile was followed at baseline, 6-, and 12-months post-operation. RESULTS: Desulfobulbus, Saccharibacteria (TM7), Tannerella, and Porphyromonas were the major subgingival genera in this DS cohort. Favorable chlorhexidine adjunct non-surgical treatment outcomes were observed, with the relative abundance of Desulfobulbus sp. HMT 041, Saccharibacteria (TM7) [G-1] bacterium HMT 346 or 349, and Tannerella forsythia significantly reduced at the end of the study, but no significant reduction of Porphyromonas gingivalis or Aggregatibacter actinomycetemcomitans could be observed. Relative abundance of Desulfobulbus sp. HMT 041 and T. forsythia were also found to be significantly associated with plaque, bleeding on probing, and probing pocket depth (PPD, in mm) at a site level, while the relative abundance of Halomonas pacifica was negatively associated with PPD. CONCLUSIONS: Successful chlorhexidine adjunct non-surgical treatment with hygiene care was accompanied by a subgingival microbial shift involving certain periodontopathogenic species, except P. gingivalis and A. actinomycetemcomitans. Further investigations are required to clarify the mechanism underpinning the unchanged relative abundance of the above two pathogens despite favorable clinical responses. CLINICAL SIGNIFICANCE: DS adults face challenges achieving optimal home care or hygiene for periodontal healing and disease prevention. Chemical adjunct mechanical periodontal therapy plus regular recalls appeared promising clinically and microbiologically, with subgingival periodontopathogenic species reduction. The persistence of A. actinomycetemcomitans and P. gingivalis in subgingival niches post-treatment warrants further investigation.


Assuntos
Periodontite Crônica , Síndrome de Down , Periodontite , Adulto , Feminino , Humanos , Clorexidina/uso terapêutico , Bolsa Periodontal , Periodontite/tratamento farmacológico , Periodontite/microbiologia , Porphyromonas gingivalis , Aggregatibacter actinomycetemcomitans , Periodontite Crônica/microbiologia
15.
Discov Med ; 36(182): 518-526, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38531792

RESUMO

BACKGROUND: Periodontitis is a chronic inflammatory disease resulting from bacterial plaque infection. While the involvement of activating transcription factor 1 (ATF1) has been extensively explored in various human diseases, its specific role in periodontitis remains unclear. This study aims to elucidate the expression and biological function of ATF1 in the context of periodontitis. METHODS: Primary human periodontal ligament cells (hPDLCs) were procured from clinical samples and subsequently characterized. Following treatment with P. gingivalis lipopolysaccharide (LPS, 10 µg/mL), hPDLCs underwent transfection with either ATF1 vector or siRNA. The expression levels of ATF1 in LPS-treated hPDLCs or transfected cells were evaluated through real-time quantitative polymerase chain reaction (RT-qPCR) and western blot assay. Inflammatory factors, including interleukin-6 (IL-6), interleukin-8 (IL-8), tumor necrosis factor-alpha (TNF-α), and interleukin-1beta (IL-1ß), were quantified using Enzyme-linked Immunosorbent Assay (ELISA). The assessment of osteogenic proteins, such as runt-related transcription factor 2 (Runx2), osteopontin (OPN), and osteoprotegerin (OPG), as well as noncanonical nuclear factor-kappaB (NF-κB) pathway-related proteins (p65, p-p65, IkBα, p-IkBα), was conducted using western blot assay. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay and flow cytometry assays were employed to detect cell viability. RESULTS: LPS induced an inflammatory response and hindered the osteogenic differentiation of hPDLCs (p < 0.05, p < 0.01). Furthermore, ATF1 silencing enhanced cell proliferation and suppressed apoptosis in LPS-stimulated hPDLCs (p < 0.05, p < 0.01). ATF1 silencing not only restrained the inflammatory response but also promoted the osteogenic differentiation of LPS-stimulated hPDLCs (p < 0.05, p < 0.01). Importantly, ATF1 silencing effectively blocked the LPS-induced activation of the NF-κB signaling pathway (p < 0.05, p < 0.01, p < 0.001). CONCLUSIONS: ATF1 emerges as a promising treatment option, inhibiting the osteogenic differentiation of hPDLCs and mitigating the inflammatory response by preventing the phosphorylation of the NF-κB signaling pathway.


Assuntos
NF-kappa B , Periodontite , Humanos , Fator 1 Ativador da Transcrição/metabolismo , Células Cultivadas , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/uso terapêutico , NF-kappa B/metabolismo , NF-kappa B/farmacologia , Osteogênese , Ligamento Periodontal/metabolismo , Ligamento Periodontal/patologia , Periodontite/tratamento farmacológico , Periodontite/metabolismo , Periodontite/patologia
16.
Medicina (Kaunas) ; 60(3)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38541234

RESUMO

Background and Objectives: Periodontitis is marked by the destruction of alveolar bone. Sclerostin (SOST) and dickkopf-1 (DKK-1) act as inhibitors of the Wingless-type (Wnt) signaling pathway, a key regulator of bone metabolism. Recent studies have suggested that statins play a role in bone resorption and formation by influencing Wnt signaling. The aim of this study was to determine the levels of SOST and DKK-1 in periodontal patients with and without peroral statins treatment in their therapy. Materials and Methods: A total of 79 patients with diagnosed periodontitis were divided into two groups: 39 patients on statin therapy (SP group) and 40 patients without statin therapy as a control group (P group). The periodontal clinical examination probing (pocket) depth (PD) and gingival recession (GR) were measured, and approximal plaque was detected, while vertical and horizontal bone resorption was measured using a panoramic radiograph image. Clinical attachment loss (CAL) values were calculated using PD and GR values. Gingival crevicular fluid (GCF) was collected and used for measuring SOST and DKK-1 levels. A questionnaire was used to assess lifestyle habits and statin intake. Patients' medical records were used to obtain biochemical parameters. Results: There was no significant difference in sclerostin concentration between the SP and P group. DKK-1 values were significantly higher in the SP group compared to the control group (p = 0.04). Also, PD (p = 0.001) and GR (p = 0.03) were significantly higher in the SP group. The level of DKK-1 had a positive relationship with the PD, the greater the PD, the higher the level of DKK-1 (Rho = 0.350), while there was no significant association with other parameters. Conclusions: Peroral statins in periodontal patients are associated with GCF levels of DKK-1 but not with sclerostin levels.


Assuntos
Reabsorção Óssea , Inibidores de Hidroximetilglutaril-CoA Redutases , Periodontite , Humanos , Líquido do Sulco Gengival , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Periodontite/tratamento farmacológico , Bolsa Periodontal/terapia
17.
ACS Appl Mater Interfaces ; 16(11): 13573-13584, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38439708

RESUMO

Periodontitis, a complex inflammatory disease initiated by bacterial infections, presents a significant challenge in public health. The increased levels of reactive oxygen species and the subsequent exaggerated immune response associated with periodontitis often lead to alveolar bone resorption and tooth loss. Herein, we develop multifunctional metal-phenolic composites (i.e., Au@MPN-BMP2) to address the complex nature of periodontitis, where gold nanoparticles (AuNPs) are coated by metal-phenolic networks (MPNs) and bone morphogenetic protein 2 (BMP2). In this design, MPNs exhibit remarkable antibacterial and antioxidant properties, and AuNPs and BMP2 promote osteogenic differentiation of bone marrow mesenchymal stem cells under inflammatory conditions. In a rat model of periodontitis, treatment with Au@MPN-BMP2 leads to notable therapeutic outcomes, including mitigated oxidative stress, reduced progression of inflammation, and the significant prevention of inflammatory bone loss. These results highlight the multifunctionality of Au@MPN-BMP2 nanoparticles as a promising therapeutic approach for periodontitis, addressing both microbial causative factors and an overactivated immune response. We envision that the rational design of metal-phenolic composites will provide versatile nanoplatforms for tissue regeneration and potential clinical applications.


Assuntos
Nanopartículas Metálicas , Periodontite , Ratos , Animais , Osteogênese , Ouro/farmacologia , Nanopartículas Metálicas/uso terapêutico , Periodontite/tratamento farmacológico , Antibacterianos/farmacologia , Diferenciação Celular
18.
ACS Nano ; 18(11): 8307-8324, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38437643

RESUMO

Periodontitis is a chronic inflammatory disease closely associated with reactive oxygen species (ROS) involvement. Eliminating ROS to control the periodontal microenvironment and alleviate the inflammatory response could potentially serve as an efficacious therapy for periodontitis. Melatonin (MT), renowned for its potent antioxidant and anti-inflammatory characteristics, is frequently employed as an ROS scavenger in inflammatory diseases. However, the therapeutic efficacy of MT remains unsatisfactory due to the low water solubility and poor bioavailability. Carbon dots have emerged as a promising and innovative nanomaterial with facile synthesis, environmental friendliness, and low cost. In this study, melatonin-derived carbon dots (MT-CDs) were successfully synthesized via the hydrothermal method. The MT-CDs have good water solubility and biocompatibility and feature excellent ROS-scavenging capacity without additional modification. The in vitro experiments proved that MT-CDs efficiently regulated intracellular ROS, which maintained mitochondrial homeostasis and suppressed the production of inflammatory mediators. Furthermore, findings from the mouse model of periodontitis indicated that MT-CDs significantly inhibited the deterioration of alveolar bone and reduced osteoclast activation and inflammation, thereby contributing to the regeneration of damaged tissue. In terms of the mechanism, MT-CDs may scavenge ROS, thereby preventing cellular damage and the production of inflammatory factors by regulating the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway. The findings will offer a vital understanding of the advancement of secure and effective ROS-scavenging platforms for more biomedical applications.


Assuntos
Melatonina , Periodontite , Camundongos , Animais , Melatonina/farmacologia , Melatonina/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Heme Oxigenase-1 , Periodontite/tratamento farmacológico , Água , Carbono
19.
ACS Appl Mater Interfaces ; 16(12): 14421-14433, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38497587

RESUMO

Injectable antibacterial and osteoinductive hydrogels have received considerable attention for promoting bone regeneration owing to their versatile functionalities. However, a current hydrogel with antibacterial, osteoinductive, and antioxidant properties by a facile method for periodontitis treatment is still missing. To overcome this issue, we designed an injectable hydrogel system (GPM) composed of gelatin, Ti3C2Tx MXene nanosheets, and poly-l-lysine using a simple enzymatic cross-linking technique. Physicochemical characterization demonstrated that the GPM hydrogel matrix exhibited excellent stability, moderate tissue adhesion ability, and good mechanical behavior. The GPM hydrogels significantly inhibited the growth of Porphyromonas gingivalis, scavenged reactive oxygen species, attenuated inflammatory responses, and enhanced bone tissue regeneration. Intriguingly, the arrangement of the junctional epithelium, alveolar bone volume, and alveolar bone height in the GPM-treated periodontal disease group recovered to that of the healthy group. Therefore, our injectable hydrogel system with versatile functions may serve as an excellent tissue scaffold for the treatment of periodontitis.


Assuntos
Periodontite , Humanos , Nanogéis , Espécies Reativas de Oxigênio , Periodontite/tratamento farmacológico , Hidrogéis/farmacologia , Hidrogéis/química , Antibacterianos/farmacologia
20.
Biomaterials ; 307: 122536, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38522327

RESUMO

Antibacterial photodynamic therapy (aPDT) has emerged as a promising strategy for treating periodontitis. However, the weak binding of most photosensitizers to bacteria and the hypoxic environment of periodontal pockets severely hamper the therapeutic efficacy. Herein, two novel oxygen-independent photosensitizers are developed by introducing selenophene into viologens and modifying with hexane chains (HASeV) or quaternary ammonium chains (QASeV), which improve the adsorption to bacteria through anchoring to the negatively charged cell membrane. Notably, QASeV binds only to the bacterial surface of Porphyromonas gingivalis and Fusobacterium nucleatum due to electrostatic binding, but HASeV can insert into their membrane by strong hydrophobic interactions. Therefore, HASeV exhibits superior antimicrobial activity and more pronounced plaque biofilm disruption than QASeV when combined with light irradiation (MVL-210 photoreactor, 350-600 nm, 50 mW/cm2), and a better effect on reducing the diversity and restoring the structure of subgingival flora in periodontitis rat model was found through 16S rRNA gene sequencing analysis. The histological and Micro-CT analyses reveal that HASeV-based aPDT has a better therapeutic effect in reducing periodontal tissue inflammation and alveolar bone resorption. This work provides a new strategy for the development of viologen-based photosensitizers, which may be a favorable candidate for the aPDT against periodontitis.


Assuntos
Periodontite , Fotoquimioterapia , Animais , Ratos , Fármacos Fotossensibilizantes/uso terapêutico , RNA Ribossômico 16S , Periodontite/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Inflamação/tratamento farmacológico , Bactérias , Porphyromonas gingivalis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA