Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 515
Filtrar
1.
Glob Chang Biol ; 30(6): e17347, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38822663

RESUMO

Climate change (CC) necessitates reforestation/afforestation programs to mitigate its impacts and maximize carbon sequestration. But comprehending how tree growth, a proxy for fitness and resilience, responds to CC is critical to maximize these programs' effectiveness. Variability in tree response to CC across populations can notably be influenced by the standing genetic variation encompassing both neutral and adaptive genetic diversity. Here, a framework is proposed to assess tree growth potential at the population scale while accounting for standing genetic variation. We applied this framework to black spruce (BS, Picea mariana [Mill] B.S.P.), with the objectives to (1) determine the key climate variables having impacted BS growth response from 1974 to 2019, (2) examine the relative roles of local adaptation and the phylogeographic structure in this response, and (3) project BS growth under two Shared Socioeconomic Pathways while taking standing genetic variation into account. We modeled growth using a machine learning algorithm trained with dendroecological and genetic data obtained from over 2600 trees (62 populations divided in three genetic clusters) in four 48-year-old common gardens, and simulated growth until year 2100 at the common garden locations. Our study revealed that high summer and autumn temperatures negatively impacted BS growth. As a consequence of warming, this species is projected to experience a decline in growth by the end of the century, suggesting maladaptation to anticipated CC and a potential threat to its carbon sequestration capacity. This being said, we observed a clear difference in response to CC within and among genetic clusters, with the western cluster being more impacted than the central and eastern clusters. Our results show that intraspecific genetic variation, notably associated with the phylogeographic structure, must be considered when estimating the response of widespread species to CC.


Assuntos
Sequestro de Carbono , Mudança Climática , Variação Genética , Picea , Árvores , Picea/genética , Picea/crescimento & desenvolvimento , Árvores/genética , Árvores/crescimento & desenvolvimento , Filogeografia
2.
Environ Microbiol ; 26(6): e16662, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38840258

RESUMO

Our study delved into the relationship between root-associated fungi, gene expression and plant morphology in Norway spruce cuttings derived from both slow-and fast-growing trees. We found no clear link between the gene expression patterns of adventitious roots and the growth phenotype, suggesting no fundamental differences in the receptiveness to fungal symbionts between the phenotypes. Interestingly, saplings from slow-growing parental trees exhibited a higher richness of ectomycorrhizal species and larger roots. Some ectomycorrhizal species, typically found on mature spruces, were more prevalent on saplings from slow-growing spruces. The ericoid mycorrhizal fungus, Hyaloscypha hepaticola, showed a stronger association with saplings from fast-growing spruces. Moreover, saplings from slow-growing spruces had a greater number of Ascomycete taxa and free-living saprotrophic fungi. Aboveground sapling stems displayed some phenotypic variation; saplings from fast-growing phenotypes had longer branches but fewer whorls in their stems compared to those from the slow-growing group. In conclusion, the observed root-associated fungi and phenotypic characteristics in young Norway spruces may play a role in their long-term growth rate. This suggests that the early interactions between spruces and fungi could potentially influence their growth trajectory.


Assuntos
Micorrizas , Picea , Raízes de Plantas , Picea/microbiologia , Picea/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Micorrizas/genética , Micorrizas/crescimento & desenvolvimento , Micorrizas/fisiologia , Noruega , Simbiose , Fungos/genética , Fungos/classificação , Fungos/crescimento & desenvolvimento , Ascomicetos/genética , Ascomicetos/crescimento & desenvolvimento
3.
BMC Genom Data ; 25(1): 60, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877416

RESUMO

BACKGROUND: Forest geneticists typically use provenances to account for population differences in their improvement schemes; however, the historical records of the imported materials might not be very precise or well-aligned with the genetic clusters derived from advanced molecular techniques. The main objective of this study was to assess the impact of marker-based population structure on genetic parameter estimates related to growth and wood properties and their trade-offs in Norway spruce, by either incorporating it as a fixed effect (model-A) or excluding it entirely from the analysis (model-B). RESULTS: Our results indicate that models incorporating population structure significantly reduce estimates of additive genetic variance, resulting in substantial reduction of narrow-sense heritability. However, these models considerably improve prediction accuracies. This was particularly significant for growth and solid-wood properties, which showed to have the highest population genetic differentiation (QST) among the studied traits. Additionally, although the pattern of correlations remained similar across the models, their magnitude was slightly lower for models that included population structure as a fixed effect. This suggests that selection, consistently performed within populations, might be less affected by unfavourable genetic correlations compared to mass selection conducted without pedigree restrictions. CONCLUSION: We conclude that the results of models properly accounting for population structure are more accurate and less biased compared to those neglecting this effect. This might have practical implications for breeders and forest managers where, decisions based on imprecise selections can pose a high risk to economic efficiency.


Assuntos
Picea , Madeira , Picea/genética , Picea/crescimento & desenvolvimento , Madeira/genética , Marcadores Genéticos/genética , Modelos Genéticos , Genética Populacional/métodos , Variação Genética/genética
4.
Ying Yong Sheng Tai Xue Bao ; 35(5): 1196-1204, 2024 May.
Artigo em Chinês | MEDLINE | ID: mdl-38886417

RESUMO

Picea schrenkiana is the dominant tree species in Ili River Basin located in the western Tianshan Mountains of Xinjiang. We investigated the growth decline characteristics of P. schrenkiana at different altitudes (1800, 2300 and 2800 m) based on tree-ring index (TRI) and percentage growth change (GC), aiming to understand the growth response of P. schrenkiana to drought events at different altitudes and the impacts of altitude on tree growth decline in this region. The results showed that P. schrenkiana experienced multiple decline events at low-altitude (1800 m). TRI and GC identified inconsistent occurrence time of the decline events. The variations of TRI indicated that P. schrenkiana at low-altitude experienced two large-scale declines during 1927-1933 and 2017-2014, respectively. The variations of GC identified four decline events, including 1891-1893, 1924-1926, 1973-1975, and 2004-2009. The radial growth of P. schrenkiana across altitudes from low to high was significantly affected by the Palmer drought severity index (PDSI) of the previous growing season. The impact of current PDSI on P. schrenkiana during the growing season initially enhanced but later decreased with increasing altitude. In the extreme drought year 1917, the magnitude of growth decline increased with altitude. At low-altitude (1800 m), the TRI was 0.65, which was 35% lower than the normal level. At mid-altitude (2300 m) and high-altitude (2800 m), it was 0.56 and 0.54, respectively, being 40% lower than the average level. The drought event in 1917 had a 2-year legacy effect on the growth of P. schrenkiana at all the altitudes, with the TRI in 1920 recovered to exceeding 0.9, being close to the normal level. The impact of altitude on drought-induced forest decline was significant. Tree growth in low-altitude areas was more vulnerable to drought events due to the relatively poorer water and temperature conditions at low-altitude, which could lead to multiple large-scale decline events. In mid- and high-altitude areas, where hydrothermal conditions were more favorable, trees could experience even more severe decline during extreme droughts.


Assuntos
Altitude , Secas , Picea , China , Picea/crescimento & desenvolvimento , Ecossistema , Rios
5.
Ying Yong Sheng Tai Xue Bao ; 35(5): 1388-1396, 2024 May.
Artigo em Chinês | MEDLINE | ID: mdl-38886438

RESUMO

We conducted field surveys on foraging habitat and foraging activities of Picoides tridactylus in Liangshui National Nature Reserve of Heilongjiang Province, China, from April to May and November to December 2022. By using the resource selection function, we analyzed the factors affecting foraging habitat selection of P. tridactylus, compared the differences between foraging habitat selection and foraging activities in winter and spring by chi-square and Mann-Whitney U tests, and investigated their foraging preference with Bailey's method. The results showed that dominant tree species and dead arbor number were the important factors affecting foraging habitat selection of P. tridactylus. They preferred habitats with a large number of dead arbor and dominant trees, such as Picea asperata and Abies fabri. They preferred trees with a height of 10-20 m and a diameter at breast height of 15-45 cm. In spring, they favored semi-withered arbors and showed random utilization of P. koraiensis. During winter, they preferred dead arbors and avoided choosing P. koraiensis. They preferred to forage on tree trunk, in spring pecking in the middle of the tree for a short duration, and during winter, digging in the upper part of the tree for a long duration. Foraging habitat selection and foraging activities of P. koraiensis showed certain differences between winter and spring.


Assuntos
Ecossistema , Estações do Ano , China , Animais , Árvores/crescimento & desenvolvimento , Comportamento Alimentar , Picea/crescimento & desenvolvimento , Conservação dos Recursos Naturais
6.
Tree Physiol ; 44(5)2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38696364

RESUMO

Modeling and simulating the growth of the branching of tree species remains a challenge. With existing approaches, we can reconstruct or rebuild the branching architectures of real tree species, but the simulation of the growth process remains unresolved. First, we present a tree growth model to generate branching architectures that resemble real tree species. Secondly, we use a quantitative morphometric approach to infer the shape similarity of the generated simulations and real tree species. Within a functional-structural plant model, we implement a set of biological parameters that affect the branching architecture of trees. By modifying the parameter values, we aim to generate basic shapes of spruce, pine, oak and poplar. Tree shapes are compared using geometric morphometrics of landmarks that capture crown and stem outline shapes. Five biological parameters, namely xylem flow, shedding rate, proprioception, gravitysense and lightsense, most influenced the generated tree branching patterns. Adjusting these five parameters resulted in the different tree shapes of spruce, pine, oak, and poplar. The largest effect was attributed to gravity, as phenotypic responses to this effect resulted in different growth directions of gymnosperm and angiosperm branching architectures. Since we were able to obtain branching architectures that resemble real tree species by adjusting only a few biological parameters, our model is extendable to other tree species. Furthermore, the model will also allow the simulation of structural tree-environment interactions. Our simplifying approach to shape comparison between tree species, landmark geometric morphometrics, showed that even the crown-trunk outlines capture species differences based on their contrasting branching architectures.


Assuntos
Modelos Biológicos , Árvores , Árvores/crescimento & desenvolvimento , Árvores/anatomia & histologia , Xilema/crescimento & desenvolvimento , Xilema/anatomia & histologia , Quercus/crescimento & desenvolvimento , Quercus/anatomia & histologia , Quercus/fisiologia , Picea/crescimento & desenvolvimento , Picea/anatomia & histologia , Picea/fisiologia , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/anatomia & histologia , Pinus/crescimento & desenvolvimento , Pinus/anatomia & histologia , Simulação por Computador
7.
BMC Plant Biol ; 24(1): 414, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760680

RESUMO

BACKGROUND: Variations in hydraulic conductivity may arise from species-specific differences in the anatomical structure and function of the xylem, reflecting a spectrum of plant strategies along a slow-fast resource economy continuum. Spruce (Picea spp.), a widely distributed and highly adaptable tree species, is crucial in preventing soil erosion and enabling climate regulation. However, a comprehensive understanding of the variability in anatomical traits of stems and their underlying drivers in the Picea genus is currently lacking especially in a common garden. RESULTS: We assessed 19 stem economic properties and hydraulic characteristics of 17 Picea species grown in a common garden in Tianshui, Gansu Province, China. Significant interspecific differences in growth and anatomical characteristics were observed among the species. Specifically, xylem hydraulic conductivity (Ks) and hydraulic diameter exhibited a significant negative correlation with the thickness to span ratio (TSR), cell wall ratio, and tracheid density and a significant positive correlation with fiber length, and size of the radial tracheid. PCA revealed that the first two axes accounted for 64.40% of the variance, with PC1 reflecting the trade-off between hydraulic efficiency and mechanical support and PC2 representing the trade-off between high embolism resistance and strong pit flexibility. Regression analysis and structural equation modelling further confirmed that tracheid size positively influenced Ks, whereas the traits DWT, D_r, and TSR have influenced Ks indirectly. All traits failed to show significant phylogenetic associations. Pearson's correlation analysis demonstrated strong correlations between most traits and longitude, with the notable influence of the mean temperature during the driest quarter, annual precipitation, precipitation during the wettest quarter, and aridity index. CONCLUSIONS: Our results showed that xylem anatomical traits demonstrated considerable variability across phylogenies, consistent with the pattern of parallel sympatric radiation evolution and global diversity in spruce. By integrating the anatomical structure of the stem xylem as well as environmental factors of origin and evolutionary relationships, our findings provide novel insights into the ecological adaptations of the Picea genus.


Assuntos
Clima , Picea , Madeira , Xilema , Picea/anatomia & histologia , Picea/fisiologia , Picea/crescimento & desenvolvimento , Madeira/anatomia & histologia , Xilema/anatomia & histologia , Xilema/fisiologia , China , Especificidade da Espécie , Caules de Planta/anatomia & histologia , Caules de Planta/fisiologia , Caules de Planta/crescimento & desenvolvimento
8.
Environ Res ; 252(Pt 4): 119073, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38710428

RESUMO

Climate change, namely increased warming coupled with a rise in extreme events (e.g., droughts, storms, heatwaves), is negatively affecting forest ecosystems worldwide. In these ecosystems, growth dynamics and biomass accumulation are driven mainly by environmental constraints, inter-tree competition, and disturbance regimes. Usually, climate-growth relationships are assessed by linear correlation due to the simplicity and straightforwardness of modeling. However, applying this method may bias results, since the ecological and physiological responses of trees to environmental factors are non-linear, and usually bell-shaped. In the Eastern Carpathian, Norway spruce is at the southeasternmost edge of its natural occurrence; this region is thus potentially vulnerable to climate change. A non-linear assessment of climate-growth relationships using machine-learning techniques for Norway spruce in this area had not been conducted prior to this study. To address this knowledge gap, we analyzed a large tree-ring network from 158 stands, with over 3000 trees of varying age distributed along an elevational gradient. Our results showed that non-linearity in the growth-climate response of spruce was season-specific: temperatures from the previous autumn and current growing season, along with water availability during winter, induced a bell-shaped response. Moreover, we found that at low elevations, spruce growth was mainly limited by water availability in the growing season, while winter temperatures are likely to have had a slight influence along the entire elevational gradient. Furthermore, at elevations lower than 1400 m, spruce trees were also found to be sensitive to previous autumn water availability. Overall, our results shed new light on the response of Norway spruce to climate in the Carpathians, which may aid in management decisions.


Assuntos
Altitude , Mudança Climática , Picea , Picea/crescimento & desenvolvimento , Dinâmica não Linear , Estações do Ano , Aprendizado de Máquina , Temperatura
9.
Tree Physiol ; 44(5)2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38662576

RESUMO

To increase the resilience of forests to drought and other hazards, foresters are increasingly planting mixed stands. This requires knowledge about the drought response of tree species in pure and mixed-culture neighborhoods. In addition, drought frequently interacts with continued atmospheric nitrogen (N) deposition. To disentangle these factors for European beech, Norway spruce and Douglas fir, we conducted a replicated 3-factorial sapling growth experiment with three moisture levels, (high, medium, and low), two N levels (high and ambient), and pure and mixed-culture neighborhoods. We measured biomass, stomatal conductance (GS), shoot water potential (at predawn: ΨPD, midday, and turgor loss point: ΨTLP), branch xylem embolism resistance (Ψ50) and minimum epidermal conductance (Gmin). The three species differed most with respect to Gmin (10-fold higher in beech than in the conifers), hydroscape area (larger in beech), and the time elapsed to reach stomatal closure (TΨGS90) and ΨTLP (TTLP; shorter in beech), while Ψ50 and ΨTLP were remarkably similar. Neighborhood (pure vs mixed-culture) influenced biomass production, water status and hydraulic traits, notably GS (higher in Douglas fir, but lower in spruce and beech, in mixtures than pure culture), hydraulic safety margin (smaller for beech in mixtures), and TΨGS90 and TTLP (shorter for spruce in mixture). High N generally increased GS, but no consistent N effects on leaf water status and hydraulic traits were detected, suggesting that neighbor identity had a larger effect on plant water relations than N availability. We conclude that both tree neighborhood and N availability modulate the drought response of beech, spruce, and Douglas fir. Species mixing can alleviate the drought stress of some species, but often by disadvantaging other species. Thus, our study suggests that stabilizing and building resilience of production forests against a drier and warmer climate may depend primarily on the right species choice; species mixing can support the agenda.


Assuntos
Secas , Fagus , Nitrogênio , Picea , Pseudotsuga , Árvores , Água , Picea/fisiologia , Picea/crescimento & desenvolvimento , Fagus/fisiologia , Fagus/crescimento & desenvolvimento , Nitrogênio/metabolismo , Água/metabolismo , Pseudotsuga/fisiologia , Pseudotsuga/crescimento & desenvolvimento , Árvores/fisiologia , Árvores/crescimento & desenvolvimento , Resistência à Seca
10.
Environ Pollut ; 350: 124012, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38643933

RESUMO

Tree rings have been reliably used as an environmental proxy over the past decades for environmental reconstructions, simulations and forecasting. In our study, we investigated whether tree-ring chronologies are impacted by pollution. We chose sites in the Krusné hory and the Krkonose Mountains in the Czech Republic which have a known history of pollution. We sampled Norway spruce (Picea abies [L.] Karst) in both ranges and compared their chronologies. We found no significant difference in the overall radial growth in the chronologies from both regions. However, we observed an increased heterogeneity in the growth of trees from the 1970s till the 1990s. Coherently, a severe reduction in tree growth from the late 1970s and a recovery towards the early 1990s was evident. We collected and analysed soil samples for pH and exchangeable element concentrations. All seven sampling sites' soils were strongly acidic (pHCaCl2 = 3.3 ± 0.4). The average soil base saturation at Krusné hory was higher than at Krkonose (39% versus 12%), likely due to more intensive liming. Further, we compared these chronologies to other sites in Europe. Analysing 89 sites, we found that most (9 out of 14) of the sites with significantly reduced radial tree growth were located within the former 'Black Triangle', an area which was subjected to heavy industrialisation and pollution from the 1960s to the 1990s. Atmospheric sulphur deposition was found to negatively affect radial tree-growth, while limited quantities of oxidised nitrogen appeared to have a positive effect. Our results are consistent with previous research, indicating that atmospheric SO2 pollution and subsequent acid fog and rime have led to a reduction in annual radial tree growth across the Black Triangle.


Assuntos
Monitoramento Ambiental , Poluição Ambiental , Picea , Árvores , Picea/crescimento & desenvolvimento , Picea/efeitos dos fármacos , República Tcheca , Árvores/crescimento & desenvolvimento , Solo/química , Poluentes do Solo/análise , Europa (Continente)
11.
Environ Res ; 249: 118417, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38316385

RESUMO

The impact of drought on terrestrial ecosystems is increasing, and the spatiotemporal heterogeneity of drought changes exacerbates the difficulty of determining ecosystem responses, especially in arid regions far from oceans. Tree rings have been widely used to understand how forest ecosystems respond to drought. However, the link between local hydroclimate variations related to tree rings and large-scale climate changes is not clear in the Qilian Mountains. Here, we used the tree ring width index to analyze the trend of Picea crassifolia growth and its relationship with climate in the middle Qilian Mountains. The results showed that the radial growth trend of Picea crassifolia is synchronized in the middle Qilian Mountains by calculating the Gleichläufigkeit index (GLK). Our analyses indicated that tree radial growth is positively correlated with drought during the growing season. Tree growth responds stably to drought (scPDSI and SPEI) and precipitation but unstably to temperature during 1950-2019. We further traced the meteorological factors that cause regional drought changes associated with radial growth. An increased total precipitation and decreased evaporation contribute to drought alleviation, favoring an increased tree radial growth. The increased total precipitation is mainly due to increased large-scale precipitation, which is related to water vapor transport changes. This study attempts to explore the influence of large-scale meteorology on regional drought change and its related tree radial growth response, which helps us to better understand the changes in forest ecosystems under climate change.


Assuntos
Mudança Climática , Secas , Árvores , Árvores/crescimento & desenvolvimento , Chuva , Picea/crescimento & desenvolvimento , China , Clima Desértico , Florestas
12.
Nat Commun ; 14(1): 4667, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537190

RESUMO

Warming shifts the thermal optimum of net photosynthesis (ToptA) to higher temperatures. However, our knowledge of this shift is mainly derived from seedlings grown in greenhouses under ambient atmospheric carbon dioxide (CO2) conditions. It is unclear whether shifts in ToptA of field-grown trees will keep pace with the temperatures predicted for the 21st century under elevated atmospheric CO2 concentrations. Here, using a whole-ecosystem warming controlled experiment under either ambient or elevated CO2 levels, we show that ToptA of mature boreal conifers increased with warming. However, shifts in ToptA did not keep pace with warming as ToptA only increased by 0.26-0.35 °C per 1 °C of warming. Net photosynthetic rates estimated at the mean growth temperature increased with warming in elevated CO2 spruce, while remaining constant in ambient CO2 spruce and in both ambient CO2 and elevated CO2 tamarack with warming. Although shifts in ToptA of these two species are insufficient to keep pace with warming, these boreal conifers can thermally acclimate photosynthesis to maintain carbon uptake in future air temperatures.


Assuntos
Ecossistema , Temperatura Alta , Larix , Picea , Aquecimento Global , Picea/crescimento & desenvolvimento , Picea/metabolismo , Dióxido de Carbono/metabolismo , Fotossíntese , Larix/crescimento & desenvolvimento , Larix/metabolismo
13.
Nature ; 608(7923): 546-551, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35948635

RESUMO

Unprecedented modern rates of warming are expected to advance boreal forest into Arctic tundra1, thereby reducing albedo2-4, altering carbon cycling4 and further changing climate1-4, yet the patterns and processes of this biome shift remain unclear5. Climate warming, required for previous boreal advances6-17, is not sufficient by itself for modern range expansion of conifers forming forest-tundra ecotones5,12-15,17-20. No high-latitude population of conifers, the dominant North American Arctic treeline taxon, has previously been documented5 advancing at rates following the last glacial maximum (LGM)6-8. Here we describe a population of white spruce (Picea glauca) advancing at post-LGM rates7 across an Arctic basin distant from established treelines and provide evidence of mechanisms sustaining the advance. The population doubles each decade, with exponential radial growth in the main stems of individual trees correlating positively with July air temperature. Lateral branches in adults and terminal leaders in large juveniles grow almost twice as fast as those at established treelines. We conclude that surpassing temperature thresholds1,6-17, together with winter winds facilitating long-distance dispersal, deeper snowpack and increased soil nutrient availability promoting recruitment and growth, provides sufficient conditions for boreal forest advance. These observations enable forecast modelling with important insights into the environmental conditions converting tundra into forest.


Assuntos
Aquecimento Global , Picea , Taiga , Temperatura , Árvores , Tundra , Aclimatação , Regiões Árticas , Modelos Climáticos , Aquecimento Global/estatística & dados numéricos , Modelos Biológicos , Picea/crescimento & desenvolvimento , Picea/metabolismo , Estações do Ano , Neve , Solo/química , Árvores/crescimento & desenvolvimento , Árvores/metabolismo , Vento
15.
Environ Microbiol ; 24(8): 3517-3528, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35416394

RESUMO

The composition of ecologically important moss-associated bacterial communities seems to be mainly driven by host species but may also be shaped by environmental conditions related with tree dominance. The moss phyllosphere has been studied in coniferous forests while broadleaf forests remain understudied. To determine if host species or environmental conditions defined by tree dominance drives the bacterial diversity in the moss phyllosphere, we used 16S rRNA gene amplicon sequencing to quantify changes in bacterial communities as a function of host species (Pleurozium schreberi and Ptilium crista-castrensis) and forest type (coniferous black spruce versus deciduous broadleaf trembling aspen) in eastern Canada. The overall composition of moss phyllosphere was defined by the interaction of both factors, though most of the bacterial phyla were determined by a strong effect of forest type. Bacterial α-diversity was highest in spruce forests, while there was greater turnover (ß-diversity) and higher γ-diversity in aspen forests. Unexpectedly, Cyanobacteria were much more relatively abundant in aspen than in spruce forests, with the cyanobacteria family Nostocaceae differing the most between forest types. Our results advance the understanding of moss-associated microbial communities among coniferous and broadleaf deciduous forests, which are important with the increasing changes in tree dominance in the boreal system.


Assuntos
Briófitas/microbiologia , Cianobactérias/fisiologia , Picea/fisiologia , Traqueófitas/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento , Bryopsida/microbiologia , Cianobactérias/crescimento & desenvolvimento , Florestas , Picea/crescimento & desenvolvimento , Quebeque , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética
16.
PLoS One ; 17(2): e0252911, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35176013

RESUMO

Aphids can have a significant impact on the growth and commercial yield of spruce plantations. Here we develop a mechanistic deterministic mathematical model for the dynamics of the green spruce aphid (Elatobium abietum Walker) growing on Sitka spruce (Picea sitchensis (Bong.) Carr.). These grow in a northern British climate in managed plantations, with planting, thinning and a 60-year rotation. Aphid infestation rarely kills the tree but can reduce growth by up to 55%. We used the Edinburgh Forest Model (efm) to simulate spruce tree growth. The aphid sub-model is described in detail in an appendix. The only environmental variable which impacts immediately on aphid dynamics is air temperature which varies diurnally and seasonally. The efm variables that are directly significant for the aphid are leaf area and phloem nitrogen and carbon. Aphid population predictions include dying out, annual, biennual and other complex patterns, including chaos. Predicted impacts on plantation yield of managed forests can be large and variable, as has been observed; they are also much affected by temperature, CO2 concentration and other climate variables. However, in this system, increased CO2 concentration appears to ameliorate the severity of the effects of increasing temperatures coupled to worsening aphid infestations on plantation yield.


Assuntos
Afídeos/fisiologia , Clima , Ecossistema , Interações Hospedeiro-Patógeno , Modelos Teóricos , Picea/crescimento & desenvolvimento , Temperatura , Animais , Picea/parasitologia
17.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34389667

RESUMO

Climate change is expected to pose a global threat to forest health by intensifying extreme events like drought and insect attacks. Carbon allocation is a fundamental process that determines the adaptive responses of long-lived late-maturing organisms like trees to such stresses. However, our mechanistic understanding of how trees coordinate and set allocation priorities among different sinks (e.g., growth and storage) under severe source limitation remains limited. Using flux measurements, isotopic tracing, targeted metabolomics, and transcriptomics, we investigated how limitation of source supply influences sink activity, particularly growth and carbon storage, and their relative regulation in Norway spruce (Picea abies) clones. During photosynthetic deprivation, absolute rates of respiration, growth, and allocation to storage all decline. When trees approach neutral carbon balance, i.e., daytime net carbon gain equals nighttime carbon loss, genes encoding major enzymes of metabolic pathways remain relatively unaffected. However, under negative carbon balance, photosynthesis and growth are down-regulated while sucrose and starch biosynthesis pathways are up-regulated, indicating that trees prioritize carbon allocation to storage over growth. Moreover, trees under negative carbon balance actively increase the turnover rate of starch, lipids, and amino acids, most likely to support respiration and mitigate stress. Our study provides molecular evidence that trees faced with severe photosynthetic limitation strategically regulate storage allocation and consumption at the expense of growth. Understanding such allocation strategies is crucial for predicting how trees may respond to extreme events involving steep declines in photosynthesis, like severe drought, or defoliation by heat waves, late frost, or insect attack.


Assuntos
Carbono/metabolismo , Picea/crescimento & desenvolvimento , Picea/metabolismo , Estresse Fisiológico , Fotossíntese/fisiologia , Fenômenos Fisiológicos Vegetais , Transpiração Vegetal
18.
Plant Physiol ; 186(3): 1580-1590, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-33905499

RESUMO

After drought-induced embolism and repair, tree xylem may be weakened against future drought events (cavitation fatigue). As there are few data on cavitation fatigue in conifers available, we quantified vulnerability curves (VCs) after embolism/repair cycles on eight European conifer species. We induced 50% and 100% loss of conductivity (LC) with a cavitron, and analyzed VCs. Embolism repair was obtained by vacuum infiltration. All species demonstrated complete embolism repair and a lack of any cavitation fatigue after 50% LC . After 100% LC, European larch (Larix decidua), stone pine (Pinus cembra), Norway spruce (Picea abies), and silver fir (Abies alba) remained unaffected, while mountain pine (Pinus mugo), yew (Taxus baccata), and common juniper (Juniperus communis) exhibited 0.4-0.9 MPa higher vulnerability to embolism. A small cavitation fatigue observed in Scots pine (Pinus sylvestris) was probably biased by incomplete embolism repair, as indicated by a correlation of vulnerability shifts and conductivity restoration. Our data demonstrate that cavitation fatigue in conifers is species-specific and depends on the intensity of preceding LC. The lack of fatigue effects after moderate LC, and relevant effects in only three species after high LC, indicate that conifers are relatively resistant against cavitation fatigue. This is remarkable considering the complex and delicate conifer pit architecture and may be important considering climate change projections.


Assuntos
Adaptação Fisiológica , Secas , Traqueófitas/anatomia & histologia , Traqueófitas/crescimento & desenvolvimento , Água/fisiologia , Xilema/anatomia & histologia , Xilema/fisiologia , Abies/anatomia & histologia , Abies/crescimento & desenvolvimento , Áustria , Juniperus/anatomia & histologia , Juniperus/crescimento & desenvolvimento , Larix/anatomia & histologia , Larix/crescimento & desenvolvimento , Picea/anatomia & histologia , Picea/crescimento & desenvolvimento , Pinus sylvestris/anatomia & histologia , Pinus sylvestris/crescimento & desenvolvimento , Taxus/anatomia & histologia , Taxus/crescimento & desenvolvimento
19.
Molecules ; 26(8)2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33917721

RESUMO

Norway spruce (Picea abies (L.) H. Karst.) is one of the most important commercial tree species distributed naturally in the Boreal and subalpine forest zone of Europe. All parts of spruce trees, including needles, accumulate essential oils with a variety of chemical properties and ecological functions, such as modulating plant-insect communication. Annual needle samples from 15 trees (five from each of three habitats) of 15-17 years old were assayed for essential oils and their major compounds, including α-pinene, ß-pinene, (1S)-(-)-α-pinene, and (1R)-(+)-α-pinene across a growing season. Results showed strong positive correlation between percentages of α- and ß-pinene isomers (r = 0.69, p < 0.05) and between pinene isomers and essential oils: α-pinene correlated with essential oil stronger (r = 0.62, p < 0.05) than ß-pinene (r = 0.33, p < 0.05). Correlation analyses performed with some weather conditions, including average monthly temperature, growing sum of effective temperatures over 5 °C, duration of sunshine, accumulated precipitation, relative humidity, and pressure, showed that temperature is the most important weather condition related to pinene dynamics: negative correlations of moderate strength were established between percentages of α- and ß- pinenes and average monthly temperatures (r = -0.36, p < 0.01, n = 75 and r = -0.33, p < 0.01, n = 75, respectively). Out of pinene enantiomers, only (1S)-(-)-α-pinene showed some negative correlation with monthly temperature (r = -0.26, p < 0.05, n = 75). Different patterns of essential oil and pinene dynamics during growing season within separate habitats suggested that some genetic variables of Picea abies might be involved.


Assuntos
Monoterpenos Bicíclicos/química , Óleos Voláteis/química , Picea/química , Picea/crescimento & desenvolvimento , Folhas de Planta/química , Estações do Ano , Dessecação , Estereoisomerismo , Tempo (Meteorologia)
20.
PLoS One ; 15(9): e0239425, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32970744

RESUMO

Regional differences in tree growth can be used to approximate the geographical provenance of ring-width series ('dendro-provenancing'). This method relies on cross-dated ring-width series (reference chronologies) that are thought to represent the radial growth signal of trees in a given region. Reference chronologies are often established from ring-width series of living tree populations. Frequently, they are too short to allow for investigating the provenance of historical wood. Thus, references are extended by ring-width series from buildings and art-historical objects that exhibit best matching growth patterns with the living tree references. Yet, series from other provenances may erroneously be included. Thereby the local or regional growth signal of the references is progressively contaminated, but this has received little attention to date. I investigate this contamination risk using a simulation approach that allows for generating pseudo site chronologies that preserve the relevant statistical properties of the real site chronologies. While the exact provenance of historical wood is unknown, for simulated ring-width series the provenance is unambiguous. Hence, pseudo reference chronologies may be established while monitoring the signal mixture. Specifically, 15 site chronologies of Norway spruce (Picea abies (L.) H. Karst.) from northeastern Switzerland were used to generate 15 pseudo site growth signals that span 1000 years. The simulation demonstrates that quasi uncontaminated references can be established in ideal circumstances for the study area. However, the thresholds for the similarity in between-series correlation must be very high. Even then, contaminated pseudo references occurred in rare cases during the simulation. Yet, elevation-specific pseudo references were established with lower thresholds. Simulation currently offers the only approach for assessing the contamination risk of reference chronologies, and it allows for elucidating the conditions under which acceptable levels of contamination can be guaranteed. Therefore, the present approach paves the way towards a practical simulation tool for dendro-provenancing.


Assuntos
Picea/crescimento & desenvolvimento , Algoritmos , Bases de Dados Factuais , Noruega , Picea/fisiologia , Suíça , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA