Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 275
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1413728, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39015339

RESUMO

Pseudomonas aeruginosa has already been stipulated as a "critical" pathogen, emphasizing the urgent need for researching and developing novel antibacterial agents due to multidrug resistance. Bacterial biofilm formation facilitates cystic fibrosis development and restricts the antibacterial potential of many current antibiotics. The capacity of P. aeruginosa to form biofilms and resist antibiotics is closely correlated with quorum sensing (QS). Bacterial QS is being contemplated as a promising target for developing novel antibacterial agents. QS inhibitors are a promising strategy for treating chronic infections. This study reported that the active compound PT22 (1H-pyrrole-2,5-dicarboxylic acid) isolated from Perenniporia tephropora FF2, one endophytic fungus from Areca catechu L., presents QS inhibitory activity against P. aeruginosa. Combined with gentamycin or piperacillin, PT22 functions as a novel antibiotic accelerant against P. aeruginosa. PT22 (0.50 mg/mL, 0.75 mg/mL, and 1.00 mg/mL) reduces the production of QS-related virulence factors, such as pyocyanin and rhamnolipid, and inhibits biofilm formation of P. aeruginosa PAO1 instead of affecting its growth. The architectural disruption of the biofilms was confirmed by visualization through scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). Real-time quantitative PCR (RT-qPCR) indicated that PT22 significantly attenuated the expression of QS-related genes followed by docking analysis of molecules against QS activator proteins. PT22 dramatically increased the survival rate of Galleria mellonella. PT22 combined with gentamycin or piperacillin presents significant inhibition of biofilm formation and eradication of mature biofilm compared to monotherapy, which was also confirmed by visualization through SEM and CLSM. After being treated with PT22 combined with gentamycin or piperacillin, the survival rates of G. mellonella were significantly increased compared to those of monotherapy. PT22 significantly enhanced the susceptibility of gentamycin and piperacillin against P. aeruginosa PAO1. Our results suggest that PT22 from P. tephropora FF2 as a potent QS inhibitor is a candidate antibiotic accelerant to combat the antibiotic resistance of P. aeruginosa.


Assuntos
Antibacterianos , Biofilmes , Pseudomonas aeruginosa , Pirróis , Percepção de Quorum , Pseudomonas aeruginosa/efeitos dos fármacos , Percepção de Quorum/efeitos dos fármacos , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Pirróis/farmacologia , Animais , Fatores de Virulência/genética , Endófitos/química , Endófitos/metabolismo , Testes de Sensibilidade Microbiana , Ácidos Dicarboxílicos/farmacologia , Simulação de Acoplamento Molecular , Piocianina/metabolismo
2.
Arch Microbiol ; 206(7): 324, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38913239

RESUMO

Among the ESKAPE pathogens, Pseudomonas aeruginosa is an extensively notorious superbug that causes difficult-to-treat infections. Since quorum sensing (QS) directly promotes pseudomonal virulence, targeting QS circuits is a promising approach for disarming phenotypic virulence. Hence, this study scrutinizes the anti-QS, antivirulence, and anti-biofilm potential of citral (CiT; phytochemical) and triclosan (TcN; disinfectant), alone and in combination, against P. aeruginosa PAO1/PA14. The findings confirmed synergism between CiT and TcN and revealed their quorum quenching (QQ) potential. At sub-inhibitory levels, CiT-TcN combination significantly impeded pyocyanin, total bacterial protease, hemolysin, and pyochelin production alongside inhibiting biofilm formation in P. aeruginosa. Moreover, the QQ and antivirulence potential of CiT and TcN was positively correlated by molecular docking studies that predicted strong associations of the drugs with QS receptors of P. aeruginosa. Collectively, the study identifies CiT-TcN as an effective drug combination that harbors QQ, antivirulence, and anti-biofilm prospects against P. aeruginosa.


Assuntos
Monoterpenos Acíclicos , Antibacterianos , Biofilmes , Sinergismo Farmacológico , Simulação de Acoplamento Molecular , Pseudomonas aeruginosa , Percepção de Quorum , Triclosan , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Percepção de Quorum/efeitos dos fármacos , Triclosan/farmacologia , Biofilmes/efeitos dos fármacos , Monoterpenos Acíclicos/farmacologia , Antibacterianos/farmacologia , Virulência/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Piocianina/metabolismo
3.
Front Cell Infect Microbiol ; 14: 1375872, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38846355

RESUMO

Introduction: Pseudomonas aeruginosa is notorious for its multidrug resistance and its involvement in hospital-acquired infections. In this study, 20 bacterial strains isolated from soil samples near the Hindan River in Ghaziabad, India, were investigated for their biochemical and morphological characteristics, with a focus on identifying strains with exceptional drug resistance and pyocyanin production. Methods: The isolated bacterial strains were subjected to biochemical and morphological analyses to characterize their properties, with a particular emphasis on exopolysaccharide production. Strain GZB16/CEES1, exhibiting remarkable drug resistance and pyocyanin production. Biochemical and molecular analyses, including sequencing of its 16S rRNA gene (accession number LN735036.1), plasmid-curing assays, and estimation of plasmid size, were conducted to elucidate its drug resistance mechanisms and further pyocynin based target the Candida albicans Strain GZB16/CEES1 demonstrated 100% resistance to various antibiotics used in the investigation, with plasmid-curing assays, suggesting plasmid-based resistance gene transmission. The plasmid in GZB16/CEES1 was estimated to be approximately 24 kb in size. The study focused on P. aeruginosa's pyocyanin production, revealing its association with anticandidal activity. The minimum inhibitory concentration (MIC) of the bacterial extract against Candida albicans was 50 µg/ml, with a slightly lower pyocyanin-based MIC of 38.5 µg/ml. Scanning electron microscopy illustrated direct interactions between P. aeruginosa strains and Candida albicans cells, leading to the destruction of the latter. Discussion: These findings underscore the potential of P. aeruginosa in understanding microbial interactions and developing strategies to combat fungal infections. The study highlights the importance of investigating bacterial-fungal interactions and the role of pyocyanin in antimicrobial activity. Further research in this area could lead to the development of novel therapeutic approaches for combating multidrug-resistant infections.


Assuntos
Antifúngicos , Candida albicans , Farmacorresistência Bacteriana Múltipla , Testes de Sensibilidade Microbiana , Plasmídeos , Pseudomonas aeruginosa , Piocianina , RNA Ribossômico 16S , Microbiologia do Solo , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Piocianina/metabolismo , Farmacorresistência Bacteriana Múltipla/genética , Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Candida albicans/crescimento & desenvolvimento , RNA Ribossômico 16S/genética , Índia , Plasmídeos/genética , Antibacterianos/farmacologia , Antibiose
4.
Microb Cell Fact ; 23(1): 174, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38867319

RESUMO

BACKGROUND: The objectives of the current study were to extract pyocyanin from Pseudomonas aeruginosa clinical isolates, characterize its chemical nature, and assess its biological activity against different bacteria and cancer cells. Due to its diverse bioactive properties, pyocyanin, being one of the virulence factors of P. aeruginosa, holds a promising, safe, and available therapeutic potential. METHODS: 30 clinical P. aeruginosa isolates were collected from different sources of infections and identified by routine methods, the VITEK 2 compact system, and 16 S rRNA. The phenazine-modifying genes (phzM, phzS) were identified using polymerase chain reaction (PCR). Pyocyanin chemical characterization included UV-Vis spectrophotometry, Fourier Transform Infra-Red spectroscopy (FTIR), Gas Chromatography-Mass Spectrometry (GC-MS), and Liquid Chromatography-Mass Spectrometry (LC-MS). The biological activity of pyocyanin was explored by determining the MIC values against different clinical bacterial strains and assessing its anticancer activity against A549, MDA-MB-231, and Caco-2 cancer cell lines using cytotoxicity, wound healing and colony forming assays. RESULTS: All identified isolates harboured at least one of the phzM or phzS genes. The co-presence of both genes was demonstrated in 13 isolates. The UV-VIS absorbance peaks were maxima at 215, 265, 385, and 520 nm. FTIR could identify the characteristic pyocyanin functional groups, whereas both GC-MS and LC-MS elucidated the chemical formula C11H18N2O2, with a molecular weight 210. The quadri-technical analytical approaches confirmed the chemical nature of the extracted pyocyanin. The extract showed broad-spectrum antibacterial activity, with the greatest activity against Bacillus, Staphylococcus, and Streptococcus species (MICs 31.25-125 µg/mL), followed by E. coli isolates (MICs 250-1000 µg/mL). Regarding the anticancer activity, the pyocyanin extract showed IC50 values against A549, MDA-MB-231, and Caco-2 cancer cell lines of 130, 105, and 187.9 µg/mL, respectively. Furthermore, pyocyanin has markedly suppressed colony formation and migratory abilities in these cells. CONCLUSIONS: The extracted pyocyanin has demonstrated to be a potentially effective candidate against various bacterial infections and cancers. Hence, the current findings could contribute to producing this natural compound easily through an affordable method. Nonetheless, future studies are required to investigate pyocyanin's effects in vivo and analyse the results of combining it with other traditional antibiotics or anticancer drugs.


Assuntos
Antibacterianos , Antineoplásicos , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa , Piocianina , Piocianina/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Células CACO-2
5.
mSphere ; 9(5): e0021024, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38712943

RESUMO

Metallothioneins (MTs) are small cysteine-rich proteins that play important roles in homeostasis and protection against heavy metal toxicity and oxidative stress. The opportunistic pathogen, Pseudomonas aeruginosa, expresses a bacterial MT known as PmtA. Utilizing genetically modified P. aeruginosa PAO1 strains (a human clinical wound isolate), we show that inducing pmtA increases levels of pyocyanin and biofilm compared to other PAO1 isogenic strains, supporting previous results that pmtA is important for pyocyanin and biofilm production. We also show that overexpression of pmtA in vitro provides protection for cells exposed to oxidants, which is a characteristic of inflammation, indicating a role for PmtA as an antioxidant in inflammation. We found that a pmtA clean deletion mutant is phagocytized faster than other PAO1 isogenic strains in THP-1 human macrophage cells, indicating that PmtA provides protection from the phagocytic attack. Interestingly, we observed that monoclonal anti-PmtA antibody binds to PmtA, which is accessible on the surface of PAO1 strains using both flow cytometry and enzyme-linked immunosorbent assay techniques. Finally, we investigated intracellular persistence of these PAO1 strains within THP-1 macrophages cells and found that the phagocytic endurance of PAO1 strains is affected by pmtA expression. These data show for the first time that a bacterial MT (pmtA) can play a role in the phagocytic process and can be found on the outer surface of PAO1. Our results suggest that PmtA plays a role both in protection from oxidative stress and in the resistance to the host's innate immune response, identifying PmtA as a potential therapeutic target in P. aeruginosa infection. IMPORTANCE: The pathogen Pseudomonas aeruginosa is a highly problematic multidrug-resistant (MDR) pathogen with complex virulence networks. MDR P. aeruginosa infections have been associated with increased clinical visits, very poor healthcare outcomes, and these infections are ranked as critical on priority lists of both the Centers for Disease Control and Prevention and the World Health Organization. Known P. aeruginosa virulence factors have been extensively studied and are implicated in counteracting host defenses, causing direct damage to the host tissues, and increased microbial competitiveness. Targeting virulence factors has emerged as a new line of defense in the battle against MDR P. aeruginosa strains. Bacterial metallothionein is a newly recognized virulence factor that enables evasion of the host immune response. The studies described here identify mechanisms in which bacterial metallothionein (PmtA) plays a part in P. aeruginosa pathogenicity and identifies PmtA as a potential therapeutic target.


Assuntos
Proteínas de Bactérias , Biofilmes , Macrófagos , Metalotioneína , Estresse Oxidativo , Fagocitose , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidade , Pseudomonas aeruginosa/metabolismo , Humanos , Metalotioneína/genética , Metalotioneína/metabolismo , Macrófagos/microbiologia , Macrófagos/imunologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Células THP-1 , Piocianina/metabolismo
6.
J Appl Microbiol ; 135(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38587815

RESUMO

AIMS: Drug repurposing is an attractive strategy to control biofilm-related infectious diseases. In this study, two drugs (montelukast and cefoperazone) with well-established therapeutic applications were tested on Pseudomonas aeruginosa quorum sensing (QS) inhibition and biofilm control. METHODS AND RESULTS: The activity of montelukast and cefoperazone was evaluated for Pqs signal inhibition, pyocyanin synthesis, and prevention and eradication of Ps. aeruginosa biofilms. Cefoperazone inhibited the Pqs system by hindering the production of the autoinducer molecules 2-heptyl-4-hydroxyquinoline (HHQ) and 2-heptyl-3-hydroxy-4(1H)-quinolone (the Pseudomonas quinolone signal or PQS), corroborating in silico results. Pseudomonas aeruginosa pyocyanin production was reduced by 50%. The combination of the antibiotics cefoperazone and ciprofloxacin was synergistic for Ps. aeruginosa biofilm control. On the other hand, montelukast had no relevant effects on the inhibition of the Pqs system and against Ps. aeruginosa biofilm. CONCLUSION: This study provides for the first time strong evidence that cefoperazone interacts with the Pqs system, hindering the formation of the autoinducer molecules HHQ and PQS, reducing Ps. aeruginosa pathogenicity and virulence. Cefoperazone demonstrated a potential to be used in combination with less effective antibiotics (e.g. ciprofloxacin) to potentiate the biofilm control action.


Assuntos
Acetatos , Antibacterianos , Biofilmes , Cefoperazona , Ciclopropanos , Pseudomonas aeruginosa , Quinolinas , Percepção de Quorum , Sulfetos , Pseudomonas aeruginosa/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Sulfetos/farmacologia , Percepção de Quorum/efeitos dos fármacos , Antibacterianos/farmacologia , Acetatos/farmacologia , Quinolinas/farmacologia , Ciclopropanos/farmacologia , Cefoperazona/farmacologia , Testes de Sensibilidade Microbiana , Piocianina/metabolismo , Ciprofloxacina/farmacologia , Quinolonas/farmacologia
7.
Bioprocess Biosyst Eng ; 47(6): 903-917, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38630261

RESUMO

In the present study, the potential of Pseudomonas citronellolis 620C strain was evaluated, for the first time, to generate electricity in a standard, double chamber microbial fuel cell (MFC), with oily wastewater (OW) being the fuel at 43.625 mg/L initial chemical oxygen demand (COD). Both electrochemical and physicochemical results suggested that this P. citronellolis strain utilized efficiently the OW substrate and generated electricity in the MFC setup reaching 0.05 mW/m2 maximum power. COD removal was remarkable reaching 83.6 ± 0.1%, while qualitative and quantitative gas chromatography/mass spectrometry (GC/MS) analysis of the OW total petroleum and polycyclic aromatic hydrocarbons, and fatty acids revealed high degradation capacity. It was also determined that P. citronellolis 620C produced pyocyanin as electron shuttle in the anodic MFC chamber. To the authors' best knowledge, this is the first study showing (phenazine-based) pyocyanin production from a species other than P. aeruginosa and, also, the first time that P. citronellolis 620C has been shown to produce electricity in a MFC. The production of pyocyanin, in combination with the formation of biofilm in the MFC anode, as observed with scanning electron microscopy (SEM) analysis, makes this P. citronellolis strain an attractive and promising candidate for wider MFC applications.


Assuntos
Fontes de Energia Bioelétrica , Pseudomonas , Piocianina , Águas Residuárias , Fontes de Energia Bioelétrica/microbiologia , Piocianina/biossíntese , Piocianina/metabolismo , Águas Residuárias/microbiologia , Pseudomonas/metabolismo , Eletricidade
8.
Microb Pathog ; 191: 106664, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679245

RESUMO

Pseudomonas aeruginosa causes life-threatening diseases and is resistant to almost all conventional antibiotics. The quorum sensing (QS) system of P. aeruginosa contributes to many pathogenic factors some of which are pigment production, motility, and biofilm. The disruption of quorum sensing system may be an impactful strategy to deal with infections. The present study investigates the anti-quorum sensing property of a bioactive molecule extracted from marine epibiotic bacteria present on the surface of seaweeds. Among all the isolates tested against monitor strain Chromobacterium violaceum (MTCC 2656), the one with the highest activity was identified as Bacillus zhangzhouensis SK4. The culture supernatant was extracted with chloroform which was then partially purified by TLC and column chromatography. The probable anti-QS compound was identified as 1,2-benzenedicarboxylic acid, bis (2-methylpropyl ester) by GC-MS and NMR analysis. The treatment of P. aeruginosa MCC 3457 with the lead compound resulted in the reduced production of pyocyanin, rhamnolipids, exopolysaccharide, biofilm, and motility. The observations of light and scanning electron microscopy also supported the biofilm inhibition. The lead compound showed synergism with the meropenem antibiotic and significantly reduced MIC. The molecular docking and pharmacokinetics study predicted 1, 2-benzenedicarboxylic acid, bis (2-methylpropyl ester), a phthalate derivative as a good drug candidate. The molecular dynamics study was also performed to check the stability of the lead compound and LasR complex. Further, lead compounds did not exhibit any cytotoxicity when tested on human embryonic kidney cells. As per our knowledge, this is the first report on the anti-QS activity of B. zhangzhouensis SK4, indicating that epibiotic bacteria can be a possible source of novel compounds to deal with the multidrug resistance phenomenon.


Assuntos
Antibacterianos , Bacillus , Biofilmes , Simulação de Acoplamento Molecular , Pseudomonas aeruginosa , Percepção de Quorum , Fatores de Virulência , Percepção de Quorum/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Fatores de Virulência/metabolismo , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Bacillus/efeitos dos fármacos , Bacillus/química , Bacillus/metabolismo , Chromobacterium/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Piocianina/metabolismo , Proteínas de Bactérias/metabolismo , Glicolipídeos/farmacologia , Glicolipídeos/química , Polissacarídeos Bacterianos/farmacologia , Polissacarídeos Bacterianos/isolamento & purificação , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/metabolismo
9.
Microb Pathog ; 191: 106663, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679246

RESUMO

Quorum sensing (QS) has a central role in biofilm lifestyle and antimicrobial resistance, and disrupting these signaling pathways is a promising strategy to control bacterial pathogenicity and virulence. In this study, the efficacy of three structurally related benzaldehydes (4-hydroxybenzaldehyde, 4-hydroxy-3-methoxybenzaldehyde (vanillin) and 4-hydroxy-3,5-dimethoxybenzaldehyde (syringaldehyde)) in disrupting the las and pqs systems of Pseudomonas aeruginosa was investigated using bioreporter strains and computational simulations. Additionally, these benzaldehydes were combined with tobramycin and ciprofloxacin antibiotics to evaluate their ability to increase antibiotic efficacy in preventing and eradicating P. aeruginosa biofilms. To this end, the total biomass, metabolic activity and culturability of the biofilm cells were determined. In vitro assays results indicated that the aromatic aldehydes have potential to inhibit the las and pqs systems by > 80 %. Molecular docking studies supported these findings, revealing the aldehydes binding in the same pocket as the natural ligands or receptor proteins (LasR, PQSA, PQSE, PQSR). Benzaldehydes were shown to act as virulence factor attenuators, with vanillin achieving a 48 % reduction in pyocyanin production. The benzaldehyde-tobramycin combination led not only to a 60 % reduction in biomass production but also to a 90 % reduction in the metabolic activity of established biofilms. A similar result was observed when benzaldehydes were combined with ciprofloxacin. 4-Hydroxybenzaldehyde demonstrated relevant action in increasing biofilm susceptibility to ciprofloxacin, resulting in a 65 % reduction in biomass. This study discloses, for the first time, that the benzaldehydes studied are potent QS inhibitors and also enhancers of antibiotics antibiofilm activity against P. aeruginosa.


Assuntos
Antibacterianos , Proteínas de Bactérias , Benzaldeídos , Biofilmes , Ciprofloxacina , Simulação de Acoplamento Molecular , Pseudomonas aeruginosa , Percepção de Quorum , Tobramicina , Biofilmes/efeitos dos fármacos , Percepção de Quorum/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Benzaldeídos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Tobramicina/farmacologia , Ciprofloxacina/farmacologia , Proteínas de Bactérias/metabolismo , Fatores de Virulência/metabolismo , Testes de Sensibilidade Microbiana , Sinergismo Farmacológico , Piocianina/metabolismo , Transativadores/metabolismo , Transativadores/antagonistas & inibidores
10.
World J Microbiol Biotechnol ; 40(6): 184, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683406

RESUMO

The use of engineered nanoparticles against pathogenic bacteria has gained attention. In this study, zinc oxide nanoparticles conjugated with rutin were synthesized and their antivirulence properties against Pseudomonas aeruginosa and Staphylococcus aureus. The physicochemical characteristics of ZnO-Rutin NPs were investigated using SEM, FT-IR, XRD, DLS, EDS, and zeta potential analyses. Antimicrobial properties were evaluated by well diffusion, microdilution, growth curve, and hemolytic activity assays. The expression of quorum sensing (QS) genes including the lasI and rhlI in P. aeruginosa and agrA in S. aureus was assessed using real-time PCR. Swimming, swarming, twitching, and pyocyanin production by P. aeruginosa were evaluated. The NPs were amorphous, 14-100 nm in diameter, surface charge of -34.3 mV, and an average hydrodynamic size of 161.7 nm. Regarding the antibacterial activity, ZnO-Rutin NPs were more potent than ZnO NPs and rutin, and stronger inhibitory effects were observed on S. aureus than on P. aeruginosa. ZnO-Rutin NPs inhibited the hemolytic activity of P. aeruginosa and S. aureus by 93.4 and 92.2%, respectively, which was more efficient than bare ZnO NPs and rutin. ZnO-Rutin NPs reduced the expression of the lasI and rhlI in P. aeruginosa by 0.17-0.43 and 0.37-0.70 folds, respectively while the expression of the agrA gene in S. aureus was decreased by 0.46-0.56 folds. Furthermore, ZnO-Rutin NPs significantly reduced the swimming and twitching motility and pyocyanin production of P. aeruginosa. This study demonstrates the antivirulence features of ZnO-Rutin NPs against pathogenic bacteria which can be associated with their QS inhibitory effects.


Assuntos
Antibacterianos , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa , Percepção de Quorum , Rutina , Staphylococcus aureus , Óxido de Zinco , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Rutina/farmacologia , Rutina/química , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Percepção de Quorum/efeitos dos fármacos , Nanopartículas/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Nanopartículas Metálicas/química , Hemólise/efeitos dos fármacos , Virulência/efeitos dos fármacos , Tamanho da Partícula , Piocianina/metabolismo
11.
mSystems ; 9(4): e0116523, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38530056

RESUMO

To establish infections in human hosts, Pseudomonas aeruginosa must overcome innate immune-generated oxidative stress, such as the hypochlorous acid (HOCl) produced by neutrophils. We set out to find specific biomarkers of oxidative stress through the development of a protocol for the metabolic profiling of P. aeruginosa cultures grown in the presence of different oxidants using a novel ionization technique for mass spectrometry, laser desorption rapid evaporative ionization mass spectrometry (LD-REIMS). We demonstrated the ability of LD-REIMS to classify samples as untreated or treated with a specific oxidant with 100% accuracy and identified a panel of 54 metabolites with significantly altered concentrations after exposure to one or more of the oxidants. Key metabolic changes were conserved in P. aeruginosa clinical strains isolated from patients with cystic fibrosis lung infections. These data demonstrated that HOCl stress impacted the Pseudomonas quinolone signal (PQS) quorum sensing system. Ten 2-alkyl-4-quinolones (AHQs) associated with the PQS system were significantly lower in concentration in HOCl-stressed P. aeruginosa cultures, including 2-heptyl-3-hydroxy-4(1H)-quinolone (PQS), the most active signal molecule of the PQS system. The PQS system regulates the production of virulence factors, including pyocyanin and elastase, and their levels were markedly affected by HOCl stress. No pyocyanin was detectable and elastase concentrations were reduced by more than 75% in cultures grown with sub-lethal concentrations of HOCl, suggesting that this neutrophil-derived oxidant may disrupt the ability of P. aeruginosa to establish infections through interference with production of PQS-associated virulence factors. IMPORTANCE: This work demonstrates that a high-throughput ambient ionization mass spectrometry method can be used successfully to study a bacterial stress response. Its application to the opportunistic pathogen Pseudomonas aeruginosa led to the identification of specific oxidative stress biomarkers, and demonstrated that hypochlorous acid, an oxidant specifically produced by human neutrophils during infection, affects quorum sensing and reduces production of the virulence factors pyocyanin and elastase. No pyocyanin was detectable and elastase levels were reduced by more than 75% in bacteria grown in the presence of hypochlorous acid. This approach has the potential to be widely applicable to the characterization of the stress responses of bacteria.


Assuntos
Quinolonas , Percepção de Quorum , Humanos , Pseudomonas aeruginosa , Ácido Hipocloroso/metabolismo , Piocianina/metabolismo , Quinolonas/análise , Fatores de Virulência/metabolismo , Espectrometria de Massas , Oxidantes/metabolismo , Elastase Pancreática/metabolismo , Biomarcadores/metabolismo , Lasers
12.
Anal Sci ; 40(5): 891-905, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38472735

RESUMO

Combating Pseudomonas aeruginosa infection is challenging. It secretes pyocyanin (PCN) pigment that contributes to its virulence. Neutralizing PCN via reaction with thiol-containing compounds may represent a potential therapeutic option. This study investigates the neutralization reaction between PCN and N-acetyl cysteine (NAC) for bacterial inhibition and explores its mechanism of action. The neutralization adduct (PCN-NAC) was synthesized by reacting the purified PCN and NAC. The adduct was analyzed and its structure was elucidated. LC-MS/MS method was developed for the determination of PCN-NAC in P. aeruginosa cultures post-treatment with NAC (0-5 mg/mL). The corresponding anti-bacterial potential was estimated and compared to nanoparticles (NPs) alone and under stress conditions. In silico studies were performed to support explaining the mechanism of action. Results revealed that PCN-NAC was exclusively detected in NAC-treated cultures in a concentration-dependent manner. PCN-NAC concentration (230-915 µg/mL) was directly proportional to the reduction in the bacterial viable count (28.3% ± 7.1-87.5% ± 5.9) and outperformed all tested NPs, where chitosan NPs induced 56.9% ± 7.9 inhibition, followed by zinc NPs (49.4% ± 0.9) and gold NPs (17.8% ± 7.5) even post-exposure to different stress conditions. A concomitant reduction in PCN concentration was detected. In silico studies revealed possible interactions between key bacterial proteins and PCN-NAC rather than the NAC itself. These results pose NAC as a potential choice for the management of P. aeruginosa infection, where it neutralizes PCN via the formation of PCN-NAC adduct.


Assuntos
Acetilcisteína , Pseudomonas aeruginosa , Piocianina , Fatores de Virulência , Acetilcisteína/química , Acetilcisteína/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Espectrometria de Massa com Cromatografia Líquida , Pseudomonas aeruginosa/efeitos dos fármacos , Piocianina/metabolismo , Piocianina/antagonistas & inibidores , Piocianina/análise , Piocianina/química , Fatores de Virulência/antagonistas & inibidores , Fatores de Virulência/metabolismo
13.
J Biol Chem ; 300(3): 105741, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340793

RESUMO

Type VI secretion systems (T6SS) are bacterial macromolecular complexes that secrete effectors into target cells or the extracellular environment, leading to the demise of adjacent cells and providing a survival advantage. Although studies have shown that the T6SS in Pseudomonas aeruginosa is regulated by the Quorum Sensing system and second messenger c-di-GMP, the underlying molecular mechanism remains largely unknown. In this study, we discovered that the c-di-GMP-binding adaptor protein PA0012 has a repressive effect on the expression of the T6SS HSI-I genes in P. aeruginosa PAO1. To probe the mechanism by which PA0012 (renamed TssZ, Type Six Secretion System -associated PilZ protein) regulates the expression of HSI-I genes, we conducted yeast two-hybrid screening and identified HinK, a LasR-type transcriptional regulator, as the binding partner of TssZ. The protein-protein interaction between HinK and TssZ was confirmed through co-immunoprecipitation assays. Further analysis suggested that the HinK-TssZ interaction was weakened at high c-di-GMP concentrations, contrary to the current paradigm wherein c-di-GMP enhances the interaction between PilZ proteins and their partners. Electrophoretic mobility shift assays revealed that the non-c-di-GMP-binding mutant TssZR5A/R9A interacts directly with HinK and prevents it from binding to the promoter of the quorum-sensing regulator pqsR. The functional connection between TssZ and HinK is further supported by observations that TssZ and HinK impact the swarming motility, pyocyanin production, and T6SS-mediated bacterial killing activity of P. aeruginosa in a PqsR-dependent manner. Together, these results unveil a novel regulatory mechanism wherein TssZ functions as an inhibitor that interacts with HinK to control gene expression.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Pseudomonas aeruginosa , Transcrição Gênica , Sistemas de Secreção Tipo VI , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Imunoprecipitação , Mutação , Regiões Promotoras Genéticas , Ligação Proteica , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Piocianina/metabolismo , Percepção de Quorum , Sistemas do Segundo Mensageiro , Técnicas do Sistema de Duplo-Híbrido , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/metabolismo
14.
Diagn Microbiol Infect Dis ; 109(1): 116212, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38387214

RESUMO

Pseudomonas aeruginosa, one of the most notorious organisms, causes fatal diseases like-, meningitis, pneumonia as well as worsens the prognosis of cystic fibrosis patients. It is also multi-drug resistant and resists a wide range of antibiotics. Attempts have been made to reduce its virulence/pathogenic potential using a number of organic compounds. For this purpose, the Quorum sensing (QS) system of P. aeruginosa was targeted, which regulates its virulence. Pseudomonas Quinolone System (PQS), one of the four quorum sensing systems, producing pyocyanin pigment was chosen. 2-heptyl-3-hydroxy-4-quinolone (HHQ) is a ligand which binds to PQS protein is responsible for pyocyanin pigment production. Attempts were made to find a compound analogous to HHQ which could bind to PQS active site and inhibit the pigment formation. In-silico analysis was performed to estimate possible interactions and to find/predict the possible PQS inhibitors.


Assuntos
Infecções por Pseudomonas , Quinolonas , Humanos , Percepção de Quorum/fisiologia , Pseudomonas aeruginosa/metabolismo , Pseudomonas/metabolismo , Piocianina/metabolismo , Quinolonas/farmacologia , Infecções por Pseudomonas/tratamento farmacológico , Proteínas de Bactérias/metabolismo
15.
PeerJ ; 12: e16826, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38313021

RESUMO

This study aimed to investigate the potential of patuletin, a rare natural flavonoid, as a virulence and LasR inhibitor against Pseudomonas aeruginosa. Various computational studies were utilized to explore the binding of Patuletin and LasR at a molecular level. Molecular docking revealed that Patuletin strongly interacted with the active pocket of LasR, with a high binding affinity value of -20.96 kcal/mol. Further molecular dynamics simulations, molecular mechanics generalized Born surface area (MM/GBSA), protein-ligand interaction profile (PLIP), and essential dynamics analyses confirmed the stability of the patuletin-LasR complex, and no significant structural changes were observed in the LasR protein upon binding. Key amino acids involved in binding were identified, along with a free energy value of -26.9 kcal/mol. In vitro assays were performed to assess patuletin's effects on P. aeruginosa. At a sub-inhibitory concentration (1/4 MIC), patuletin significantly reduced biofilm formation by 48% and 42%, decreased pyocyanin production by 24% and 14%, and decreased proteolytic activities by 42% and 20% in P. aeruginosa isolate ATCC 27853 (PA27853) and P. aeruginosa clinical isolate (PA1), respectively. In summary, this study demonstrated that patuletin effectively inhibited LasR activity in silico and attenuated virulence factors in vitro, including biofilm formation, pyocyanin production, and proteolytic activity. These findings suggest that patuletin holds promise as a potential therapeutic agent in combination with antibiotics to combat antibiotic-tolerant P. aeruginosa infections.


Assuntos
Biofilmes , Cromonas , Flavonas , Virulência , Pseudomonas aeruginosa , Percepção de Quorum , Simulação de Acoplamento Molecular , Piocianina/metabolismo , Flavonas/farmacologia
16.
Arch Microbiol ; 205(11): 355, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833514

RESUMO

Plant-beneficial fluorescent Pseudomonas species with concurrent P-solubilizing and biocontrol traits could have improved rhizospheric survival and efficacy; this rare ability being subject to diverse environmental and endogenous regulations. This study correlates growth patterns, time-course analysis of selected metabolites, non-targeted metabolomics of exometabolites and selected gene expression analysis to elucidate P-limitation-induced physiological shifts enabling co-production of metabolites implied in P-solubilization and biocontrol by P. aeruginosa P4 (P4). P-limited culture supernatants showed enhanced production of selected biocontrol metabolites such as pyocyanin, pyoverdine and pyochelin and IAA while maintaining biomass yield despite reduced growth rate and glucose consumption. Non-targeted exometabolomics further indicated that P-limitation positively impacted pentose phosphate pathway as well as pyruvate, C5-branched dibasic acid and amino acid metabolism. Its correlation with unusually reduced aroC expression and growth phase-dependent changes in the expression of key biosynthetic genes pchA, pchE, pchG, pvdQ and phzM implied a probable regulation of biosynthesis of chorismate-derived secondary metabolites, not neglecting the possibility of multiple factors influencing the gene expression profiles. Similar increase in biocontrol metabolite production was also observed in Artificial Root Exudates (ARE)-grown P4 cultures. While such metabolic flexibility could impart physiological advantage in sustaining P-starvation stress, it manifests as unique coexistence of P-solubilizing and biocontrol abilities.


Assuntos
Pseudomonas aeruginosa , Pseudomonas , Pseudomonas aeruginosa/metabolismo , Pseudomonas/genética , Pseudomonas/metabolismo , Perfilação da Expressão Gênica , Piocianina/metabolismo , Transcriptoma
17.
J Ethnopharmacol ; 317: 116783, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37321428

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: While the antimicrobial activity of a number of plants used in traditional Mayan medicine against infectious diseases has been documented, their potential to inhibit quorum sensing (QS) as means of discovering novel anti-virulence agents remains unexplored. AIM OF THE STUDY: To evaluate the anti-virulence potential of plants used in traditional Mayan medicine by determining their inhibition of QS- regulated virulence factors in Pseudomonas aeruginosa. METHODS: A group of plants used in traditional Mayan medicine against infectious diseases was selected, and their methanolic extracts were evaluated at 10 mg/mL for their antibacterial and anti-virulence activity using the reference strain P. aeruginosa PA14WT. The broth microdilution method was used to determine antibacterial activity (MIC), while anti-virulence activity was evaluated by measuring the anti-biofilm effect and the inhibition of pyocyanin and protease activities. The most bioactive extract was fractionated using a liquid-liquid partition procedure and the semipurified fractions were evaluated at 5 mg/mL for antibacterial and anti-virulence activity. RESULTS: Seventeen Mayan medicinal plants traditionally used to treat infection-associated diseases were selected. None of the extracts exhibited antibacterial activity, whereas anti-virulence activity was detected in extracts of Bonellia flammea, Bursera simaruba, Capraria biflora, Ceiba aesculifolia, Cissampelos pareira and Colubrina yucatanensis. The most active extracts (74% and 69% inhibition) against biofilm formation were from C. aesculifolia (bark) and C. yucatanensis (root), respectively. Alternatively, the extracts of B. flammea (root), B. simaruba (bark), C. pareira (root), and C. biflora (root), reduced pyocyanin and protease production (50-84% and 30-58%, respectively). Fractionation of the bioactive root extract of C. yucatanensis allowed the identification of two semipurified fractions with anti-virulence activity. CONCLUSIONS: The anti-virulence activity detected in the crude extracts of B. flammea, B. simaruba, C. biflora, C. aesculifolia, C. pareira, and C. yucatanensis, confirms the efficacy and traditional use of these medicinal plants against infectious diseases. The activity of the extract and semipurified fractions of C. yucatanensis indicates the presence of hydrophilic metabolites capable of interfering with QS in P. aeruginosa. This study represents the first report of Mayan medicinal plants with anti-QS properties and suggests they represent an important source of novel anti-virulence agents.


Assuntos
Infecções Bacterianas , Doenças Transmissíveis , Plantas Medicinais , Piocianina/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Percepção de Quorum , Biofilmes , Plantas Medicinais/metabolismo , Antibacterianos/farmacologia , Fatores de Virulência , Peptídeo Hidrolases , Pseudomonas aeruginosa
18.
Chemosphere ; 335: 139073, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37263512

RESUMO

Pseudomonas aeruginosa can produce pigments, which mediate external electron transfer (EET). Depending on the mediator, this species can be explored in bioelectrosystems to harvest energy or to obtain chemicals from residual organic compounds. This study has compared the performance of microbial fuel cells (MFCs) inoculated with a Pseudomonas aeruginosa isolate, namely EW603 or EW819, which produce pyocyanin and pyoverdine, respectively. The efficiency of these MFCs in glycerol, a typical residue of biodiesel production, were also compared. The MFCs exhibited different performances. The maximum voltage was 411 and 281 mV m2, the power density was 40.1 and 21.3 mW m-2, and the coulombic efficiency was 5.16 and 1.49% for MFC-EW603 and MFC-EW819, respectively. MFC-EW603 and MFC-EW819 achieved maximum current at 560 and 2200 Ω, at 141.2 and 91.3 mA m-2, respectively. When the system was operated at the respective maximum current output, MFC-EW603 consumed the total glycerol content (11 mmol L-1), and no products could be detected after 50 h. In turn, acetic and butyric acids were detected at the end of MFC-EW819 operation (75 h). The results suggested that P. aeruginosa metabolism can be steered in the MFC to generate current or microbial products depending on the pigment-producing strain and the conditions applied to the system, such as the external resistance. In addition, gene cluster pathways related to phenazine production (phzA and phzB) and other electrogenic-related genes (mexGHI-opmB) were identified in the strain genomes, supporting the findings. These results open new possibilities for using glycerol in bioelectrochemical systems.


Assuntos
Fontes de Energia Bioelétrica , Piocianina/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Pseudomonas , Glicerol/metabolismo , Eletrodos , Eletricidade
20.
J Invest Dermatol ; 143(10): 2052-2064.e5, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37044260

RESUMO

Repair of epithelial defect is complicated by infection and related metabolites. Pyocyanin (PYO) is one such metabolite that is secreted during Pseudomonas aeruginosa infection. Keratinocyte (KC) migration is required for the closure of skin epithelial defects. This work sought to understand PYO-KC interaction and its significance in tissue repair. Stable Isotope Labeling by Amino acids in Cell culture proteomics identified mitochondrial dysfunction as the top pathway responsive to PYO exposure in human KCs. Consistently, functional studies showed mitochondrial stress, depletion of reducing equivalents, and adenosine triphosphate. Strikingly, despite all stated earlier, PYO markedly accelerated KC migration. Investigation of underlying mechanisms revealed, to our knowledge, a previously unreported function of keratin 6A in KCs. Keratin 6A was PYO inducible and accelerated closure of epithelial defect. Acceleration of closure was associated with poor quality healing, including compromised expression of apical junction proteins. This work recognizes keratin 6A for its role in enhancing KC migration under conditions of threat posed by PYO. Qualitatively deficient junctional proteins under conditions of defensive acceleration of KC migration explain why an infected wound close with deficient skin barrier function as previously reported.


Assuntos
Queratina-6 , Piocianina , Humanos , Piocianina/química , Piocianina/metabolismo , Queratina-6/metabolismo , Pele/metabolismo , Mitocôndrias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA