Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 233
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(19): e2311685121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38683994

RESUMO

Neural crest cells exemplify cellular diversification from a multipotent progenitor population. However, the full sequence of early molecular choices orchestrating the emergence of neural crest heterogeneity from the embryonic ectoderm remains elusive. Gene-regulatory-networks (GRN) govern early development and cell specification toward definitive neural crest. Here, we combine ultradense single-cell transcriptomes with machine-learning and large-scale transcriptomic and epigenomic experimental validation of selected trajectories, to provide the general principles and highlight specific features of the GRN underlying neural crest fate diversification from induction to early migration stages using Xenopus frog embryos as a model. During gastrulation, a transient neural border zone state precedes the choice between neural crest and placodes which includes multiple converging gene programs. During neurulation, transcription factor connectome, and bifurcation analyses demonstrate the early emergence of neural crest fates at the neural plate stage, alongside an unbiased multipotent-like lineage persisting until epithelial-mesenchymal transition stage. We also decipher circuits driving cranial and vagal neural crest formation and provide a broadly applicable high-throughput validation strategy for investigating single-cell transcriptomes in vertebrate GRNs in development, evolution, and disease.


Assuntos
Crista Neural , Análise de Célula Única , Xenopus laevis , Animais , Crista Neural/citologia , Crista Neural/metabolismo , Análise de Célula Única/métodos , Xenopus laevis/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Movimento Celular , Redes Reguladoras de Genes , Transcriptoma , Gastrulação , Placa Neural/metabolismo , Placa Neural/embriologia , Placa Neural/citologia , Transição Epitelial-Mesenquimal/genética , Embrião não Mamífero/metabolismo , Embrião não Mamífero/citologia , Neurulação/genética , Neurulação/fisiologia , Diferenciação Celular
2.
Proc Natl Acad Sci U S A ; 119(20): e2117075119, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35561223

RESUMO

Neurulation is the process in early vertebrate embryonic development during which the neural plate folds to form the neural tube. Spinal neural tube folding in the posterior neuropore changes over time, first showing a median hinge point, then both the median hinge point and dorsolateral hinge points, followed by dorsolateral hinge points only. The biomechanical mechanism of hinge point formation in the mammalian neural tube is poorly understood. Here we employ a mechanical finite element model to study neural tube formation. The computational model mimics the mammalian neural tube using microscopy data from mouse and human embryos. While intrinsic curvature at the neural plate midline has been hypothesized to drive neural tube folding, intrinsic curvature was not sufficient for tube closure in our simulations. We achieved neural tube closure with an alternative model combining mesoderm expansion, nonneural ectoderm expansion, and neural plate adhesion to the notochord. Dorsolateral hinge points emerged in simulations with low mesoderm expansion and zippering. We propose that zippering provides the biomechanical force for dorsolateral hinge point formation in settings where the neural plate lateral sides extend above the mesoderm. Together, these results provide a perspective on the biomechanical and molecular mechanism of mammalian spinal neurulation.


Assuntos
Tubo Neural , Neurulação , Animais , Ectoderma/embriologia , Humanos , Camundongos , Placa Neural/embriologia , Tubo Neural/embriologia , Neurulação/fisiologia , Notocorda/embriologia
3.
Elife ; 112022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35088714

RESUMO

The epiblast of vertebrate embryos is comprised of neural and non-neural ectoderm, with the border territory at their intersection harboring neural crest and cranial placode progenitors. Here, we a generate single-cell atlas of the developing chick epiblast from late gastrulation through early neurulation stages to define transcriptional changes in the emerging 'neural plate border' as well as other regions of the epiblast. Focusing on the border territory, the results reveal gradual establishment of heterogeneous neural plate border signatures, including novel genes that we validate by fluorescent in situ hybridization. Developmental trajectory analysis infers that segregation of neural plate border lineages only commences at early neurulation, rather than at gastrulation as previously predicted. We find that cells expressing the prospective neural crest marker Pax7 contribute to multiple lineages, and a subset of premigratory neural crest cells shares a transcriptional signature with their border precursors. Together, our results suggest that cells at the neural plate border remain heterogeneous until early neurulation, at which time progenitors become progressively allocated toward defined neural crest and placode lineages. The data also can be mined to reveal changes throughout the developing epiblast.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Crista Neural/embriologia , Placa Neural/embriologia , Neurulação/fisiologia , Animais , Embrião de Galinha/citologia , Galinhas/fisiologia , Camadas Germinativas/fisiologia , Hibridização in Situ Fluorescente , Fator de Transcrição PAX7/análise
4.
Dev Biol ; 483: 66-75, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34968443

RESUMO

In recent years CRISPR-Cas9 knockouts (KO) have become increasingly ultilised to study gene function. MicroRNAs (miRNAs) are short non-coding RNAs, 20-22 nucleotides long, which affect gene expression through post-transcriptional repression. We previously identified miRNAs-196a and -219 as implicated in the development of Xenopus neural crest (NC). The NC is a multipotent stem-cell population, specified during early neurulation. Following EMT, NC cells migrate to various points in the developing embryo where they give rise to a number of tissues including parts of the peripheral nervous system, pigment cells and craniofacial skeleton. Dysregulation of NC development results in many diseases grouped under the term neurocristopathies. As miRNAs are so small, it is difficult to design CRISPR sgRNAs that reproducibly lead to a KO. We have therefore designed a novel approach using two guide RNAs to effectively 'drop out' a miRNA. We have knocked out miR-196a and miR-219 and compared the results to morpholino knockdowns (KD) of the same miRNAs. Validation of efficient CRISPR miRNA KO and phenotype analysis included use of whole-mount in situ hybridization of key NC and neural plate border markers such as Pax3, Xhe2, Sox10 and Snail2, q-RT-PCR and Sanger sequencing. To show specificity we have also rescued the knockout phenotype using miRNA mimics. MiRNA-219 and miR-196a KO's both show loss of NC, altered neural plate and hatching gland phenotypes. Tadpoles show gross craniofacial and pigment phenotypes.


Assuntos
Sistemas CRISPR-Cas , Técnicas de Inativação de Genes/métodos , MicroRNAs/genética , Xenopus laevis/embriologia , Xenopus laevis/genética , Animais , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes/métodos , Hibridização In Situ/métodos , Morfolinos/genética , Crista Neural/embriologia , Crista Neural/metabolismo , Placa Neural/embriologia , Placa Neural/metabolismo , Neurulação/genética , Fenótipo , RNA Guia de Cinetoplastídeos/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma/genética , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
5.
Nature ; 599(7884): 268-272, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34707290

RESUMO

Understanding human organ formation is a scientific challenge with far-reaching medical implications1,2. Three-dimensional stem-cell cultures have provided insights into human cell differentiation3,4. However, current approaches use scaffold-free stem-cell aggregates, which develop non-reproducible tissue shapes and variable cell-fate patterns. This limits their capacity to recapitulate organ formation. Here we present a chip-based culture system that enables self-organization of micropatterned stem cells into precise three-dimensional cell-fate patterns and organ shapes. We use this system to recreate neural tube folding from human stem cells in a dish. Upon neural induction5,6, neural ectoderm folds into a millimetre-long neural tube covered with non-neural ectoderm. Folding occurs at 90% fidelity, and anatomically resembles the developing human neural tube. We find that neural and non-neural ectoderm are necessary and sufficient for folding morphogenesis. We identify two mechanisms drive folding: (1) apical contraction of neural ectoderm, and (2) basal adhesion mediated via extracellular matrix synthesis by non-neural ectoderm. Targeting these two mechanisms using drugs leads to morphological defects similar to neural tube defects. Finally, we show that neural tissue width determines neural tube shape, suggesting that morphology along the anterior-posterior axis depends on neural ectoderm geometry in addition to molecular gradients7. Our approach provides a new route to the study of human organ morphogenesis in health and disease.


Assuntos
Morfogênese , Tubo Neural/anatomia & histologia , Tubo Neural/embriologia , Técnicas de Cultura de Órgãos/métodos , Ectoderma/citologia , Ectoderma/embriologia , Humanos , Modelos Biológicos , Placa Neural/citologia , Placa Neural/embriologia , Tubo Neural/citologia , Defeitos do Tubo Neural/embriologia , Defeitos do Tubo Neural/patologia , Regeneração , Células-Tronco/citologia
6.
Mol Cells ; 44(10): 723-735, 2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34711690

RESUMO

Spemann organizer is a center of dorsal mesoderm and itself retains the mesoderm character, but it has a stimulatory role for neighboring ectoderm cells in becoming neuroectoderm in gastrula embryos. Goosecoid (Gsc) overexpression in ventral region promotes secondary axis formation including neural tissues, but the role of gsc in neural specification could be indirect. We examined the neural inhibitory and stimulatory roles of gsc in the same cell and neighboring cells contexts. In the animal cap explant system, Gsc overexpression inhibited expression of neural specific genes including foxd4l1.1, zic3, ncam, and neurod. Genome-wide chromatin immunoprecipitation sequencing (ChIP-seq) and promoter analysis of early neural genes of foxd4l1.1 and zic3 were performed to show that the neural inhibitory mode of gsc was direct. Site-directed mutagenesis and serially deleted construct studies of foxd4l1.1 promoter revealed that Gsc directly binds within the foxd4l1.1 promoter to repress its expression. Conjugation assay of animal cap explants was also performed to demonstrate an indirect neural stimulatory role for gsc. The genes for secretory molecules, Chordin and Noggin, were up-regulated in gsc injected cells with the neural fate only achieved in gsc uninjected neighboring cells. These experiments suggested that gsc regulates neuroectoderm formation negatively when expressed in the same cell and positively in neighboring cells via soluble factors. One is a direct suppressive circuit of neural genes in gsc expressing mesoderm cells and the other is an indirect stimulatory circuit for neurogenesis in neighboring ectoderm cells via secreted BMP antagonizers.


Assuntos
Proteína Goosecoid/metabolismo , Placa Neural/embriologia , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriologia , Animais
7.
Biol Open ; 10(7)2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34259326

RESUMO

Coordinated polarization of cells in the tissue plane, known as planar cell polarity (PCP), is associated with a signaling pathway critical for the control of morphogenetic processes. Although the segregation of PCP components to opposite cell borders is believed to play a critical role in this pathway, whether PCP derives from egg polarity or preexistent long-range gradient, or forms in response to a localized cue, remains a challenging question. Here we investigate the Xenopus neural plate, a tissue that has been previously shown to exhibit PCP. By imaging Vangl2 and Prickle3, we show that PCP is progressively acquired in the neural plate and requires a signal from the posterior region of the embryo. Tissue transplantations indicated that PCP is triggered in the neural plate by a planar cue from the dorsal blastopore lip. The PCP cue did not depend on the orientation of the graft and was distinct from neural inducers. These observations suggest that neuroectodermal PCP is not instructed by a preexisting molecular gradient but induced by a signal from the dorsal blastopore lip.


Assuntos
Polaridade Celular/fisiologia , Gástrula/embriologia , Morfogênese/fisiologia , Placa Neural/embriologia , Xenopus/embriologia , Animais , Transdução de Sinais
8.
Dev Biol ; 478: 59-75, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34029538

RESUMO

Morphogenesis of the vertebrate neural tube occurs by elongation and bending of the neural plate, tissue shape changes that are driven at the cellular level by polarized cell intercalation and cell shape changes, notably apical constriction and cell wedging. Coordinated cell intercalation, apical constriction, and wedging undoubtedly require complex underlying cytoskeletal dynamics and remodeling of adhesions. Mutations of the gene encoding Scribble result in neural tube defects in mice, however the cellular and molecular mechanisms by which Scrib regulates neural cell behavior remain unknown. Analysis of Scribble mutants revealed defects in neural tissue shape changes, and live cell imaging of mouse embryos showed that the Scrib mutation results in defects in polarized cell intercalation, particularly in rosette resolution, and failure of both cell apical constriction and cell wedging. Scrib mutant embryos displayed aberrant expression of the junctional proteins ZO-1, Par3, Par6, E- and N-cadherins, and the cytoskeletal proteins actin and myosin. These findings show that Scribble has a central role in organizing the molecular complexes regulating the morphomechanical neural cell behaviors underlying vertebrate neurulation, and they advance our understanding of the molecular mechanisms involved in mammalian neural tube closure.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/genética , Defeitos do Tubo Neural/embriologia , Tubo Neural/embriologia , Animais , Polaridade Celular , Forma Celular , Proteínas do Citoesqueleto , Expressão Gênica , Junções Intercelulares/metabolismo , Junções Intercelulares/ultraestrutura , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Morfogênese , Mutação , Proteínas do Tecido Nervoso/genética , Placa Neural/citologia , Placa Neural/embriologia , Tubo Neural/citologia , Defeitos do Tubo Neural/genética , Células Neuroepiteliais/citologia , Células Neuroepiteliais/metabolismo , Células Neuroepiteliais/ultraestrutura , Proteínas de Junções Íntimas/genética , Proteínas de Junções Íntimas/metabolismo
9.
Nat Commun ; 12(1): 2058, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33824332

RESUMO

Wnt signaling regulates cell proliferation and cell differentiation as well as migration and polarity during development. However, it is still unclear how the Wnt ligand distribution is precisely controlled to fulfil these functions. Here, we show that the planar cell polarity protein Vangl2 regulates the distribution of Wnt by cytonemes. In zebrafish epiblast cells, mouse intestinal telocytes and human gastric cancer cells, Vangl2 activation generates extremely long cytonemes, which branch and deliver Wnt protein to multiple cells. The Vangl2-activated cytonemes increase Wnt/ß-catenin signaling in the surrounding cells. Concordantly, Vangl2 inhibition causes fewer and shorter cytonemes to be formed and reduces paracrine Wnt/ß-catenin signaling. A mathematical model simulating these Vangl2 functions on cytonemes in zebrafish gastrulation predicts a shift of the signaling gradient, altered tissue patterning, and a loss of tissue domain sharpness. We confirmed these predictions during anteroposterior patterning in the zebrafish neural plate. In summary, we demonstrate that Vangl2 is fundamental to paracrine Wnt/ß-catenin signaling by controlling cytoneme behaviour.


Assuntos
Proteínas de Membrana/metabolismo , Pseudópodes/metabolismo , Via de Sinalização Wnt , Animais , Animais Geneticamente Modificados , Padronização Corporal , Embrião não Mamífero/metabolismo , Ativação Enzimática , Fibroblastos/metabolismo , Gastrulação , Células HEK293 , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos Endogâmicos C57BL , Placa Neural/embriologia , Placa Neural/metabolismo , Neurogênese , Comunicação Parácrina , Análise de Sistemas , Telócitos/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo
10.
Commun Biol ; 4(1): 147, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33514864

RESUMO

Primary neurulation is the process by which the neural tube, the central nervous system precursor, is formed from the neural plate. Incomplete neural tube closure occurs frequently, yet underlying causes remain poorly understood. Developmental studies in amniotes and amphibians have identified hingepoint and neural fold formation as key morphogenetic events and hallmarks of primary neurulation, the disruption of which causes neural tube defects. In contrast, the mode of neurulation in teleosts has remained highly debated. Teleosts are thought to have evolved a unique mode of neurulation, whereby the neural plate infolds in absence of hingepoints and neural folds, at least in the hindbrain/trunk where it has been studied. Using high-resolution imaging and time-lapse microscopy, we show here the presence of these morphological landmarks in the zebrafish anterior neural plate. These results reveal similarities between neurulation in teleosts and other vertebrates and hence the suitability of zebrafish to understand human neurulation.


Assuntos
Células Epiteliais/fisiologia , Placa Neural/embriologia , Tubo Neural/embriologia , Neurulação , Prosencéfalo/embriologia , Peixe-Zebra/embriologia , Animais , Animais Geneticamente Modificados , Movimento Celular , Forma Celular , Células Epiteliais/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Morfogênese , Placa Neural/metabolismo , Tubo Neural/metabolismo , Defeitos do Tubo Neural/embriologia , Prosencéfalo/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Tempo , Imagem com Lapso de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
11.
Dev Dyn ; 250(7): 955-973, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33501723

RESUMO

BACKGROUND: Neural tube (NT) closure is a complex developmental process that takes place in the early stages of embryogenesis and that is a key step in neurulation. In mammals, the process by which the neural plate generates the NT requires organized cell movements and tissue folding, and it terminates with the fusion of the apposed ends of the neural folds. RESULTS: Here we describe how almost identical cellular and molecular machinery is used to fuse the spinal neural folds as that involved in the repair of epithelial injury in the same area of the embryo. For both natural and wound activated closure of caudal neural tissue, hyaluronic acid and platelet-derived growth factor signaling appear to be crucial for the final fusion step. CONCLUSIONS: There seems to be no general wound healing machinery for all tissues but rather, a tissue-specific epithelial fusion machinery that embryos activate when necessary after abnormal epithelial opening.


Assuntos
Células Epiteliais/fisiologia , Tubo Neural/embriologia , Neurulação/fisiologia , Cicatrização/fisiologia , Animais , Fusão Celular , Células Cultivadas , Embrião de Mamíferos , Desenvolvimento Embrionário/fisiologia , Células Epiteliais/citologia , Feminino , Feto/embriologia , Ácido Hialurônico/metabolismo , Masculino , Camundongos , Crista Neural/embriologia , Crista Neural/fisiologia , Placa Neural/embriologia , Placa Neural/fisiologia , Defeitos do Tubo Neural/embriologia , Fator de Crescimento Derivado de Plaquetas/fisiologia , Gravidez
12.
Int J Dev Biol ; 65(4-5-6): 263-273, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32930349

RESUMO

The internalization of multi-cellular tissues is a key morphogenetic process during animal development and organ formation. A good example of this is the initial stages of vertebrate central nervous system formation whereby a transient embryonic structure called the neural plate is able to undergo collective cell rearrangements within the dorsal midline. Despite the fact that defects in neural plate midline internalization may result in a series of severe clinical conditions, such as spina bifida and anencephaly, the biochemical and biomechanical details of this process remain only partially characterized. Here we review the main cellular and molecular mechanisms underlying midline cell and tissue internalization during vertebrate neural tube formation. We discuss the contribution of collective cell mechanisms including convergence and extension, as well as apical constriction facilitating midline neural plate shaping. Furthermore, we summarize recent studies that shed light on how the interplay of signaling pathways and cell biomechanics modulate neural plate internalization. In addition, we discuss how adhesion-dependent cell-cell contact appears to be a critical component during midline cell convergence and surface cell contraction via cell-cell mechanical coupling. We envision that more detailed high-resolution quantitative data at both cell and tissue levels will be required to properly model the mechanisms of vertebrate neural plate internalization with the hope of preventing human neural tube defects.


Assuntos
Placa Neural , Tubo Neural , Vertebrados/embriologia , Animais , Morfogênese , Placa Neural/embriologia , Tubo Neural/embriologia , Neurulação
13.
Int J Dev Biol ; 65(4-5-6): 275-287, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32930383

RESUMO

The olfactory epithelia arise from morphologically identifiable structures called olfactory placodes. Sensory placodes are generally described as being induced from the ectoderm suggesting that their development is separate from the coordinated cell movements generating the central nervous system. Previously, we have shown that the olfactory placodes arise from a large field of cells bordering the telencephalic precursors in the neural plate, and that cell movements, not cell division, underlie olfactory placode morphogenesis. Subsequently by image analysis, cells were tracked as they moved in the continuous sheet of neurectoderm giving rise to the peripheral (olfactory organs) and central (olfactory bulbs) nervous system (Torres-Paz and Whitlock, 2014). These studies lead to a model whereby the olfactory epithelia develop from within the border of the neural late and are a neural tube derivative, similar to the retina of the eye (Torres-Paz and Whitlock, 2014; Whitlock, 2008). Here we show that randomly generated clones of cells extend across the morphologically differentiated olfactory placodes/olfactory bulbs, and test the hypothesis that these structures are patterned by a different level of distal-less (dlx) gene expression subdividing the anterior neurectoderm into OP precursors (high Dlx expression) and OB precursors (lower Dlx expression). Manipulation of DLX protein and RNA levels resulted in morphological changes in the size of the olfactory epithelia and olfactory bulb. Thus, the olfactory epithelia and bulbs arise from a common neurectodermal region and develop in concert through coordinated morphological movements.


Assuntos
Ectoderma , Placa Neural , Bulbo Olfatório/embriologia , Animais , Ectoderma/embriologia , Desenvolvimento Embrionário , Sistema Nervoso , Placa Neural/embriologia , Tubo Neural
14.
Commun Biol ; 3(1): 574, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33060832

RESUMO

Individual cell shape and integrity must precisely be orchestrated during morphogenesis. Here, we determine function of type II cadherins, Cdh6, Cdh8, and Cdh11, whose expression combinatorially demarcates the mouse neural plate/tube. While CRISPR/Cas9-based single type II cadherin mutants show no obvious phenotype, Cdh6/8 double knockout (DKO) mice develop intermingled forebrain/midbrain compartments as these two cadherins' expression opposes at the nascent boundary. Cdh6/8/11 triple, Cdh6/8 or Cdh8/11 DKO mice further cause exencephaly just within the cranial region where mutated cadherins' expression merges. In the Cdh8/11 DKO midbrain, we observe less-constricted apical actin meshwork, ventrally-directed spreading, and occasional hyperproliferation among dorsal neuroepithelial cells as origins for exencephaly. These results provide rigid evidence that, by conferring distinct adhesive codes to each cell, redundant type II cadherins serve essential and shared roles in compartmentalization and neurulation, both of which proceed under the robust control of the number, positioning, constriction, and fluidity of neuroepithelial cells.


Assuntos
Caderinas/genética , Caderinas/metabolismo , Células Neuroepiteliais/metabolismo , Animais , Sistemas CRISPR-Cas , Diferenciação Celular/genética , Mapeamento Cromossômico , Desenvolvimento Embrionário/genética , Imunofluorescência , Edição de Genes , Regulação da Expressão Gênica no Desenvolvimento , Marcação de Genes , Genômica/métodos , Humanos , Imuno-Histoquímica , Camundongos , Placa Neural/embriologia , Placa Neural/metabolismo , Tubo Neural/embriologia , Tubo Neural/metabolismo
15.
Elife ; 92020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-33030428

RESUMO

The internalization of the central nervous system, termed neurulation in vertebrates, is a critical step in embryogenesis. Open questions remain regarding how force propels coordinated tissue movement during the process, and little is known as to how internalization happens in invertebrates. We show that in C. elegans morphogenesis, apical constriction in the retracting pharynx drives involution of the adjacent neuroectoderm. HMR-1/cadherin mediates this process via inter-tissue attachment, as well as cohesion within the neuroectoderm. Our results demonstrate that HMR-1 is capable of mediating embryo-wide reorganization driven by a centrally located force generator, and indicate a non-canonical use of cadherin on the basal side of an epithelium that may apply to vertebrate neurulation. Additionally, we highlight shared morphology and gene expression in tissues driving involution, which suggests that neuroectoderm involution in C. elegans is potentially homologous with vertebrate neurulation and thus may help elucidate the evolutionary origin of the brain.


Assuntos
Caderinas/genética , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/embriologia , Neurulação , Animais , Caderinas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Embrião não Mamífero/embriologia , Morfogênese , Placa Neural/embriologia , Faringe/embriologia
16.
Sci Rep ; 10(1): 16780, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-33033315

RESUMO

Neuroectoderm formation is the first step in development of a proper nervous system for vertebrates. The developmental decision to form a non-neural ectoderm versus a neural one involves the regulation of BMP signaling, first reported many decades ago. However, the precise regulatory mechanism by which this is accomplished has not been fully elucidated, particularly for transcriptional regulation of certain key transcription factors. BMP4 inhibition is a required step in eliciting neuroectoderm from ectoderm and Foxd4l1.1 is one of the earliest neural genes highly expressed in the neuroectoderm and conserved across vertebrates, including humans. In this work, we focused on how Foxd4l1.1 downregulates the neural repressive pathway. Foxd4l1.1 inhibited BMP4/Smad1 signaling and triggered neuroectoderm formation in animal cap explants of Xenopus embryos. Foxd4l1.1 directly bound within the promoter of endogenous neural repressor ventx1.1 and inhibited ventx1.1 transcription. Foxd4l1.1 also physically interacted with Xbra in the nucleus and inhibited Xbra-induced ventx1.1 transcription. In addition, Foxd4l1.1 also reduced nuclear localization of Smad1 to inhibit Smad1-mediated ventx1.1 transcription. Foxd4l1.1 reduced the direct binding of Xbra and Smad1 on ventx1.1 promoter regions to block Xbra/Smad1-induced synergistic activation of ventx1.1 transcription. Collectively, Foxd4l1.1 negatively regulates transcription of a neural repressor ventx1.1 by multiple mechanisms in its exclusively occupied territory of neuroectoderm, and thus leading to primary neurogenesis. In conjunction with the results of our previous findings that ventx1.1 directly represses foxd4l1.1, the reciprocal repression of ventx1.1 and foxd4l1.1 is significant in at least in part specifying the mechanism for the non-neural versus neural ectoderm fate determination in Xenopus embryos.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Ectoderma/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Placa Neural/embriologia , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Ectoderma/metabolismo , Placa Neural/metabolismo , Regiões Promotoras Genéticas , Proteínas de Xenopus/genética , Xenopus laevis/genética
17.
PLoS Comput Biol ; 16(6): e1007417, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32579554

RESUMO

During embryogenesis, morphogens form a concentration gradient in responsive tissue, which is then translated into a spatial cellular pattern. The mechanisms by which morphogens spread through a tissue to establish such a morphogenetic field remain elusive. Here, we investigate by mutually complementary simulations and in vivo experiments how Wnt morphogen transport by cytonemes differs from typically assumed diffusion-based transport for patterning of highly dynamic tissue such as the neural plate in zebrafish. Stochasticity strongly influences fate acquisition at the single cell level and results in fluctuating boundaries between pattern regions. Stable patterning can be achieved by sorting through concentration dependent cell migration and apoptosis, independent of the morphogen transport mechanism. We show that Wnt transport by cytonemes achieves distinct Wnt thresholds for the brain primordia earlier compared with diffusion-based transport. We conclude that a cytoneme-mediated morphogen transport together with directed cell sorting is a potentially favored mechanism to establish morphogen gradients in rapidly expanding developmental systems.


Assuntos
Padronização Corporal/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Vertebrados/embriologia , Proteínas Wnt/fisiologia , Animais , Apoptose , Encéfalo/embriologia , Linhagem da Célula , Movimento Celular , Biologia Computacional , Simulação por Computador , Desenvolvimento Embrionário , Crista Neural/embriologia , Placa Neural/embriologia , Transporte Proteico , Transdução de Sinais , Software , Processos Estocásticos , Peixe-Zebra/embriologia , beta Catenina/fisiologia
18.
Adv Exp Med Biol ; 1236: 39-64, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32304068

RESUMO

During embryonic development, the central nervous system forms as the neural plate and then rolls into a tube in a complex morphogenetic process known as neurulation. Neural tube defects (NTDs) occur when neurulation fails and are among the most common structural birth defects in humans. The frequency of NTDs varies greatly anywhere from 0.5 to 10 in 1000 live births, depending on the genetic background of the population, as well as a variety of environmental factors. The prognosis varies depending on the size and placement of the lesion and ranges from death to severe or moderate disability, and some NTDs are asymptomatic. This chapter reviews how mouse models have contributed to the elucidation of the genetic, molecular, and cellular basis of neural tube closure, as well as to our understanding of the causes and prevention of this devastating birth defect.


Assuntos
Modelos Animais de Doenças , Placa Neural/embriologia , Defeitos do Tubo Neural , Animais , Sistema Nervoso Central/embriologia , Humanos , Camundongos , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/metabolismo , Defeitos do Tubo Neural/patologia , Defeitos do Tubo Neural/prevenção & controle , Neurulação
19.
Dev Biol ; 457(1): 30-42, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31520602

RESUMO

In early vertebrate embryos, the dorsal ectoderm is induced by the axial mesendoderm to form the neural plate, which is given competence to form neural cells by soxB1 genes. Subsequently, neurogenesis proceeds in proneural clusters that are generated by a gene network involving proneural genes and Notch signaling. However, what occurs between early neural induction and the later initiation of neurogenesis has not been fully revealed. In the present study, we demonstrated that during gastrulation, the expression of the Oct4-related PouV gene pou5f3 (also called pou2), which is widely observed at earlier stages, was rapidly localized to an array of isolated spotted domains, each of which coincided with individual proneural clusters. Two-color in situ hybridization confirmed that each pou5f3-expressing domain included a proneural cluster. Further analysis demonstrated that anterior pou5f3 domains straddled the boundaries between rhombomere 1 (r1) and r2, whereas posterior domains were included in r4. The effects of forced expression of an inducible negative dominant-interfering pou5f3 gene suggested that pou5f3 activated early proneural genes, such as neurog1 and ebf2, and also soxB1, but repressed the late proneural genes atoh1a and ascl1b. Furthermore, pou5f3 was considered to repress her4.1, a Notch-dependent Hairy/E(spl) gene involved in lateral inhibition in proneural clusters. These results suggest that pou5f3 promotes early neurogenesis in proneural clusters, but negatively regulates later neurogenesis. Suppression of pou5f3 also altered the expression of other her genes, including her3, her5, and her9, further supporting a role for pou5f3 in neurogenesis. In vitro reporter assays in P19 cells showed that pou5f3 was repressed by neurog1, but activated by Notch signaling. These findings together demonstrate the importance of the pou5f3-mediated gene regulatory network in neural development in vertebrate embryos.


Assuntos
Placa Neural/embriologia , Neurogênese , Fator 3 de Transcrição de Octâmero/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Padronização Corporal , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário , Placa Neural/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Fatores de Transcrição SOXB1/genética , Proteínas de Peixe-Zebra/genética
20.
Methods Mol Biol ; 2047: 325-345, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31552663

RESUMO

The technique of in situ hybridization can be used to visualize the spatial and temporal pattern of gene expression during development. Ascidians are invertebrate chordates that develop with a fixed cell cleavage pattern into a tadpole larvae. The knowledge of the cell lineage allows the earliest steps of cell fate specification to be followed at a single cell resolution. This protocol describes preparation of Ciona intestinalis embryos, classical in situ hybridization protocol coupled with nuclear staining, and a guide to identify gene expression in specific precursors of the developing brain at neural plate stages of development.


Assuntos
Ciona/embriologia , Ciona/metabolismo , Hibridização In Situ/métodos , Placa Neural/embriologia , Placa Neural/metabolismo , Urocordados/embriologia , Urocordados/metabolismo , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA