Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Cardiovasc Res ; 114(14): 1871-1882, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30032247

RESUMO

Aims: The prevalence of heart failure with a preserved ejection fraction (HFpEF) is increasing, but therapeutic options are limited. Oxidative stress is suggested to play an important role in the pathophysiology of HFpEF. However, whether oxidative stress is a bystander due to comorbidities or causative in itself remains unknown. Recent results have shown that depletion of 5-oxoprolinase (OPLAH) leads to 5-oxoproline accumulation, which is an important mediator of oxidative stress in the heart. We hypothesize that oxidative stress induced by elevated levels of 5-oxoproline leads to the onset of a murine HFpEF-like phenotype. Methods and results: Oplah full body knock-out (KO) mice had higher 5-oxoproline levels coupled to increased oxidative stress. Compared with wild-type (WT) littermates, KO mice had increased cardiac and renal fibrosis with concurrent elevated left ventricular (LV) filling pressures, impaired LV relaxation, yet a normal LV ejection fraction. Following the induction of cardiac ischaemia/reperfusion (IR) injury, 52.4% of the KO mice died compared with only 15.4% of the WT mice (P < 0.03). Furthermore, KO mice showed a significantly increased atrial, ventricular, kidney, and liver weights compared with WT mice (P < 0.05 for all). Cardiac and renal fibrosis were more pronounced following cardiac IR injury in the KO mice and these mice developed proteinuria post-IR injury. To further address the link between 5-oxoproline and HFpEF, 5-oxoproline was measured in the plasma of HFpEF patients. Compared with healthy controls (3.8 ± 0.6 µM), 5-oxoproline levels were significantly elevated in HFpEF patients (6.8 ± 1.9 µM, P < 0.0001). Furthermore, levels of 5-oxoproline were independently associated with more concentric remodelling on echocardiography. Conclusion: Oxidative stress induced by 5-oxoproline results in a murine phenotype reminiscent of the clinical manifestation of HFpEF without the need for surgical or pharmacological interference. Better understanding of the role of oxidative stress in HFpEF may potentially lead to novel therapeutic options.


Assuntos
Insuficiência Cardíaca/enzimologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Miocárdio/enzimologia , Piroglutamato Hidrolase/deficiência , Ácido Pirrolidonocarboxílico/metabolismo , Função Ventricular Esquerda , Pressão Ventricular , Remodelação Ventricular , Idoso , Idoso de 80 Anos ou mais , Animais , Estudos de Casos e Controles , Modelos Animais de Doenças , Feminino , Fibrose , Predisposição Genética para Doença , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio/patologia , Estresse Oxidativo , Fenótipo , Piroglutamato Hidrolase/genética , Ensaios Clínicos Controlados Aleatórios como Assunto , Transdução de Sinais
2.
Braz J Med Biol Res ; 51(3): e6853, 2018 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-29340523

RESUMO

Glutathione synthetase deficiency (GSSD) is a rare inborn error of glutathione metabolism with autosomal recessive inheritance. The severe form of the disease is characterized by acute metabolic acidosis, usually present in the neonatal period with hemolytic anemia and progressive encephalopathy. A case of a male newborn infant who had severe metabolic acidosis with high anion gap, hemolytic anemia, and hyperbilirubinemia is reported. A high level of 5-oxoproline was detected in his urine and a diagnosis of generalized GSSD was made. DNA sequence analysis revealed the infant to be compound heterozygous with two mutations, c.738dupG in exon 8 of GSS gene resulting in p.S247fs and a repetitive sequence in exon 3 of GSS gene. Treatment after diagnosis of GSSD included supplementation with antioxidants and oral sodium hydrogen bicarbonate. However, he maintained a variable degree of metabolic acidosis and succumbed shortly after his parents requested discontinuation of therapy because of dismal prognosis and medical futility when he was 18 days old.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/genética , Glutationa Sintase/deficiência , Mutação , Acidose/etiologia , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Ácido Glutâmico/análise , Glutationa Sintase/genética , Glutationa Sintase/metabolismo , Humanos , Recém-Nascido , Masculino , Piroglutamato Hidrolase/deficiência , Piroglutamato Hidrolase/genética , Análise de Sequência de DNA/métodos
3.
Braz. j. med. biol. res ; 51(3): e6853, 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-889048

RESUMO

Glutathione synthetase deficiency (GSSD) is a rare inborn error of glutathione metabolism with autosomal recessive inheritance. The severe form of the disease is characterized by acute metabolic acidosis, usually present in the neonatal period with hemolytic anemia and progressive encephalopathy. A case of a male newborn infant who had severe metabolic acidosis with high anion gap, hemolytic anemia, and hyperbilirubinemia is reported. A high level of 5-oxoproline was detected in his urine and a diagnosis of generalized GSSD was made. DNA sequence analysis revealed the infant to be compound heterozygous with two mutations, c.738dupG in exon 8 of GSS gene resulting in p.S247fs and a repetitive sequence in exon 3 of GSS gene. Treatment after diagnosis of GSSD included supplementation with antioxidants and oral sodium hydrogen bicarbonate. However, he maintained a variable degree of metabolic acidosis and succumbed shortly after his parents requested discontinuation of therapy because of dismal prognosis and medical futility when he was 18 days old.


Assuntos
Humanos , Masculino , Recém-Nascido , Erros Inatos do Metabolismo dos Aminoácidos/genética , Glutationa Sintase/deficiência , Mutação , Acidose/etiologia , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Ácido Glutâmico/análise , Glutationa Sintase/genética , Glutationa Sintase/metabolismo , Piroglutamato Hidrolase/deficiência , Piroglutamato Hidrolase/genética , Análise de Sequência de DNA/métodos
4.
Mol Genet Metab ; 119(1-2): 44-9, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27477828

RESUMO

Primary 5-oxoprolinuria (pyroglutamic aciduria) is caused by a genetic defect in the γ-glutamyl cycle, affecting either glutathione synthetase or 5-oxoprolinase. While several dozens of patients with glutathione synthetase deficiency have been reported, with hemolytic anemia representing the clinical key feature, 5-oxoprolinase deficiency due to OPLAH mutations is less frequent and so far has not attracted much attention. This has prompted us to investigate the clinical phenotype as well as the underlying genotype in patients from 14 families of various ethnic backgrounds who underwent diagnostic mutation analysis following the detection of 5-oxoprolinuria. In all patients with 5-oxoprolinuria studied, bi-allelic mutations in OPLAH were indicated. An autosomal recessive mode of inheritance for 5-oxoprolinase deficiency is further supported by the identification of a single mutation in all 9/14 parent sample sets investigated (except for the father of one patient whose result suggests homozygosity), and the absence of 5-oxoprolinuria in all tested heterozygotes. It is remarkable, that all 20 mutations identified were novel and private to the respective families. Clinical features were highly variable and in several sib pairs, did not segregate with 5-oxoprolinuria. Although a pathogenic role of 5-oxoprolinase deficiency remains possible, this is not supported by our findings. Additional patient ascertainment and long-term follow-up is needed to establish the benign nature of this inborn error of metabolism. It is important that all symptomatic patients with persistently elevated levels of 5-oxoproline and no obvious explanation are investigated for the genetic etiology.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/genética , Glutationa Sintase/deficiência , Piroglutamato Hidrolase/deficiência , Piroglutamato Hidrolase/genética , Ácido Pirrolidonocarboxílico/metabolismo , Adolescente , Alelos , Erros Inatos do Metabolismo dos Aminoácidos/enzimologia , Erros Inatos do Metabolismo dos Aminoácidos/fisiopatologia , Criança , Pré-Escolar , Feminino , Glutationa/metabolismo , Glutationa Sintase/genética , Heterozigoto , Homozigoto , Humanos , Lactente , Masculino , Mutação
5.
Brain Dev ; 37(10): 952-9, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25851806

RESUMO

OBJECTIVE: 5-Oxoprolinuria is a rare inherited metabolic disorder caused by a defective gamma-glutamyl cycle resulting from mutations in the genes encoding 5-oxoprolinase (OPLAH) and glutathione synthetase (GSS). No inherited 5-oxoprolinuria case has been reported in mainland China until now. In this study, clinical, biochemical, and genetic aspects of five Chinese 5-oxoprolinuria patients with OPLAH or GSS gene mutations were investigated. METHODS: Three boys and two girls from five unrelated Chinese families with symptomatic 5-oxoprolinuria were identified within the past 3years in Peking University First Hospital. OPLAH and GSS genes were analyzed. RESULTS: Patients were hospitalized between the age of 13days to 1year and 3months for hypersomnia, developmental retardation, feeding deficiency, vomiting, icterus and recurrent pneumonia. All patients had significantly elevated urine 5-oxoproline. Three novel mutations (c.1904G>A and c.2813_2815delGGG in Patient 1, c.2978G>T in Patient 2) on OPLAH, on GSS, one novel mutation (c.1252C>T in Patient 3) and a reported mutation (c.491G>A in Patients 3-5) were detected. Patient 4 has homozygous mutation c.491G>A, the others are heterozygous. After treatment by l-carnitine, vitamin E, B1, B2 and coenzyme Q10, three patients with GSS deficiency improved, but the two 5-oxoprolinase-deficient patients did not respond to treatment. CONCLUSIONS: 5-Oxoprolinase deficiency and GSS deficiency share some clinical and biochemical features. Genetic analysis is important for the deferential diagnosis. In this study, five Chinese patients had severe central nervous system damage. Antioxidant treatments were proved effective for the three patients with GSS deficiency but not for the two patients with 5-oxoprolinase deficiency.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/urina , Glutationa Sintase/deficiência , Hidroxiprolina/urina , Piroglutamato Hidrolase/deficiência , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Povo Asiático , Estudos de Casos e Controles , Pré-Escolar , China , Feminino , Predisposição Genética para Doença , Glutationa Sintase/genética , Glutationa Sintase/metabolismo , Glutationa Sintase/urina , Humanos , Lactente , Recém-Nascido , Masculino , Mutação , Piroglutamato Hidrolase/genética , Piroglutamato Hidrolase/metabolismo , Piroglutamato Hidrolase/urina
6.
Eur J Pediatr ; 174(3): 407-11, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25129617

RESUMO

UNLABELLED: Inherited 5-oxoprolinase (OPLAH) deficiency is a rare inborn condition characterised by 5-oxoprolinuria. To date, three OPLAH mutations have been described: p.H870Pfs in a homozygous state, which results in a truncated protein, was reported in two siblings, and two heterozygous missense changes, p.S323R and p.V1089I, were independently identified in two unrelated patients. We describe the clinical context of a young girl who manifested 5-oxoprolinuria together with dusky episodes and who is compound heterozygote for two novel OPLAH variations: p.G860R and p.D1241V. To gain insight into the aetiology of the 5-oxoprolinase deficiency, we investigated the pathogenicity of all the reported missense mutations in the OPLAH gene. A yeast in vivo growth assay revealed that only p.S323R, p.G860R and p.D1241V affected the activity of the enzyme. CONCLUSION: Taken together, this report further suggests that hereditary 5-oxoprolinase deficiency is a benign biochemical condition caused by mutations in the OPLAH gene, which are transmitted in an autosomal recessive manner, but 5-oxoprolinuria may be a chance association in other disorders.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/genética , Mutação de Sentido Incorreto , Piroglutamato Hidrolase/deficiência , Feminino , Genes Recessivos , Predisposição Genética para Doença , Heterozigoto , Humanos , Lactente , Piroglutamato Hidrolase/genética
8.
Clin Genet ; 82(2): 193-6, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21651516

RESUMO

Gamma-glutamyl cycle is a six-enzyme cycle that represents the primary pathway for glutathione synthesis and degradation. 5-Oxoprolinase deficiency is an extremely rare disorder of the gamma-glutamyl cycle with only eight patients reported to date. Debate continues as to whether this is a benign biochemical defect because of the heterogeneity of the clinical presentation which ranges from normal to significant neurological involvement. Here, we report the first molecularly characterized patients with 5-oxoprolinase deficiency due to a mutation in OPLAH (which encodes 5-oxoprolinase). The largely benign clinical course of the patients described herein despite persistent 5-oxoprolinuria highlights the importance of establishing a molecular diagnosis in the few cases with abnormal neurological outcome to exclude potentially overlapping biochemical defects and to explore potential genotype/phenotype correlation.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/genética , Mutação , Piroglutamato Hidrolase/genética , Sequência de Bases , Mutação da Fase de Leitura , Heterozigoto , Humanos , Lactente , Masculino , Piroglutamato Hidrolase/deficiência
9.
Orphanet J Rare Dis ; 2: 16, 2007 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-17397529

RESUMO

Glutathione is a tripeptide composed of glutamate, cysteine and glycine. Glutathione is present in millimolar concentrations in most mammalian cells and it is involved in several fundamental biological functions, including free radical scavenging, detoxification of xenobiotics and carcinogens, redox reactions, biosynthesis of DNA, proteins and leukotrienes, as well as neurotransmission/neuromodulation. Glutathione is metabolised via the gamma-glutamyl cycle, which is catalyzed by six enzymes. In man, hereditary deficiencies have been found in five of the six enzymes. Glutathione synthetase deficiency is the most frequently recognized disorder and, in its severe form, it is associated with hemolytic anemia, metabolic acidosis, 5-oxoprolinuria, central nervous system (CNS) damage and recurrent bacterial infections. Gamma-glutamylcysteine synthetase deficiency is also associated with hemolytic anemia, and some patients with this disorder show defects of neuromuscular function and generalized aminoaciduria. Gamma-glutamyl transpeptidase deficiency has been found in patients with CNS involvement and glutathionuria. 5-Oxoprolinase deficiency is associated with 5-oxoprolinuria but without a clear association with other symptoms. Dipeptidase deficiency has been described in one patient. All disorders are very rare and inherited in an autosomal recessive manner. Most of the mutations are leaky so that many patients have residual enzyme activity. Diagnosis is made by measuring the concentration of different metabolites in the gamma-glutamyl cycle, enzyme activity and in glutathione synthetase and gamma-glutamylcysteine synthetase deficiency, also by mutation analysis. Prenatal diagnosis has been preformed in glutathione synthetase deficiency. The prognosis is difficult to predict, as few patients are known, but seems to vary significantly between different patients. The aims of the treatment of glutathione synthesis defects are to avoid hemolytic crises and to increase the defense against reactive oxygen species. No treatment has been recommended for gamma-glutamyl transpeptidase, 5-oxoprolinase and dipeptidase deficiency.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/terapia , Glutationa/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/genética , Animais , Diagnóstico Diferencial , Dipeptidases/deficiência , Testes Genéticos/métodos , Glutationa Sintase/deficiência , Humanos , Prognóstico , Piroglutamato Hidrolase/deficiência , gama-Glutamiltransferase/deficiência
10.
Eur J Pediatr ; 158(3): 221-5, 1999 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-10094443

RESUMO

UNLABELLED: In patients with defects in the synthesis, breakdown and metabolism of glutathione (GSH), like glutathione synthetase deficiency (GSD) and 5-oxoprolinase deficiency, urinary excretion of 5-oxoproline, an intermediate of the gamma-glutamyl cycle, is increased. We identified 20 patients with significantly elevated urinary excretion of 5-oxoproline (> or =150 mmol/mol creatinine) during 5 years of selective screening for organic acidurias. In 6 of them, 5-oxoprolinuria was a constant finding including three patients with GSD and one with 5-oxoprolinase deficiency. One patient with constant 5-oxoprolinuria had GM2 gangliosidosis and one was clinically unaffected. In 14 patients, 5-oxoprolinuria was a transient abnormality and most often associated with an inborn error of metabolism outside the gamma-glutamyl cycle. In 9 of them 5-oxoprolinuria was associated with a neonatal urea cycle defect, with tyrosinaemia type I or occurred during metabolic decompensation in propionic acidaemia or methylmalonic acidaemia. Additionally, transient 5-oxoprolinuria was associated with homocystinuria, Stevens-Johnson syndrome, paracetamol intoxication, vigabatrin medication or extreme prematurity. CONCLUSION: 5-Oxoprolinuria is a more common condition than hitherto thought and is primarily associated with defects in the gamma-glutamyl cycle. However, several other inborn errors of metabolism and pathophysiological conditions must be taken into account when discovering 5-oxoprolinuria.


Assuntos
Glutationa Sintase/deficiência , Glutationa/metabolismo , Erros Inatos do Metabolismo/urina , Piroglutamato Hidrolase/deficiência , Ácido Pirrolidonocarboxílico/urina , Adolescente , Adulto , Criança , Pré-Escolar , Humanos , Lactente
11.
Chem Biol Interact ; 111-112: 113-21, 1998 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-9679548

RESUMO

In the gamma-glutamyl cycle, hereditary defects have been described in four of the six enzymes namely: gamma-GC synthetase; GSH synthetase; gamma-glutamyl transpeptidase and 5-oxoprolinase. Mutants are still to be found in gamma-glutamyl cyclotransferase and in the dipeptidase. Deficiency of GSH synthatase or gamma-GC synthetases results in low levels of GSH. In gamma-GC synthetase deficiency hemolytic anemia is the most prominent symptom, with or without hepatosplenomegaly. In generalized GSH synthetase deficiency 5-oxoproline is overproduced due to lack of feedback inhibition of gamma-GC synthetase. These patients have metabolic acidosis, 5-oxoprolinuria, hemolytic anemia and about 50% of them also have progressive neurological symptoms. Treatment includes acidosis correction, high doses of vitamin E and C and avoidance of drugs precipitating hemolytic crises in G6PD deficiency. Therapeutic trials with GSH analogues, N-acetylcysteine and GSH esters have been carried out. Glutathione synthetase deficiency restricted to erythrocytes results in hemolytic anemia but no 5-oxoprolinuria. gamma-Glutamyl transpeptidase deficiency is associated with GSH-emia and GSH-uria whereas 5-oxoprolinase deficiency is associated with 5-oxoprolinuria. In diagnostic work it must be emphasized that erythrocytes contain an incomplete gamma-glutamyl cycle; they lack both gamma-glutamyl transpeptidase and 5-oxoprolinase and these enzyme activities must therefore be analyzed in other types of cells such as leukocytes and fibroblasts. It is also important to investigate other patients with inherited defects in the gamma-glutamyl cycle to learn more about the biological role of GSH in man.


Assuntos
Glutationa/genética , Glutationa/metabolismo , Erros Inatos do Metabolismo/genética , Erros Inatos do Metabolismo/metabolismo , Mutação , Eritrócitos/enzimologia , Feminino , Glutamato-Cisteína Ligase/deficiência , Glutamato-Cisteína Ligase/genética , Glutationa Sintase/deficiência , Glutationa Sintase/genética , Humanos , Masculino , Piroglutamato Hidrolase/deficiência , Piroglutamato Hidrolase/genética , gama-Glutamiltransferase/deficiência , gama-Glutamiltransferase/genética
13.
Eur J Pediatr ; 156(12): 935-8, 1997 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-9453376

RESUMO

UNLABELLED: Two female siblings, born to consanguineous parents, presented with a similar phenotype characterized by severe growth and developmental failure, dysmorphic features, thyroid and gonadal dysfunction, autistic traits and hand stereotypes resembling Rett syndrome. In the elder patient, analysis of urinary organic acids disclosed a very high excretion of 5-oxoproline (4.2 to 8.1 mol/mol creatinine) and enzyme assays of leucocyte extracts revealed a profound deficiency of 5-oxoprolinase. However, normal urinary organic acid profiles were found in the younger child. In view of their distinct dysmorphic features and severe growth deficiency, these siblings cannot be considered as Rett Syndrome variants. The Dubowitz and carbohydrate-deficient glycoprotein syndromes were also excluded clinically and biochemically respectively. We conclude that these patients suffer from a hitherto undescribed autosomal recessive disorder, unrelated to the 5-oxoprolinase deficiency of the elder sib. CONCLUSION: The present findings give evidence that 5-oxoprolinase deficiency is not associated with a distinct morbid phenotype.


Assuntos
Erros Inatos do Metabolismo , Piroglutamato Hidrolase/deficiência , Síndrome , Encefalopatias/enzimologia , Encefalopatias/genética , Consanguinidade , Doenças do Sistema Endócrino/enzimologia , Doenças do Sistema Endócrino/genética , Feminino , Transtornos do Crescimento/enzimologia , Transtornos do Crescimento/genética , Humanos , Lactente , Erros Inatos do Metabolismo/enzimologia , Erros Inatos do Metabolismo/genética , Erros Inatos do Metabolismo/fisiopatologia , Fenótipo
16.
Clin Chem ; 40(7 Pt 1): 1245-50, 1994 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-8013094

RESUMO

Although spin-echo techniques are often used to obtain 1H-NMR spectra of serum or plasma samples, they do not provide reliable quantitative analyses of metabolites. We present a standardized procedure, optimized for sensitivity, for using single-pulse 1H-NMR spectroscopy to analyze deproteinized plasma. The detection limit for various metabolites ranges between 2 and 40 mumol/L. The method allows quantitative analysis of many compounds of interest in studies of inborn errors of metabolism, including betaine and dimethylglycine, which cannot be measured easily with other techniques. For lactate, tyrosine, threonine, and alanine, we obtained results that correlated well with those obtained by established techniques. We also present a library containing resonance positions of 38 compounds occurring in plasma samples in health and disease, including 14 as-yet-unidentified resonances. As an example of the diagnostic power of the technique we show a spectrum of a plasma sample from a patient with 5-oxoprolinuria (pyroglutamic aciduria; McKusick 266130), an enzymatic defect in glutathione biosynthesis.


Assuntos
Análise Química do Sangue/métodos , Espectroscopia de Ressonância Magnética/métodos , Análise Química do Sangue/estatística & dados numéricos , Glutationa Sintase/deficiência , Humanos , Masculino , Erros Inatos do Metabolismo/sangue , Piroglutamato Hidrolase/deficiência , Ácido Pirrolidonocarboxílico/sangue , Ácido Pirrolidonocarboxílico/urina , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
20.
Acta Paediatr Scand ; 70(3): 301-8, 1981.
Artigo em Inglês | MEDLINE | ID: mdl-6113726

RESUMO

Two brothers, aged 16 and 11 years, had recurrent episodes of vomiting, diarrhoea and abdominal pain, starting in infancy. In spite of extensive investigations no cause of their enterocolitis could be established. After several years symptomatic treatment was discontinued without any recurrence of symptoms. Their father and several paternal relatives have had kidney stones. Both boys developed urolithiasis and an oxalate-containing stone was removed from the elder brother's kidney. He had no hypercalciuria. His glomerular and tubular function tests were normal. Gas chromatography of urine from both brothers revealed massive excretion of L-5-oxoproline (pyroglutamic acid). Glutathione levels in erythrocytes of both patients were normal. The activities of enzymes of the gamma-glutamyl cycle were analysed in erythrocytes, leukocytes and cultured skin fibroblasts. The level of glutathione synthetase was normal, as was the affinity of this enzyme for its substrate gamma-glutamyl-cysteine. Feedback inhibition of gamma-glutamyl-cysteine synthetase by glutathione was also normal. Both patients had a specific deficiency of 5-oxoprolinase, the activity of which was 2-4% of that of control subjects. Their parents had intermediate 5-oxoprolinase activities in fibroblasts, indicating a recessive mode of inheritance. Thus, 5-oxoprolinuria in these two patients was due to a lack of 5-oxoprolinase, i.e., a new inborn error in the gamma-glutamyl cycle.


Assuntos
Amidoidrolases/deficiência , Glutationa/metabolismo , Piroglutamato Hidrolase/deficiência , Pirrolidinonas/urina , Ácido Pirrolidonocarboxílico/urina , Adolescente , Erros Inatos do Metabolismo dos Aminoácidos/genética , Criança , Glutamato-Cisteína Ligase/antagonistas & inibidores , Glutationa Sintase/metabolismo , Humanos , Masculino , Piroglutamato Hidrolase/genética , gama-Glutamilciclotransferase/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA