RESUMO
The antiviral drugs favipiravir and oseltamivir are widely used to treat viral infections, including coronavirus 2019 (COVID-19), and their levels are expected to increase in the aquatic environment. In this study, the potential toxic and teratogenic effects of these drugs were evaluated using the frog embryo teratogenesis assay Xenopus (FETAX). In addition, glutathione S-transferase (GST), glutathione reductase (GR), catalase, carboxylesterase (CaE), and acetylcholinesterase (AChE) enzyme activities and malondialdehyde levels were measured as biochemical markers in embryos and tadpoles for comparative assessment of the sublethal effects of the test compounds. Prior to embryo exposure, drug concentrations in the exposure medium were measured with high-performance liquid chromatography. The 96-h median lethal concentration (LC50) was 137.9 and 32.3 mg/L for favipiravir and oseltamivir, respectively. The teratogenic index for favipiravir was 4.67. Both favipiravir and oseltamivir inhibited GR, CaE, and AChE activities in embryos, while favipiravir increased the GST and CaE activities in tadpoles. In conclusion, favipiravir, for which teratogenicity data are available in mammalian test organisms and human teratogenicity is controversial, inhibited Xenopus laevis embryo development and was teratogenic. In addition, sublethal concentrations of both drugs altered the biochemical responses in embryos and tadpoles, with differences between the developmental stages.
Assuntos
Amidas , Antivirais , Embrião não Mamífero , Desenvolvimento Embrionário , Oseltamivir , Xenopus laevis , Animais , Antivirais/toxicidade , Oseltamivir/toxicidade , Desenvolvimento Embrionário/efeitos dos fármacos , Amidas/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Pirazinas/toxicidade , COVID-19 , Tratamento Farmacológico da COVID-19 , SARS-CoV-2/efeitos dos fármacos , Larva/efeitos dos fármacos , Teratogênicos/toxicidade , Carboxilesterase/metabolismoRESUMO
Purpose: Favipiravir (FAV) used against COVID-19 is an antiviral drug that causes adverse reactions, such as hyperuricaemia, liver damage, and hematopoetic toxicity. The aim of the study was to investigate the systemic and ocular side-effects of FAV in rats, for the first time.Materials and methods: A total of 18 albino male Wistar rats were used in the study. The rats were divided into 3 groups as the healthy group (HG), the group given 50 mg/kg/day favipiravir (FAV50), and the group given 200 mg/kg/d favipiravir (FAV200). These doses were given to the experimental groups for one week. At the end of the experiment histopathological examinations were performed on the conjunctiva and sclera of the eye. In addition, malondialdehyde (MDA), total glutathione (tGSH), superoxide dismutase (SOD), interleukin-1ß (IL-1ß), and tumor necrosis factor alpha (TNF-α) levels were measured in blood samples taken from rats. Results: Compared to HG, the MDA (1.37 ± 0.61 vs. 4.82 ± 1.40 µmol/mL), IL-1ß (2.52 ± 1.14 vs. 6.67 ± 1.99 pg/mL), and TNF-α levels (3.28 ± 1.42 vs. 8.53 ± 3.06 pg/mL) of the FAV200 group were higher. The levels of tGSH (7.58 ± 1.98 vs. 2.50 ± 0.98 nmol/mL) and SOD (13.63 ± 3.43 vs. 3.81 ± 1.43 U/mL) the FAV200 group were lower than the HG (p < 0.05, for all). The degree of damage to the cornea and sclera of the FAV200 group was quite high according to HG (p < 0.001). Conclusions: FAV can cause damage to rat conjunctiva and sclera by increasing oxidant stress and inflammation at high dose.
Assuntos
Amidas , Antivirais , Pirazinas , Ratos Wistar , Animais , Masculino , Pirazinas/toxicidade , Pirazinas/administração & dosagem , Amidas/toxicidade , Ratos , Antivirais/toxicidade , Glutationa/metabolismo , Malondialdeído/metabolismo , Superóxido Dismutase/metabolismo , Olho/efeitos dos fármacos , Olho/patologia , Estresse Oxidativo/efeitos dos fármacos , Fator de Necrose Tumoral alfa/sangue , Interleucina-1beta/sangue , Túnica Conjuntiva/patologia , Túnica Conjuntiva/efeitos dos fármacosRESUMO
Favipiravir is a selective RNA polymerase inhibitor and a broad-spectrum antiviral drug, an important agent used in viral infections, including Ebola, Lassa, and COVID-19. This study aims to evaluate the potential toxicological effects of favipiravir administration on rats' liver and kidney tissues. Favipiravir was applied for five and ten days in the present study. During this period, it was aimed to determine possible toxic effects on the liver and kidney. For this purpose, the impact of favipiravir on liver and kidney tissues were examined using histopathologic and biochemical methods. The present study showed that favipiravir administration led to an elevation in the liver and kidney serum enzymes and oxidative and histopathologic damages. Favipiravir administration caused apoptotic cell death (Caspase-3 and Bcl-2), inflammation (NF-κB and IL-6), and a decrease in renal reabsorption (AQP2) levels. In the evaluation of the findings obtained in this study, it was determined that the favipiravir or metabolites caused liver and kidney damages.
Assuntos
Amidas , Antivirais , Rim , Fígado , Pirazinas , Animais , Ratos , Antivirais/farmacologia , Antivirais/toxicidade , Aquaporina 2 , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Amidas/farmacologia , Amidas/toxicidade , Pirazinas/farmacologia , Pirazinas/toxicidadeRESUMO
BACKGROUND: Entry inhibitors prevent the binding of human immunodeficiency virus protein to the chemokine receptor CXCR4 and are used along with conventional anti-HIV therapy. They aid in restoring immunity and can prevent the development of HIV-TB co-infection. AIMS: In the present study, various thiazolidinone-pyrazine derivatives earlier studied for NNRT inhibition activity were gauged for their entry inhibitor potential. OBJECTIVE: The objective of the study is to perform molecular docking, ADME, toxicity studies of some thiazolidinone-pyrazine derivatives as entry inhibitors targeting CXCR4 co-receptors. METHODS: In-silico docking studies were performed using AutoDock Vina software and compounds were further studied for ADME and toxicity using SwissADME and pkCSM software, respectively. RESULTS: Taking into consideration the docking results, pharmacokinetic behaviour and toxicity profile, four molecules (compounds 1, 9, 11, and 16) have shown potential as entry inhibitors. CONCLUSION: These compounds have shown potential as both NNRTI and entry inhibitors and hence can be used in management of immune compromised diseases like TB-HIV coinfection.
Assuntos
Inibidores da Fusão de HIV , Infecções por HIV , Inibidores da Fusão de HIV/farmacologia , Infecções por HIV/tratamento farmacológico , Humanos , Simulação de Acoplamento Molecular , Pirazinas/toxicidade , Receptores CXCR4/metabolismoRESUMO
OBJECTIVE: COVID-19 is a rapidly spreading disease and many people have been infected in a short time. Favipiravir is under investigation for the treatment of COVID-19 and given to patients in many countries following emergency use approval. Based on data from animal studies, favipiravir use is contraindicated during pregnancy. Currently, there is no human data except for a single case report on use of favipiravir in pregnancy. STUDY DESIGN: This article includes the outcomes of 29 pregnancies reported to the Clinical Pharmacology and Toxicology Unit regarding favipiravir use in pregnancy. For drug risk assessment, maternal characteristics were obtained at first contact. After the expected day of delivery, follow-up is conducted by phone call and all relevant data regarding pregnancy and newborn outcome were documented. RESULTS: Of the 29 pregnancies exposed to favipiravir, 5 were electively terminated and 24 resulted in live birth. There were no miscarriages or no stillbirths. There were 25 live births including one pair of twins. Three children were born premature, and one infant had patent foramen ovale. Birth weights, lengths and head circumferences of all infants were within normal range. CONCLUSION: The results of the study indicate that favipiravir is unlikely to be a major human teratogen, but experience is still limited for a well-grounded risk assessment. Although these findings may be useful for the physicians and patients, larger studies are needed due to small number of cases.
Assuntos
COVID-19 , Resultado da Gravidez , Amidas/toxicidade , Feminino , Humanos , Gravidez , Pirazinas/toxicidade , SARS-CoV-2RESUMO
Pyrazine-bipyrazole-based µ-oxo bridged dinuclear Au(III) complexes were synthesized and characterized by various spectrometric (1H-NMR, 13C (APT) NMR, FT-IR, Mass spectrometry) and analytical techniques (elemental analysis and conductance measurement). The evaluation of DNA binding activity by UV-Vis absorption spectra and viscosity measurement demonstrated that all the compounds intercalate in between the stacks of DNA base pair and the binding constant values were observed in the range of 5.4 × 104-2.17 × 105 M-1. The molecular docking study also supports the intercalation mode of binding. The anti-proliferation activity of complexes on A549 (Lung adenocarcinoma) cells by MTT assay demonstrated IC50 values in the range of 47.46 -298.12 µg/mL. The genotoxicity of compounds was checked by smearing observed in the DNA of S. pombe cell under the influence of complexes. The in vivo cytotoxicity of compounds against brine shrimp demonstrated the LC50 values in the range of 4.59-27.22 µg/mL. The promising results of the Au(III) complexes received significant attention and make them suitable for the new metallodrugs after the detailed mechanistic biological study.
Assuntos
Antineoplásicos , Complexos de Coordenação , Antineoplásicos/química , Complexos de Coordenação/química , Complexos de Coordenação/toxicidade , DNA/química , Simulação de Acoplamento Molecular , Pirazinas/toxicidade , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
Currently, limited therapeutic options are available for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). We have developed a set of pyrazine-based small molecules. A series of pyrazine conjugates was synthesized by microwave-assisted click chemistry and benzotriazole chemistry. All the synthesized conjugates were screened against the SAR-CoV-2 virus and their cytotoxicity was determined. Computational studies were carried out to validate the biological data. Some of the pyrazine-triazole conjugates (5 d-g) and (S)-N-(1-(benzo[d]thiazol-2-yl)-2-phenylethyl)pyrazine-2-carboxamide 12 i show significant potency against SARS-CoV-2 among the synthesized conjugates. The selectivity index (SI) of potent conjugates indicates significant efficacy compared to the reference drug (Favipiravir).
Assuntos
Antivirais/farmacologia , Pirazinas/farmacologia , SARS-CoV-2/efeitos dos fármacos , Amidas/farmacologia , Animais , Antivirais/síntese química , Antivirais/metabolismo , Antivirais/toxicidade , Chlorocebus aethiops , RNA-Polimerase RNA-Dependente de Coronavírus/metabolismo , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Estrutura Molecular , Pirazinas/síntese química , Pirazinas/metabolismo , Pirazinas/toxicidade , Relação Quantitativa Estrutura-Atividade , Células VeroRESUMO
Using a novel physiologically relevant in vitro human whole blood neutrophil shape change assay, an aminopyrazine series of selective PI3Kγ inhibitors was identified and prioritized for further optimization. Severe solubility limitations associated with the series leading to low oral bioavailability and poor exposures, especially at higher doses, were overcome by moving to an aminopyridine core. Compound 33, with the optimal balance of on-target activity, selectivity, and pharmacokinetic parameters, progressed into in vivo studies and demonstrated good efficacy (10 mg/kg) in a rat model of airway inflammation. Sufficient exposures were achieved at high doses to support toxicological studies, where unexpected inflammatory cell infiltrates in cardiovascular tissue prevented further compound development.
Assuntos
Aminopiridinas/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Inflamação/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Aminopiridinas/síntese química , Aminopiridinas/farmacocinética , Aminopiridinas/toxicidade , Animais , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/farmacocinética , Anti-Inflamatórios/toxicidade , Feminino , Humanos , Estrutura Molecular , Nível de Efeito Adverso não Observado , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/toxicidade , Pirazinas/síntese química , Pirazinas/farmacocinética , Pirazinas/uso terapêutico , Pirazinas/toxicidade , Ratos Sprague-Dawley , Relação Estrutura-AtividadeRESUMO
Activation of NLRP3 inflammasome is implicated in varieties of pathologies, the aim of the present study is to characterize the effect and mechanism of mitochondrial uncouplers on NLRP3 inflammasome activation by using three types of uncouplers, niclosamide, CCCP and BAM15. Niclosamide, CCCP and BAM15 inhibited LPS plus ATP-induced increases of NLRP3 protein and IL-1ß mRNA levels in RAW264.7 macrophages and THP-1 derived macrophages. Niclosamide, CCCP and BAM15 inhibited LPS plus ATP-induced increase of NFκB (P65) phosphorylation, and inhibited NFκB (P65) nuclear translocation in RAW264.7 macrophages. Niclosamide and BAM15 inhibited LPS-induced increase of IκBα phosphorylation in RAW264.7 macrophages, and the inhibitory effect was dependent on increased intracellular [Ca2+]i; however, CCCP showed no significant effect on IκBα phosphorylation in RAW264.7 macrophages stimulated with LPS. In conclusion, chemical mitochondrial uncouplers niclosamide, CCCP and BAM15 share common inhibitory effect on NLRP3 inflammasome activation through inhibiting NFκB nuclear translocation.
Assuntos
Inflamassomos/agonistas , Macrófagos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/agonistas , Desacopladores/toxicidade , Proteínas Quinases Ativadas por AMP/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Cálcio/metabolismo , Carbonil Cianeto m-Clorofenil Hidrazona/toxicidade , Citocinas/genética , Citocinas/metabolismo , Diaminas/toxicidade , Humanos , Inflamassomos/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Inibidor de NF-kappaB alfa/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Niclosamida/toxicidade , Oxidiazóis/toxicidade , Fosforilação , Pirazinas/toxicidade , Células RAW 264.7 , Células THP-1RESUMO
Inhibition of Bruton's tyrosine kinase (BTK) has revolutionized the treatment landscape for patients with chronic lymphocytic leukemia (CLL). By targeting this critical kinase in proximal B-cell receptor signaling, BTK inhibitors (BTKis) impair cell proliferation, migration, and activation of NF-κB. Clinically, because indefinite inhibition is a mainstay of therapy, there is an extended period of exposure in which adverse effects can develop. Given the impressive efficacy and activity of BTKis in the treatment of patients with CLL, appropriate management of treatment-emergent adverse events (AEs) is of paramount importance. Here we review the BTKi landscape and present the available toxicity and safety data for each agent. The long-term toxicity profile of ibrutinib, a first-in-class inhibitor, is well characterized and includes a clinically significant incidence of cardiac arrhythmias, bleeding, infection, diarrhea, arthralgias, and hypertension. Acalabrutinib, the initial second-generation BTKi to earn approval from the US Food and Drug Administration, demonstrates improved kinase selectivity for BTK, with commonly observed adverse reactions including infection, headache, and diarrhea. Mediated by both on-target inhibition of BTK and variable off-target inhibition of other kinases including interleukin-2-inducible T-cell kinase (ITK), tyrosine-protein kinase (TEC), and endothelial growth factor receptor (EGFR), the toxicity profile of BTKis is closely linked to their pattern of kinase binding. Other emerging BTKis include second-generation agents with variable degrees of kinase selectivity and third-generation agents that exhibit reversible noncovalent binding to BTK. We also highlight critical considerations for the prevention and monitoring of AEs and offer practical management strategies for treatment-emergent toxicities.
Assuntos
Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Inibidores de Proteínas Quinases/efeitos adversos , Adenina/efeitos adversos , Adenina/análogos & derivados , Adenina/toxicidade , Idoso , Animais , Arritmias Cardíacas/induzido quimicamente , Arritmias Cardíacas/terapia , Artralgia/induzido quimicamente , Artralgia/terapia , Benzamidas/efeitos adversos , Benzamidas/toxicidade , Diarreia/induzido quimicamente , Diarreia/terapia , Hemorragia/induzido quimicamente , Hemorragia/terapia , Humanos , Hipertensão/induzido quimicamente , Hipertensão/terapia , Controle de Infecções , Infecções/induzido quimicamente , Masculino , Piperidinas/efeitos adversos , Piperidinas/toxicidade , Inibidores de Proteínas Quinases/toxicidade , Pirazinas/efeitos adversos , Pirazinas/toxicidadeAssuntos
Bases de Dados Factuais , Perfumes , Pirazinas/química , Pirazinas/toxicidade , Sistema de Registros , Medição de Risco , Animais , HumanosRESUMO
MB-102 was designed for measurement of real-time glomerular filtration rate (GFR). Previously reported in vitro and in vivo nonclinical studies clearly demonstrated negligible toxicity, resulting in FDA clearance for First-in Human, proof of concept clinical studies. The next tier of safety and toxicity studies are reported herein. MB-102 did not demonstrate any phototoxic potential in a BALB/c 3T3 mouse fibroblast study. Co-administration of MB-102 and iohexol resulted in pharmacokinetic parameters virtually identical to the values observed upon individual administration in beagle dogs. A single dose of MB-102 administered either intravenously (18.6â¯mg/mL) or perivenously (0.25â¯mL) was well-tolerated in NZ white rabbits, with no adverse inflammation or irritation. MB-102 did not induce micronuclei in polychromatic erythrocytes for rat bone marrow cells treated up to 450â¯mg/kg/day, the maximum feasible dose. Two separate optical imaging studies demonstrated that MB-102 distributes rapidly and thoroughly throughout the test subjects, followed by rapid clearance from the body without any preferential localization in any particular tissue or organ, with the exception of the bladder, which is totally consistent with a known GFR agent. In addition, two-week repeat intravenous (once-daily) toxicity and toxicokinetic studies were conducted in rats and beagles, with no MB-102- related effects. Thus, for the studies reported herein, there were no toxicological effects of concern for MB-102.
Assuntos
Corantes Fluorescentes/toxicidade , Pirazinas/toxicidade , Animais , Células 3T3 BALB , Meios de Contraste/farmacocinética , Dermatite Fototóxica , Cães , Interações Medicamentosas , Feminino , Corantes Fluorescentes/farmacocinética , Taxa de Filtração Glomerular , Iohexol/farmacocinética , Masculino , Camundongos , Camundongos Nus , Testes para Micronúcleos , Pirazinas/farmacocinética , Coelhos , Ratos Sprague-DawleyRESUMO
Pyrazines are 1,4-diazabenzene-based volatile organic compounds and known for their broad-spectrum antimicrobial activity. In the present study, we assessed the antimicrobial activity of 2,5-bis(1-methylethyl)-pyrazine, produced by Paenibacillus sp. AD87 during co-culture with Burkholderia sp. AD24. In addition, we were using transcriptional reporter assays in E. coli and mammalian cells to decipher the possible mode of action. Bacterial and mammalian luciferase reporter strains were deployed to elucidate antimicrobial and toxicological effects of 2,5-bis(1-methylethyl)-pyrazine. At high levels of exposure, 2,5-bis(1-methylethyl)-pyrazine exerted strong DNA damage response. At lower concentrations, cell-wall damage response was observed. The activity was corroborated by a general toxicity reporter assay in E. coli ΔampD, defective in peptidoglycan turnover. The maximum E. coli cell-wall stress activity was measured at a concentration close to the onset of the mammalian cytotoxicity, while other adverse outcome pathways, such as the activation of aryl hydrocarbon and estrogenic receptor, the p53 tumour suppressor and the oxidative stress-related Nrf2 transcription factor, were induced at elevated concentrations compared to the response of mammalian cells. Because of its broad-spectrum antimicrobial activity at lower concentrations and the relatively low mammalian toxicity, 2,5-bis(1-methylethyl)-pyrazine is a potential bio-based fumigant with possible applications in food industry, agriculture or logistics.
Assuntos
Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Fungos/efeitos dos fármacos , Paenibacillus/química , Paenibacillus/metabolismo , Pirazinas/farmacologia , Anti-Infecciosos/toxicidade , Burkholderia/fisiologia , Linhagem Celular , Parede Celular/efeitos dos fármacos , Técnicas de Cocultura , Escherichia coli/genética , Interações Microbianas/fisiologia , Pirazinas/toxicidadeRESUMO
Ibrutinib and acalabrutinib are approved for B cell malignancies and novel Bruton's tyrosine kinase (Btk) inhibitors undergo clinical testing also in B cell-driven autoimmune disorders. Btk in platelets mediates platelet activation via glycoprotein (GP) VI, which is crucial for atherosclerotic plaque-induced platelet thrombus formation. This can be selectively inhibited by Btk inhibitors. Since patients on second-generation Btk inhibitors apparently show less bleeding than patients on ibrutinib, we compared the effects of ibrutinib and four novel irreversible Btk inhibitors on GPVI-dependent platelet aggregation in blood and in vitro bleeding time. Low concentrations of collagen which induced the same low degree of GPVI-mediated platelet aggregation as atherosclerotic plaque material were applied. IC50 values for collagen (0.2-0.5 µg/mL)-induced platelet aggregation after 15-minute pre-incubation were: ibrutinib 0.12 µM, BGB-3111 0.51 µM, acalabrutinib 1.21 µM, ONO/GS-4059 1.20 µM and evobrutinib 5.84 µM. Peak venous plasma concentrations of ibrutinib (0.5 µM), acalabrutinib (2 µM) and ONO/GS-4059 (2 µM) measured after anti-proliferative dosage inhibited collagen-induced platelet aggregation, but did not increase PFA-200 closure time on collagen/epinephrine. Closure times were moderately increased by 2- to 2.5-fold higher concentrations of these inhibitors, but not by BGB-3111 (1 µM) and evobrutinib (10 µM). Prolonging platelet drug exposure to 60 minutes lowered IC50 values of any Btk inhibitor for GPVI-mediated aggregation by several fold, and 5- to 10-fold below anti-proliferative therapeutic drug plasma levels. In conclusion, low blood concentrations of ibrutinib and the novel Btk inhibitors suffice for GPVI selective platelet inhibition relevant for atherothrombosis but do not impair primary haemostasis.
Assuntos
Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Benzamidas/farmacologia , Plaquetas/efeitos dos fármacos , Imidazóis/farmacologia , Piperidinas/farmacologia , Inibidores da Agregação Plaquetária/farmacologia , Glicoproteínas da Membrana de Plaquetas/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Pirazinas/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Adenina/análogos & derivados , Tirosina Quinase da Agamaglobulinemia/sangue , Benzamidas/toxicidade , Plaquetas/metabolismo , Relação Dose-Resposta a Droga , Hemorragia/sangue , Hemorragia/induzido quimicamente , Hemostasia/efeitos dos fármacos , Humanos , Imidazóis/toxicidade , Concentração Inibidora 50 , Piperidinas/toxicidade , Agregação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/toxicidade , Glicoproteínas da Membrana de Plaquetas/metabolismo , Pirazinas/toxicidade , Pirazóis/toxicidade , Pirimidinas/toxicidadeRESUMO
Hederagenin (He) is a novel triterpene template for the development of new antitumor compounds. In this study, 26 new Heâ»pyrazine derivatives were synthetized in an attempt to develop potent antitumor agents; they were screened for in vitro cytotoxicity against tumor and non-tumor cell lines. The majority of these derivatives showed much stronger cytotoxic activity than He. Remarkably, the most potent was compound 9 (half maximal inhibitory concentration (IC50) was 3.45 ± 0.59 µM), which exhibited similar antitumor activities against A549 (human non-small-cell lung cancer) as the positive drug cisplatin (DDP; IC50 was 3.85 ± 0.63 µM), while it showed lower cytotoxicity on H9c2 (murine heart myoblast; IC50 was 16.69 ± 0.12 µM) cell lines. Compound 9 could induce the early apoptosis and evoke cell-cycle arrest at the synthesis (S) phase of A549 cells. Impressively, we innovatively introduced the method of cluster analysis modeled as partial least squares discriminant analysis (PLS-DA) into the structureâ»activity relationship (SAR) evaluation, and SAR confirmed that pyrazine had a profound effect on the antitumor activity of He. The present studies highlight the importance of pyrazine derivatives of He in the discovery and development of novel antitumor agents.
Assuntos
Desenho de Fármacos , Ácido Oleanólico/análogos & derivados , Pirazinas/síntese química , Pirazinas/toxicidade , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Morte Celular , Linhagem Celular Tumoral , Forma Celular/efeitos dos fármacos , Análise por Conglomerados , Análise Discriminante , Humanos , Concentração Inibidora 50 , Análise dos Mínimos Quadrados , Ácido Oleanólico/síntese química , Ácido Oleanólico/química , Ácido Oleanólico/toxicidade , Análise de Componente Principal , Pirazinas/química , Coloração e Rotulagem , Relação Estrutura-AtividadeRESUMO
In our quest for new antibiotics able to address the growing threat of multidrug resistant infections caused by Gram-negative bacteria, we have investigated an unprecedented series of non-quinolone bacterial topoisomerase inhibitors from the Sanofi patrimony, named IPYs for imidazopyrazinones, as part of the Innovative Medicines Initiative (IMI) European Gram Negative Antibacterial Engine (ENABLE) organization. Hybridization of these historical compounds with the quinazolinediones, a known series of topoisomerase inhibitors, led us to a novel series of tricyclic IPYs that demonstrated potential for broad spectrum activity, in vivo efficacy, and a good developability profile, although later profiling revealed a genotoxicity risk. Resistance studies revealed partial cross-resistance with fluoroquinolones (FQs) suggesting that IPYs bind to the same region of bacterial topoisomerases as FQs and interact with at least some of the keys residues involved in FQ binding.
Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Imidazóis/farmacologia , Pirazinas/farmacologia , Quinazolinonas/farmacologia , Inibidores da Topoisomerase/farmacologia , Animais , Antibacterianos/síntese química , Antibacterianos/farmacocinética , Antibacterianos/toxicidade , Farmacorresistência Bacteriana/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Células Hep G2 , Humanos , Imidazóis/síntese química , Imidazóis/farmacocinética , Imidazóis/toxicidade , Masculino , Camundongos , Testes de Sensibilidade Microbiana , Pirazinas/síntese química , Pirazinas/farmacocinética , Pirazinas/toxicidade , Quinazolinonas/síntese química , Quinazolinonas/farmacocinética , Quinazolinonas/toxicidade , Inibidores da Topoisomerase/síntese química , Inibidores da Topoisomerase/farmacocinética , Inibidores da Topoisomerase/toxicidadeRESUMO
A series of optically pure (R)- and (S)-1,3,4,12a-tetrahydropyrazino[2,1-c][1,4]benzodiazepine-6,12(2H,11H)-dione derivatives was designed and synthesized as novel anthramycin analogues in a three-step, one-pot procedure, and tested for their antiproliferative activity on nine following cell lines: MV-4-11, UMUC-3, MDA-MB-231, MCF7, LoVo, HT-29, A-549, A2780 and BALB/3T3. The key structural features responsible for exhibition of cytotoxic effect were determined: the (S)-configuration of chiral center and the presence of hydrophobic 4-biphenyl substituent in the side chain. Introduction of bromine atom into the 8 position (8g) or substitution of dilactam ring with benzyl group (8m) further improved the activity and selectivity of investigated compounds. Among others, compound 8g exhibited selective cytotoxic effect against MV-4-11 (IC50â¯=â¯8.7⯵M) and HT-29 (IC50â¯=â¯17.8⯵M) cell lines, while 8m showed noticeable anticancer activity against MV-4-11 (IC50â¯=â¯10.8⯵M) and LoVo (IC50â¯=â¯11.0⯵M) cell lines. The cell cycle arrest in G1/S checkpoint and apoptosis associated with overproduction of reactive oxygen species was also observed for 8e and 8m.
Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Benzodiazepinonas/farmacologia , Pirazinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/toxicidade , Benzodiazepinonas/síntese química , Benzodiazepinonas/química , Benzodiazepinonas/toxicidade , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Humanos , Leucemia/tratamento farmacológico , Camundongos , Pirazinas/síntese química , Pirazinas/química , Pirazinas/toxicidade , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Estereoisomerismo , Relação Estrutura-AtividadeRESUMO
A sensitive, specific, selective and rapid LC-ESI-MS/MS method has been developed and validated for the quantification of defactinib in mice plasma using 13C3,15N-tofacitinib as an internal standard (I.S.). Sample preparation was accomplished through a liquid-liquid extraction process. Baseline chromatographic resolution of defactinib and the I.S. was achieved on an Atlantis dC18 column using an isocratic mobile phase comprising 0.2% formic acid in water and acetonitrile (25:75, v/v) delivered at a flow rate of 0.5mL/min. Defactinib and the I.S. eluted at â¼1.59 and 0.99min, respectively. The total chromatographic run time was 2.50min. A linear response function was established in the concentration range of 0.13-106 ng/mL. Method validation was performed as per regulatory guidelines and the results met the acceptance criteria. The intra- and inter-day accuracy and precision were in the range of 5.57-13.3 and 8.63-12.1%, respectively. Defactinib was found to be stable under various stability conditions. This novel method has been applied to a pharmacokinetic study in mice.